Nonlinear Analysis with Frames. Part I: Injectivity Results

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

$$
\text { July 28-30, } 2015
$$

Modern Harmonic Analysis and Applications
Summer Graduate Program University of Maryland, College Park, MD 20742

Thanks to our sponsors:

Institute for Mathematics and its Applications

University of Minnesota Driven to Discover ${ }^{\text {m }}$

SIEMENS

"This material is based upon work supported by the National Science Foundation under Grants No. DMS-1413249, DMS-1501640. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

Table of Contents:

(1) Problem Formulation
(2) Topology of \hat{V}
(3) Classes $\mathcal{S}^{p, q}$
(4) Realification of H
(5) Injectivity Results

Table of Contents

(1) Problem Formulation
(2) Topology of \hat{V}
(3) Classes $\mathcal{S}^{p, q}$
(4) Realification of H
(5) Injectivity Results

Problem Formulation

The phase retrieval problem

- Let $H=\mathbb{C}^{n}$ and $V \subset H$ a real subspace. The quotient space $\hat{H}=\mathbb{C}^{n} / T^{1}$, with classes induced by $x \sim y$ if there is real φ with $x=e^{i \varphi} y$. Set $\hat{V}=\{\hat{x}, x \in V\}$.

Problem Formulation

The phase retrieval problem

- Let $H=\mathbb{C}^{n}$ and $V \subset H$ a real subspace. The quotient space $\hat{H}=\mathbb{C}^{n} / T^{1}$, with classes induced by $x \sim y$ if there is real φ with $x=e^{i \varphi} y$. Set $\hat{V}=\{\hat{x}, x \in V\}$.
- Frame $\mathcal{F}=\left\{f_{1}, \cdots, f_{m}\right\} \subset \mathbb{C}^{n}$ and

$$
\begin{aligned}
& \alpha: \hat{H} \rightarrow \mathbb{R}^{m} \quad, \quad \alpha(x)=\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m} \\
& \beta: \hat{H} \rightarrow \mathbb{R}^{m}, \quad \beta(x)=\left(\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)_{1 \leq k \leq m}
\end{aligned}
$$

The frame is said phase retrievable with respect to V (or that it gives phase retrieval for V) if α (or β) restricted to V is injective.

Problem Formulation

The phase retrieval problem

- Let $H=\mathbb{C}^{n}$ and $V \subset H$ a real subspace. The quotient space $\hat{H}=\mathbb{C}^{n} / T^{1}$, with classes induced by $x \sim y$ if there is real φ with $x=e^{i \varphi} y$. Set $\hat{V}=\{\hat{x}, x \in V\}$.
- Frame $\mathcal{F}=\left\{f_{1}, \cdots, f_{m}\right\} \subset \mathbb{C}^{n}$ and

$$
\begin{aligned}
& \alpha: \hat{H} \rightarrow \mathbb{R}^{m} \quad, \quad \alpha(x)=\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m} \\
& \beta: \hat{H} \rightarrow \mathbb{R}^{m}, \quad \beta(x)=\left(\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)_{1 \leq k \leq m}
\end{aligned}
$$

The frame is said phase retrievable with respect to V (or that it gives phase retrieval for V) if α (or β) restricted to V is injective.

- The general phase retrieval problem a.k.a. phaseless reconstruction: Decide when a given frame is phase retrievable, and, if so, find an algorithm to recover x from $y=\alpha(x)$ (or from $y=\beta(x)$) up to a global phase factor. Additionally find universal bounds on performance of any inversion algorithm.

Problem Formulation

- Our Problems Today: When is \mathcal{F} phase retrievable.
- Want a general framework that covers both the real and complex case.
(1) Obtain conditions when $V=\mathbb{R}^{n}$ (real case);
(2) Obtain conditions when $V=\mathbb{C}^{n}$ (complex case)

Problem Formulation

- Our Problems Today: When is \mathcal{F} phase retrievable.
- Want a general framework that covers both the real and complex case.
(1) Obtain conditions when $V=\mathbb{R}^{n}$ (real case);
(2) Obtain conditions when $V=\mathbb{C}^{n}$ (complex case)
(3) Finda minimal cardinals of phase retrievable frames.

Table of Contents

(1) Problem Formulation

(2) Topology of \hat{V}

(3) Classes $\mathcal{S}^{p, q}$
(4) Realification of H
(5) Injectivity Results

Topology of \hat{V} Topological Structures

Let $H=\mathbb{C}^{n}$ and $V \subset H$ a real subspace. The quotient space $\hat{H}=\mathbb{C}^{n} / T^{1}$, with classes induced by $x \sim y$ if there is real φ with $x=e^{i \varphi} y$. Set $\hat{V}=\{\hat{x}, x \in V\}$.

Topology of \hat{V}
 Topological Structures

Let $H=\mathbb{C}^{n}$ and $V \subset H$ a real subspace. The quotient space $\hat{H}=\mathbb{C}^{n} / T^{1}$, with classes induced by $x \sim y$ if there is real φ with $x=e^{i \varphi} y$.
Set $\hat{V}=\{\hat{x}, x \in V\}$.
Topologically:

$$
\hat{V}=\{0\} \cup((0, \infty)] \times \mathbb{P}(V))
$$

where $\mathbb{P}(V)$ denotes the projective space associated to V.
The interior subset

$$
\dot{\hat{V}}=\hat{V} \backslash\{0\}=((0, \infty)] \times \mathbb{P}(V))
$$

is a real analytic manifold of real dimension $1+\operatorname{dim}_{\mathbb{R}} \mathbb{P}(V)$.

Topology of \hat{V}

 Topological Structures- Complex case $V=\mathbb{C}^{n}$.

$$
\widehat{\mathbb{C}}^{n}=\{0\} \cup\left((0, \infty) \times \mathbb{C P}^{n-1}\right)
$$

with

$$
\hat{\mathbb{C}}^{n}=\hat{\mathbb{C}}^{n} \backslash\{0\}=(0, \infty) \times \mathbb{C P}^{n-1}
$$

a real analytic manifold of real dimension $2 n-1$.

Topology of \hat{V}

Topological Structures

- Complex case $V=\mathbb{C}^{n}$.

$$
\hat{\mathbb{C}}^{n}=\{0\} \cup\left((0, \infty) \times \mathbb{C P}^{n-1}\right)
$$

with

$$
\hat{\mathbb{C}}^{n}=\hat{\mathbb{C}}^{n} \backslash\{0\}=(0, \infty) \times \mathbb{C P}^{n-1}
$$

a real analytic manifold of real dimension $2 n-1$.

- Real case $V=\mathbb{R}^{n}$.

$$
\hat{\mathbb{R}}^{n}=\{0\} \cup\left((0, \infty) \times \mathbb{R}^{n-1}\right)
$$

with

$$
\stackrel{\circ}{\mathbb{R}^{n}}=\hat{\mathbb{R}}^{n} \backslash\{0\}=(0, \infty) \times \mathbb{R}^{n-1}
$$

a real analytic manifold of real dimension n.

Topology of \hat{V}
 Topological Structures

Another embedding is into the real vector space of symmetric (self-adjoint) matrices Sym(V).

Topology of \hat{V}
 Topological Structures

Another embedding is into the real vector space of symmetric (self-adjoint) matrices $\operatorname{Sym}(V)$.
Specifically let

$$
\mathcal{S}^{p, q}(V)=\{T \in \operatorname{Sym}(V), T \text { has at most } p \text { pos.eigs. and } q \text { neg.eigs }\}
$$

Then:

$$
\kappa_{\beta}: \hat{V} \rightarrow \mathcal{S}^{1,0} \quad, \quad \hat{x} \mapsto=x x^{*} \quad, \quad \text { is an embedding. }
$$

Topology of \hat{V}
 Topological Structures

Another embedding is into the real vector space of symmetric (self-adjoint) matrices Sym(V).
Specifically let

$$
\mathcal{S}^{p, q}(V)=\{T \in \operatorname{Sym}(V), T \text { has at most } p \text { pos.eigs. and } q \text { neg.eigs }\}
$$

Then:

$$
\kappa_{\beta}: \hat{V} \rightarrow \mathcal{S}^{1,0} \quad, \quad \hat{x} \mapsto=x x^{*} \quad, \quad \text { is an embedding. }
$$

$\operatorname{Sym}(H)$ is a real Hilbert space with scalar product $\langle T, S\rangle_{H S}=\operatorname{trace}\{T S\}$.

Topology of \hat{V}
 Topological Structures

Another embedding is into the real vector space of symmetric (self-adjoint) matrices Sym(V).
Specifically let

$$
\mathcal{S}^{p, q}(V)=\{T \in \operatorname{Sym}(V), T \text { has at most } p \text { pos.eigs. and } q \text { neg.eigs }\}
$$

Then:

$$
\kappa_{\beta}: \hat{V} \rightarrow \mathcal{S}^{1,0} \quad, \quad \hat{x} \mapsto=x x^{*} \quad, \quad \text { is an embedding. }
$$

$\operatorname{Sym}(H)$ is a real Hilbert space with scalar product $\langle T, S\rangle_{H S}=\operatorname{trace}\{T S\}$. \hat{V} is isomorphic (one-to-one and onto) to $\mathcal{S}^{1,0}(V)$.
Key Identity:

$$
\beta(x)_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}=\left\langle\kappa_{\beta}(\hat{x}), F_{k}\right\rangle_{H S}
$$

where $F_{k}=f_{k} f_{k}^{*}$.

Metric Space Structures

The matrix-norm induced metric and the natural metric structures
Fix $1 \leq p \leq \infty$. The matrix-norm induced distance

$$
d_{p}: \hat{H} \times \hat{H} \rightarrow \mathbb{R}, d_{p}(\hat{x}, \hat{y})=\left\|x x^{*}-y y^{*}\right\|_{p}
$$

with the p-norm of the singular values. In the case $p=2$ we obtain

$$
d_{2}(x, y)=\sqrt{\|x\|^{4}+\|y\|^{4}-2|\langle x, y\rangle|^{2}}
$$

Metric Space Structures

The matrix-norm induced metric and the natural metric structures
Fix $1 \leq p \leq \infty$. The matrix-norm induced distance

$$
d_{p}: \hat{H} \times \hat{H} \rightarrow \mathbb{R}, d_{p}(\hat{x}, \hat{y})=\left\|x x^{*}-y y^{*}\right\|_{p}
$$

with the p-norm of the singular values. In the case $p=2$ we obtain

$$
d_{2}(x, y)=\sqrt{\|x\|^{4}+\|y\|^{4}-2|\langle x, y\rangle|^{2}}
$$

Fix $1 \leq p \leq \infty$. The natural metric

$$
D_{p}: \hat{H} \times \hat{H} \rightarrow \mathbb{R}, \quad D_{p}(\hat{x}, \hat{y})=\min _{\varphi}\left\|x-e^{i \varphi} y\right\|_{p}
$$

with the usual p-norm on \mathbb{C}^{n}. In the case $p=2$ we obtain

$$
D_{2}(\hat{x}, \hat{y})=\sqrt{\|x\|^{2}+\|y\|^{2}-2|\langle x, y\rangle|}
$$

Metric Space Structures
 Distinct Structures

Two different structures: topologically equivalent, BUT the metrics are NOT equivalent:

Lemma (BZ15)

The identity map $i:\left(\hat{H}, D_{p}\right) \rightarrow\left(\hat{H}, d_{p}\right), i(x)=x$ is continuous but it is not Lipschitz continuous. Likewise, the identity map
$i:\left(\hat{H}, d_{p}\right) \rightarrow\left(\hat{H}, D_{p}\right), i(x)=x$ is continuous but it is not Lipschitz continuous. Hence the induced topologies on $\left(\hat{H}, D_{p}\right)$ and $\left(\hat{H}, d_{p}\right)$ are the same, but the corresponding metrics are not Lipschitz equivalent.

Table of Contents

(1) Problem Formulation

(2) Topology of \hat{V}
(3) Classes $\mathcal{S}^{p, q}$
(4) Realification of H
(5) Injectivity Results

Classes $\mathcal{S}^{p, q}$

General properties; Witt's decomposition
The following lemma summarizes basic properties of $\mathcal{S}^{p, q}$.

Lemma (Bal13)

(1) For any $p_{1} \leq p_{2}$ and $q_{1} \leq q_{2}, \mathcal{S}^{p_{1}, q_{1}} \subset \mathcal{S}^{p_{2}, q_{2}}$;
(2) For any nonnegative integers p, q the following disjoint decomposition holds true

$$
\begin{equation*}
\mathcal{S}^{p, q}=\cup_{r=0}^{p} \cup_{s=0}^{q} \mathcal{S}^{r}, s \tag{3.1}
\end{equation*}
$$

where by convention $\mathcal{S}^{p, q}=\emptyset$ for $p+q>n$.
(3) For any $p, q \geq 0$,

$$
\begin{equation*}
-\mathcal{S}^{p, q}=\mathcal{S}^{q, p} \tag{3.2}
\end{equation*}
$$

(9) For any linear operator $T: H \rightarrow H$ (symmetric or not, invertible or not) and nonnegative integers p, q,

$$
\begin{equation*}
T^{*} \mathcal{S}^{p, q} T \subset \mathcal{S}^{p, q} \tag{3.3}
\end{equation*}
$$

Classes $\mathcal{S}^{p, q}$

General properties; Witt's decomposition

Lemma (cont'd)

(3) (Witt's decomposition) For any nonnegative integers p, q, r, s,

$$
\begin{equation*}
\mathcal{S}^{p, q}+\mathcal{S}^{r, s}=\mathcal{S}^{p, q}-\mathcal{S}^{s, r}=\mathcal{S}^{p+r, q+s} \tag{3.4}
\end{equation*}
$$

$\mathcal{S}^{p, q}=\left\{T \in \mathcal{S}^{p, q}\right.$ have exactly p positive eigs and q negative eigs $\}$

Classes $\mathcal{S}^{p, q}$

Class $\mathcal{S}^{1,0}$

Lemma (Space $\mathcal{S}^{1,0}$)

The following hold true:
(1) $\mathcal{S}^{1,0}=\left\{x x^{*}, x \in H, x \neq 0\right\}$;
(2) $\mathcal{S}^{1,0}=\left\{x x^{*}, x \in H\right\}=\{0\} \cup\left\{x x^{*}, x \in H, x \neq 0\right\}$;
(3) The set $\dot{\mathcal{S}}^{1,0}$ is a real analytic manifold in $\operatorname{Sym}(n)$ of real dimension $2 n-1$. As a real manifold, its tangent space at $X=x x^{*}$ is given by

$$
\begin{equation*}
T_{X} \mathcal{S}^{1,0}=\left\{\llbracket x, y \rrbracket:=\frac{1}{2}\left(x y^{*}+y x^{*}\right), y \in \mathbb{C}^{n}\right\} . \tag{3.5}
\end{equation*}
$$

The \mathbb{R}-linear embedding $\mathbb{C}^{n} \mapsto T_{X} \mathcal{S}^{1,0}$ given by $y \mapsto \llbracket x, y \rrbracket$ has null space $\{i a x, a \in \mathbb{R}\}$.

Classes $\mathcal{S}^{p, q}$

Class $\mathcal{S}^{1,1}$

Lemma (Space $\mathcal{S}^{1,1}$)

The following hold true:
(1) $\mathcal{S}^{1,1}=\mathcal{S}^{1,0}-\mathcal{S}^{1,0}=\mathcal{S}^{1,0}+\mathcal{S}^{0,1}=\{\llbracket x, y \rrbracket, x, y \in H\}$;
(2) For any vectors $x, y, u, v \in H$,

$$
\begin{align*}
x x^{*}-y y^{*} & =\llbracket x+y, x-y \rrbracket=\llbracket x-y, x+y \rrbracket \tag{3.6}\\
\llbracket u, v \rrbracket & =\frac{1}{4}(u+v)(u+v)^{*}-\frac{1}{4}(u-v)(u-v)^{*} \tag{3.7}
\end{align*}
$$

Additionally, for any $T \in \mathcal{S}^{1,1}$ let $T=a_{1} e_{1} e_{1}^{*}-a_{2} e_{2} e_{2}^{*}$ be its spectral factorization with $a_{1}, a_{2} \geq 0$ and $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i, j}$. Then

$$
T=\llbracket \sqrt{a_{1}} e_{1}+\sqrt{a_{2}} e_{2}, \sqrt{a_{1}} e_{1}-\sqrt{a_{2}} e_{2} \rrbracket .
$$

Classes $\mathcal{S}^{p, q}$

Class $\mathcal{S}^{1,1}$

Lemma (Space $\mathcal{S}^{1,1}$-cont'd)

(3) The set $\dot{\mathcal{S}}^{1,1}$ is a real analytic manifold in $\operatorname{Sym}(n)$ of real dimension $4 n-4$. Its tangent space at $X=\llbracket x, y \rrbracket$ is given by

$$
T_{X} \mathcal{S}^{1,1}=\left\{\llbracket x, u \rrbracket+\llbracket y, v \rrbracket=\frac{1}{2}\left(x u^{*}+u x^{*}+y v^{*}+v y^{*}\right), u, v \in \mathbb{C}^{n}\right\} .
$$

The \mathbb{R}-linear embedding $\mathbb{C}^{n} \times \mathbb{C}^{n} \mapsto T_{X} \mathcal{S}^{1,1}$ given by $(u, v) \mapsto \llbracket x, u \rrbracket+\llbracket y, v \rrbracket$ has null space $\{a(i x, 0)+b(0, i y)+c(y,-x)+d(i y, i x), a, b, c, d \in \mathbb{R}\}$.

Classes $\mathcal{S}^{p, q}$

Class $\mathcal{S}^{1,1}$

Lemma (Space $\mathcal{S}^{1,1}$-cont'd)

(9) Let $T=\llbracket u, v \rrbracket \in \mathcal{S}^{1,1}$. Then its eigenvalues and p-norms are:

$$
\begin{aligned}
a_{+} & =\frac{1}{2}\left(\operatorname{real}(\langle u, v\rangle)+\sqrt{\|u\|^{2}\|v\|^{2}-(\operatorname{imag}(\langle u, v\rangle))^{2}}\right) \geq 0 \\
a_{-} & =\frac{1}{2}\left(\operatorname{real}(\langle u, v\rangle)-\sqrt{\|u\|^{2}\|v\|^{2}-(\operatorname{imag}(\langle u, v\rangle))^{2}}\right) \leq 0 \\
\|T\|_{1} & =\sqrt{\|u\|^{2}\|v\|^{2}-(\operatorname{imag}(\langle u, v\rangle))^{2}} \\
\|T\|_{2} & \left.=\sqrt{\frac{1}{2}\left(\|u\|^{2}\|v\|^{2}+(\operatorname{real}(\langle u, v\rangle))^{2}-(\operatorname{imag}(\langle u, v\rangle))^{2}\right.}\right) \\
\|T\|_{\infty} & =\frac{1}{2}\left(|r e a l(\langle u, v\rangle)|+\sqrt{\|u\|^{2}\|v\|^{2}-(\operatorname{imag}(\langle u, v\rangle))^{2}}\right)
\end{aligned}
$$

Classes $\mathcal{S}^{p, q}$

Class $\mathcal{S}^{1,1}$

Lemma (Space $\mathcal{S}^{1,1}$-cont'd)

(5) Let $T=x x^{*}-y y^{*} \in \mathcal{S}^{1,1}$. Then its eigenvalues and p-norms are:

$$
\begin{aligned}
a_{+} & =\frac{1}{2}\left(\|x\|^{2}-\|y\|^{2}+\sqrt{\left(\|x\|^{2}+\|y\|^{2}\right)^{2}-4|\langle x, y\rangle|^{2}}\right) \geq 0 \\
a_{-} & =\frac{1}{2}\left(\|x\|^{2}-\|y\|^{2}-\sqrt{\left(\|x\|^{2}+\|y\|^{2}\right)^{2}-4|\langle x, y\rangle|^{2}}\right) \leq 0 \\
\|T\|_{1} & =\sqrt{\left(\|x\|^{2}+\|y\|^{2}\right)^{2}-4|\langle x, y\rangle|^{2}} \\
\|T\|_{2} & =\sqrt{\|x\|^{4}+\|y\|^{4}-2|\langle x, y\rangle|^{2}} \\
\|T\|_{\infty} & =\frac{1}{2}\left(\left|\|x\|^{2}-\|y\|^{2}\right|+\sqrt{\left(\|x\|^{2}+\|y\|^{2}\right)^{2}-4|\langle x, y\rangle|^{2}}\right)
\end{aligned}
$$

Table of Contents

(1) Problem Formulation

(2) Topology of \hat{V}
(3) Classes $\mathcal{S}^{p, q}$
(4) Realification of H
(5) Injectivity Results

Realification

Realification of H

First we describe the realification of H and V. Consider the \mathbb{R}-linear map $\mathbf{j}: \mathbb{C}^{n} \rightarrow \mathbb{R}^{2 n}$ defined by

$$
\mathbf{j}(x)=\left[\begin{array}{c}
\operatorname{real}(x) \\
\operatorname{imag}(x)
\end{array}\right]
$$

Realification

Realification of H

First we describe the realification of H and V. Consider the \mathbb{R}-linear map $\mathbf{j}: \mathbb{C}^{n} \rightarrow \mathbb{R}^{2 n}$ defined by

$$
\mathbf{j}(x)=\left[\begin{array}{c}
\operatorname{real}(x) \\
\operatorname{imag}(x)
\end{array}\right]
$$

Let $\mathcal{V}=\mathbf{j}(V)$ be the embedding of V into $\mathbb{R}^{2 n}$, and let Π denote the orthogonal projection (with respect to the real scalar product on $\mathbb{R}^{2 n}$) onto \mathcal{V}.

Realification

Realification of H

First we describe the realification of H and V. Consider the \mathbb{R}-linear map $\mathbf{j}: \mathbb{C}^{n} \rightarrow \mathbb{R}^{2 n}$ defined by

$$
\mathbf{j}(x)=\left[\begin{array}{c}
\operatorname{real}(x) \\
\operatorname{imag}(x)
\end{array}\right]
$$

Let $\mathcal{V}=\mathbf{j}(V)$ be the embedding of V into $\mathbb{R}^{2 n}$, and let Π denote the orthogonal projection (with respect to the real scalar product on $\mathbb{R}^{2 n}$) onto \mathcal{V}.
Let J denote the folowing orthogonal antisymmetric $2 n \times 2 n$ matrix

$$
J=\left[\begin{array}{cc}
0 & -I_{n} \tag{4.8}\\
I_{n} & 0
\end{array}\right]
$$

where I_{n} denotes the identity matrix of order $n \times n$. Note the transpose $J^{T}=-J$, the square $J^{2}=-I_{2 n}$ and the inverse $J^{-1}=-J$.

Realification

Realification of H

First we describe the realification of H and V. Consider the \mathbb{R}-linear map $\mathbf{j}: \mathbb{C}^{n} \rightarrow \mathbb{R}^{2 n}$ defined by

$$
\mathbf{j}(x)=\left[\begin{array}{c}
\operatorname{real}(x) \\
\operatorname{imag}(x)
\end{array}\right]
$$

Let $\mathcal{V}=\mathbf{j}(V)$ be the embedding of V into $\mathbb{R}^{2 n}$, and let Π denote the orthogonal projection (with respect to the real scalar product on $\mathbb{R}^{2 n}$) onto \mathcal{V}.
Let J denote the folowing orthogonal antisymmetric $2 n \times 2 n$ matrix

$$
J=\left[\begin{array}{cc}
0 & -I_{n} \tag{4.8}\\
I_{n} & 0
\end{array}\right]
$$

where I_{n} denotes the identity matrix of order $n \times n$. Note the transpose $J^{\top}=-J$, the square $J^{2}=-I_{2 n}$ and the inverse $J^{-1}=-J$.
Note: $\mathbf{j}(i x)=J \mathbf{j}(x)$ for every $x \in H$.

Realification

Realification of frame vectors

Each vector f_{k} of the frame set $\mathcal{F}=\left\{f_{1}, \cdots, f_{m}\right\}$ gets mapped into a vector in $\mathbb{R}^{2 n}$ denoted by φ_{k}, and a symmetric operator in $\mathcal{S}^{2,0}\left(\mathbb{R}^{2 n}\right)$ denoted by Φ_{k} :

$$
\varphi_{k}=\mathbf{j}\left(f_{k}\right)=\left[\begin{array}{c}
\operatorname{real}\left(f_{k}\right) \tag{4.9}\\
\operatorname{imag}\left(f_{k}\right)
\end{array}\right] \quad, \quad \Phi_{k}=\varphi_{k} \varphi_{k}^{T}+J \varphi_{k} \varphi_{k}^{T} J^{T}
$$

Note that when $f_{k} \neq 0$:

- The symmetric form Φ_{k} has rank 2 and belongs to $\mathcal{S}^{2,0}$.
- Its spectrum has two distinct eigenvalues: $\left\|\varphi_{k}\right\|^{2}=\left\|f_{k}\right\|^{2}$ with multiplicity 2 , and 0 with multiplicity $2 n-2$.
- Furthermore, $\frac{1}{\left\|\varphi_{k}\right\|^{2}} \Phi_{k}$ is a rank 2 projection.

Realification

Relationships

Let $\xi=\mathbf{j}(x)$ and $\eta=\mathbf{j}(y)$ denote the realifications of vectors $x, y \in \mathbb{C}^{n}$. Then a bit of algebra shows that

$$
\begin{aligned}
\left\langle x, f_{k}\right\rangle & =\left\langle\xi, \varphi_{k}\right\rangle+i\left\langle\xi, J \varphi_{k}\right\rangle \\
\left\langle F_{k}, x x^{*}\right\rangle_{H S}=\operatorname{trace}\left(F_{k} x x^{*}\right)=\left|\left\langle x, f_{k}\right\rangle\right|^{2} & =\left\langle\Phi_{k} \xi, \xi\right\rangle=\operatorname{trace}\left(\Phi \xi \xi^{T}\right) \\
& =\left\langle\Phi_{k}, \xi \xi^{T}\right\rangle_{H S} \\
\left\langle F_{k}, \llbracket x, y \rrbracket\right\rangle_{H S}=\operatorname{trace}\left(F_{k} \llbracket x, y \rrbracket\right) & =\operatorname{real}\left(\left\langle x, f_{k}\right\rangle\left\langle f_{k}, y\right\rangle\right)=\left\langle\Phi_{k} \xi, \eta\right\rangle \\
& =\left(\operatorname{trace}\left(\Phi_{k} \llbracket \xi, \eta \rrbracket\right)=\left\langle\Phi_{k}, \llbracket \xi, \eta \rrbracket\right\rangle\right.
\end{aligned}
$$

where $F_{k}=\llbracket f_{k}, f_{k} \rrbracket=f_{k} f_{k}^{*} \in \mathcal{S}^{1,0}(H)$.

Table of Contents

(1) Problem Formulation

(2) Topology of \hat{V}
(3) Classes $\mathcal{S}^{p, q}$
(4) Realification of H
(5) Injectivity Results

Injectivity Results

Notations

The following objects play an important role in subsequent theory:

$$
\begin{aligned}
& R: \mathbb{C}^{n} \rightarrow \operatorname{Sym}\left(\mathbb{C}^{n}\right) \quad, \quad R(x)=\sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{*}, x \in \mathbb{C}^{n} \\
& \mathcal{R}: \mathbb{R}^{2 n} \rightarrow \operatorname{Sym}\left(\mathbb{R}^{2 n}\right) \quad, \quad \mathcal{R}(\xi)=\sum_{k=1}^{m} \Phi_{k} \xi \xi^{T} \Phi_{k}, \xi \in \mathbb{R}^{2 n} \\
& \left.\mathcal{S}: \mathbb{R}^{2 n} \rightarrow \operatorname{Sym}\left(\mathbb{R}^{2 n}\right) \quad, \quad \mathcal{S}(\xi)=\sum_{k: \Phi_{k} \xi \neq 0} \frac{1}{\left\langle\Phi_{k} \xi, \xi\right\rangle} \Phi_{k} \xi \xi^{\top} \Phi_{k}, \xi \in \text { f(}^{2} .12\right) \\
& \mathcal{Z}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n \times m} \quad, \mathcal{Z}(\xi)=\left[\begin{array}{l|l|l}
\Phi_{1} \xi & \mid & \cdots \\
\mid & \Phi_{m} \xi
\end{array}\right], \xi \in\left(\mathbb{R}^{2} \nmid 3\right)
\end{aligned}
$$

Note $\mathcal{R}=\mathcal{Z Z}^{\top}$.

Injectivity Results
 Induced Linear operator

Recall the key identity:

$$
\left|\left\langle x, f_{k}\right\rangle\right|^{2}=\operatorname{trace}\left(F_{k} X\right)=\left\langle F_{k}, X\right\rangle_{H S}
$$

where $X=x x^{*}$.

Injectivity Results

Induced Linear operator

Recall the key identity:

$$
\left|\left\langle x, f_{k}\right\rangle\right|^{2}=\operatorname{trace}\left(F_{k} X\right)=\left\langle F_{k}, X\right\rangle_{H S}
$$

where $X=x x^{*}$.
Thus the nonlinear map β induces a linear map on the real vector space $\operatorname{Sym}\left(\mathbb{C}^{n}\right)$ of symmetric forms over \mathbb{C}^{n} :

$$
\mathbb{A}: \operatorname{Sym}\left(\mathbb{C}^{n}\right) \rightarrow \mathbb{R}^{m} \quad, \quad \mathbb{A}(T)=\left(\left\langle T, F_{k}\right\rangle_{H S}\right)_{1 \leq k \leq m}=\left(\left\langle T f_{k}, f_{k}\right\rangle\right)_{1 \leq k \leq m}
$$

Injectivity Results

Induced Linear operator

Recall the key identity:

$$
\left|\left\langle x, f_{k}\right\rangle\right|^{2}=\operatorname{trace}\left(F_{k} X\right)=\left\langle F_{k}, X\right\rangle_{H S}
$$

where $X=x x^{*}$.
Thus the nonlinear map β induces a linear map on the real vector space $\operatorname{Sym}\left(\mathbb{C}^{n}\right)$ of symmetric forms over \mathbb{C}^{n} :

$$
\mathbb{A}: \operatorname{Sym}\left(\mathbb{C}^{n}\right) \rightarrow \mathbb{R}^{m} \quad, \quad \mathbb{A}(T)=\left(\left\langle T, F_{k}\right\rangle_{H S}\right)_{1 \leq k \leq m}=\left(\left\langle T f_{k}, f_{k}\right\rangle\right)_{1 \leq k \leq m}
$$

Similarly it induces a linear map on $\operatorname{Sym}\left(\mathbb{R}^{2 n}\right)$ the space of symmetric forms over $\mathbb{R}^{2 n}=\mathbf{j}\left(\mathbb{C}^{n}\right)$ that is denoted by \mathcal{A} :

$$
\begin{aligned}
\mathcal{A}: \operatorname{Sym}\left(\mathbb{R}^{2 n}\right) \rightarrow \mathbb{R}^{m}, \mathcal{A}(T) & =\left(\left\langle T, \Phi_{k}\right\rangle_{H S}\right)_{1 \leq k \leq m} \\
& =\left(\left\langle T \varphi_{k}, \varphi_{k}\right\rangle+\left\langle T J \varphi_{k}, J \varphi_{k}\right\rangle\right)_{1 \leq k \leq m}
\end{aligned}
$$

Injectivity Results

General Form

Necessary and sufficient condition for injectivity that works in both the real and the complex case:

Theorem (HMW11,BCMN13a,Bal13a)

Let $H=\mathbb{C}^{n}$ and let V be a real vector space that is also a subset of H, $V \subset H$. Denote $\mathcal{V}=\mathbf{j}(V)$ the realification of V. Assume \mathcal{F} is a frame for V. The following are equivalent:
(1) The frame \mathcal{F} is phase retrievable with respect to V;
(2) $\operatorname{ker} \mathbb{A} \cap\left(\mathcal{S}^{1,0}(V)-\mathcal{S}^{1,0}(V)\right)=\{0\}$;
(3) $\operatorname{ker} \mathbb{A} \cap \mathcal{S}^{1,1}(V)=\{0\}$;
(9) $\operatorname{ker} \mathbb{A} \cap\left(\mathcal{S}^{2,0}(V) \cup \mathcal{S}^{1,1}(V) \cup \mathcal{S}^{0,2}\right)=\{0\}$;
(0) There do not exist vectors $u, v \in V$ with $\llbracket u, v \rrbracket \neq 0$ so that

$$
\operatorname{real}\left(\left\langle u, f_{k}\right\rangle\left\langle f_{k}, v\right\rangle\right)=0, \quad \forall 1 \leq k \leq m
$$

Injectivity Results

General Form - cont'd

Theorem (cont'd)
(6) $\operatorname{ker} \mathcal{A} \cap\left(\mathcal{S}^{1,0}(\mathcal{V})-\mathcal{S}^{1,0}(\mathcal{V})\right)=\{0\}$;
(1) $\operatorname{ker} \mathcal{A} \cap \mathcal{S}^{1,1}(\mathcal{V})=\{0\}$;
(8) There do not exist vectors $\xi, \eta \in \mathcal{V}$, with $\llbracket \xi, \eta \rrbracket \neq 0$ so that

$$
\left\langle\Phi_{k} \xi, \eta\right\rangle=0 \quad, \quad \forall 1 \leq k \leq m
$$

Injectivity Results

Real Case

Theorem (BCE06,Bal12a)

(The real case) Assume $\mathcal{F} \subset \mathbb{R}^{n}$. The following are equivalent:
(1) \mathcal{F} is phase retrievable for $V=\mathbb{R}^{n}$;
(2) $R(x)=\sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{T}$ is invertible for every $x \in \mathbb{R}^{n}, x \neq 0$;
(3) There do not exist vectors $u, v \in \mathbb{R}^{n}$ with $u \neq 0$ and $v \neq 0$ so that

$$
\left\langle u, f_{k}\right\rangle\left\langle f_{k}, v\right\rangle=0 \quad, \quad \forall 1 \leq k \leq m
$$

(1) For any disjoint partition of the frame set $\mathcal{F}=\mathcal{F}_{1} \cup \mathcal{F}_{2}$, either \mathcal{F}_{1} spans \mathbb{R}^{n} or \mathcal{F}_{2} spans \mathbb{R}^{n}.

Injectivity Results

Real Case-cont'd

Recall a set $\mathcal{F} \subset \mathbb{C}^{n}$ is called full spark if any subset of n vectors is linearly independent.

Corollary (BCE06)

Assume $\mathcal{F} \subset \mathbb{R}^{n}$. Then
(1) If \mathcal{F} is phase retrievable for \mathbb{R}^{n} then $m \geq 2 n-1$;
(2) If $m=2 n-1$, then \mathcal{F} is phase retrievable if and only if \mathcal{F} is full spark;

Injectivity Results

Complex Case

Theorem (BCMN13a,Bal13a)

(The complex case) The following are equivalent:
(1) \mathcal{F} is phase retrievable for $H=\mathbb{C}^{n}$;
(2) $\operatorname{rank}(\mathcal{Z}(\xi))=2 n-1$ for all $\xi \in \mathbb{R}^{2 n}, \xi \neq 0$;
(0) $\operatorname{dim} \operatorname{ker} \mathcal{R}(\xi)=1$ for all $\xi \in \mathbb{R}^{2 n}, \xi \neq 0$;
(1) There do not exist $\xi, \eta \in \mathbb{R}^{2 n}, \xi \neq 0$ and $\eta \neq 0$ so that $\langle J \xi, \eta\rangle=0$ and

$$
\left\langle\Phi_{k} \xi, \eta\right\rangle=0, \quad \forall 1 \leq k \leq m
$$

Injectivity Results

Cardinality

In terms of cardinality, here is what we know:
Theorem (Mil67,HMW11,BH13,Bal13b,MV13,CEHV13,KE14,Viz15)
MW 11 If \mathcal{F} is a phase retrievable frame for \mathbb{C}^{n} then

$$
m \geq 4 n-2-2 b+ \begin{cases}2 & \text { if } n \text { odd and } b=3 \bmod 4 \\ 1 & \text { if } n \text { odd and } b=2 \bmod 4 \\ 0 & \text { otherwise }\end{cases}
$$

where $b=b(n)$ denotes the number of 1's in the binary expansion of $n-1$.

BH13 For any positive integer n there is a frame with $m=4 n-4$ vectors so that \mathcal{F} is phase retrievable for \mathbb{C}^{n};

Injectivity Results

Cardinality-cont'd

Theorem

HV13 If $m \geq 4 n-4$ then a (Zariski) generic frame is phase retrievable on \mathbb{C}^{n};

Bal13b The set of phase retrievable frames is open in $\mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n}$. In particular phase retrievable property is stable under small perturbations.
HV13 If $n=2^{k}+1$ and $m \leq 4 m-5$ then \mathcal{F} cannot be phase retrievable for \mathbb{C}^{n}.

Viz15 For $n=4$ there is a frame with $m=11<4 n-4=12$ vectors that is phase retrievable.

