Nonlinear Analysis with Frames. Part I: Injectivity Results

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

July 28-30, 2015 Modern Harmonic Analysis and Applications Summer Graduate Program University of Maryland, College Park, MD 20742

< □ > < @ > < 注 > < 注 > ... 注

Thanks to our sponsors:

Institute for Mathematics and its Applications UNIVERSITY OF MINNESOTA Driven to Discover**

"This material is based upon work supported by the National Science Foundation under Grants No. DMS-1413249, DMS-1501640. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

Table of Contents:

- Problem Formulation
- **2** Topology of \hat{V}
- 3 Classes $S^{p,q}$
- 4 Realification of H
- 5 Injectivity Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Problem Formulation	Topology of \hat{V}	Classes <i>S^{p, q}</i> 0000000	Realification of <i>H</i>	Injectivity Results
Table of Con	tents			

1 Problem Formulation

- **2** Topology of \hat{V}
 - 3 Classes $\mathcal{S}^{p,q}$
 - 4 Realification of H
 - 5 Injectivity Results

∃ ▶ ∢

Problem Formulation ●○	Topology of \hat{V}	Classes <i>S</i> ^{<i>p</i>, <i>q</i>} 0000000	Realification of <i>H</i>	Injectivity Results
Problem Forn	nulation			

• Let $H = \mathbb{C}^n$ and $V \subset H$ a real subspace. The quotient space $\hat{H} = \mathbb{C}^n / T^1$, with classes induced by $x \sim y$ if there is real φ with $x = e^{i\varphi}y$. Set $\hat{V} = \{\hat{x}, x \in V\}$.

Problem Formulation ●○	Topology of \hat{V}	Classes $S^{p,q}$ 0000000	Realification of <i>H</i>	Injectivity Results
Problem Form	nulation			

The phase retrieval problem

Let H = Cⁿ and V ⊂ H a real subspace. The quotient space ÂH = Cⁿ/T¹, with classes induced by x ~ y if there is real φ with x = e^{iφ}y. Set Ŷ = {x̂, x ∈ V}.
Frame F = {f₁,..., f_m} ⊂ Cⁿ and α: ÂH → R^m, α(x) = (|⟨x, f_k⟩|)_{1≤k≤m}. β: ÂH → R^m, β(x) = (|⟨x, f_k⟩|²)_{1≤k≤m}.

The frame is said *phase retrievable with respect to* V (or that it gives phase retrieval for V) if α (or β) restricted to V is injective.

Problem Formulation ●○	Topology of \hat{V}	Classes $S^{p,q}$ 0000000	Realification of <i>H</i>	Injectivity Results
Problem Form	ulation			

The phase retrieval problem

• Let $H = \mathbb{C}^n$ and $V \subset H$ a real subspace. The quotient space $\hat{H} = \mathbb{C}^n / T^1$, with classes induced by $x \sim y$ if there is real φ with $x = e^{i\varphi}y$. Set $\hat{V} = \{\hat{x} , x \in V\}$. • Frame $\mathcal{F} = \{f_1, \dots, f_m\} \subset \mathbb{C}^n$ and $\alpha : \hat{H} \to \mathbb{R}^m$, $\alpha(x) = (|\langle x, f_k \rangle|)_{1 \leq k \leq m}$. $\beta : \hat{H} \to \mathbb{R}^m$, $\beta(x) = (|\langle x, f_k \rangle|^2)_{1 \leq k \leq m}$.

The frame is said *phase retrievable with respect to* V (or that it gives phase retrieval for V) if α (or β) restricted to V is injective.

 The general phase retrieval problem a.k.a. phaseless reconstruction: Decide when a given frame is phase retrievable, and, if so, find an algorithm to recover x from y = α(x) (or from y = β(x)) up to a global phase factor. Additionally find universal bounds on performance of any inversion algorithm.

Radu Balan (UMD)

Problem Formulation ○●	Topology of V 00000	Classes $S^{p,q}$	Realification of <i>H</i>	Injectivity Results
Problem Form Injectivity Results	ulation			

- \bullet Our Problems Today: When is ${\cal F}$ phase retrievable.
- Want a general framework that covers both the real and complex case.
 - **1** Obtain conditions when $V = \mathbb{R}^n$ (real case);
 - **2** Obtain conditions when $V = \mathbb{C}^n$ (complex case)

Problem Formulation ○●	Topology of V 00000	Classes $S^{p,q}$	Realification of <i>H</i>	Injectivity Results
Problem Form Injectivity Results	ulation			

- Our Problems Today: When is \mathcal{F} phase retrievable.
- Want a general framework that covers both the real and complex case.
 - **1** Obtain conditions when $V = \mathbb{R}^n$ (real case);
 - **2** Obtain conditions when $V = \mathbb{C}^n$ (complex case)
 - **③** Finda minimal cardinals of phase retrievable frames.

Problem Formulation	Topology of \hat{V}	Classes <i>S</i> ^{<i>p</i>, <i>q</i>} 0000000	Realification of <i>H</i>	Injectivity Results
Table of Con	tents			

- 1 Problem Formulation
- **2** Topology of \hat{V}
 - 3 Classes S^{p,q}
 - 4 Realification of H
 - 5 Injectivity Results

∃ ▶ ∢

Let $H = \mathbb{C}^n$ and $V \subset H$ a real subspace. The quotient space $\hat{H} = \mathbb{C}^n/T^1$, with classes induced by $x \sim y$ if there is real φ with $x = e^{i\varphi}y$. Set $\hat{V} = \{\hat{x}, x \in V\}$.

Let $H = \mathbb{C}^n$ and $V \subset H$ a real subspace. The quotient space $\hat{H} = \mathbb{C}^n / T^1$, with classes induced by $x \sim y$ if there is real φ with $x = e^{i\varphi}y$. Set $\hat{V} = \{\hat{x}, x \in V\}$. Topologically: $\hat{V} = \{0\} \cup ((0, \infty)] \times \mathbb{P}(V))$

where $\mathbb{P}(V)$ denotes the projective space associated to V. The interior subset

$$\dot{\hat{V}}=\hat{V}\setminus\{0\}=((0,\infty)] imes\mathbb{P}(V))$$

is a real analytic manifold of real dimension $1 + \dim_{\mathbb{R}} \mathbb{P}(V)$.

Problem Formulation	Topology of \hat{V}	Classes <i>S</i> ^{<i>p</i>, <i>q</i>}	Realification of <i>H</i> 000	Injectivity Results
Topology of Topological Structur	Ŷ res			

• Complex case $V = \mathbb{C}^n$.

$$\hat{\mathbb{C}^n} = \{0\} \cup \left((0,\infty) \times \mathbb{CP}^{n-1}\right)$$

with

$$\hat{\mathbb{C}^n} = \hat{\mathbb{C}^n} \setminus \{0\} = (0,\infty) \times \mathbb{CP}^{n-1}$$

a real analytic manifold of real dimension 2n - 1.

Problem Formulation	Topology of \hat{V}	Classes <i>S</i> ^{<i>p</i>, <i>q</i>}	Realification of <i>H</i> 000	Injectivity Results
Topology of Topological Structur	Ŷ res			

• Complex case $V = \mathbb{C}^n$.

$$\hat{\mathbb{C}^n} = \{0\} \cup \left((0,\infty) \times \mathbb{CP}^{n-1}\right)$$

with

$$\mathring{\mathbb{C}^n} = \hat{\mathbb{C}^n} \setminus \{0\} = (0,\infty) \times \mathbb{CP}^{n-1}$$

a real analytic manifold of real dimension 2n - 1. • Real case $V = \mathbb{R}^n$.

$$\hat{\mathbb{R}^n} = \{0\} \cup \left((0,\infty) \times \mathbb{RP}^{n-1}\right)$$

with

$$\hat{\mathbb{R}^n} = \hat{\mathbb{R}^n} \setminus \{0\} = (0,\infty) \times \mathbb{RP}^{n-1}$$

a real analytic manifold of real dimension n.

Radu Balan (UMD)

Problem Formulation	Topology of \hat{V} 00000	Classes S ^{p,q}	Realification of <i>H</i>	Injectivity Results
Topology of \hat{V}	5			

Another embedding is into the real vector space of symmetric (self-adjoint) matrices Sym(V).

Another embedding is into the real vector space of symmetric (self-adjoint) matrices Sym(V). Specifically let

 $\mathcal{S}^{p,q}(V) = \{T \in Sym(V) \ , \ T \text{ has at most } p \text{ pos.eigs. and } q \text{ neg.eigs} \}$

Then:

$$\kappa_{\beta}: \hat{V} \to \mathcal{S}^{1,0}$$
, $\hat{x} \mapsto = xx^*$, is an embedding.

Another embedding is into the real vector space of symmetric (self-adjoint) matrices Sym(V). Specifically let

 $\mathcal{S}^{p,q}(V) = \{T \in Sym(V) \ , \ T \text{ has at most } p \text{ pos.eigs. and } q \text{ neg.eigs} \}$

Then:

$$\kappa_{\beta}: \hat{V} \to S^{1,0}$$
, $\hat{x} \mapsto = xx^*$, is an embedding.

Sym(H) is a real Hilbert space with scalar product $\langle T, S \rangle_{HS} = trace\{TS\}$.

イロト イポト イヨト ・ヨ

Another embedding is into the real vector space of symmetric (self-adjoint) matrices Sym(V). Specifically let

 $\mathcal{S}^{p,q}(V) = \{T \in Sym(V) \ , \ T \text{ has at most } p \text{ pos.eigs. and } q \text{ neg.eigs} \}$

Then:

$$\kappa_{\beta}: \hat{V} \to S^{1,0} \ , \ \hat{x} \mapsto = xx^* \ , \ \text{is an embedding.}$$

Sym(H) is a real Hilbert space with scalar product $\langle T, S \rangle_{HS} = trace\{TS\}$. \hat{V} is isomorphic (one-to-one and onto) to $S^{1,0}(V)$. Key Identity:

$$|\beta(x)_k = |\langle x, f_k \rangle|^2 = \langle \kappa_\beta(\hat{x}), F_k \rangle_{HS}$$

where $F_k = f_k f_k^*$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Problem Formulation	Topology of Ŷ ○○○●○	Classes <i>S</i> ^{<i>p</i>, <i>q</i>} 0000000	Realification of <i>H</i>	Injectivity Results

Metric Space Structures The matrix-norm induced metric and the natural metric structures

Fix $1 \le p \le \infty$. The matrix-norm induced distance

$$d_{p}: \hat{H} imes \hat{H}
ightarrow \mathbb{R} \;, \; d_{p}(\hat{x}, \hat{y}) = \left\| xx^{*} - yy^{*}
ight\|_{p}$$

with the *p*-norm of the singular values. In the case p = 2 we obtain

$$d_2(x,y) = \sqrt{\|x\|^4 + \|y\|^4 - 2|\langle x,y\rangle|^2}$$

Problem Formulation	Topology of Ŷ ○○○●○	Classes <i>S</i> ^{<i>p</i>, <i>q</i>} 0000000	Realification of <i>H</i>	Injectivity Results

Metric Space Structures The matrix-norm induced metric and the natural metric structures

Fix $1 \le p \le \infty$. The matrix-norm induced distance

$$d_p: \hat{H} imes \hat{H}
ightarrow \mathbb{R} \;, \; d_p(\hat{x}, \hat{y}) = \|xx^* - yy^*\|_p$$

with the *p*-norm of the singular values. In the case p = 2 we obtain

$$d_2(x,y) = \sqrt{\|x\|^4 + \|y\|^4 - 2|\langle x,y \rangle|^2}$$

Fix $1 \le p \le \infty$. The natural metric

$$D_{p}: \hat{H} imes \hat{H} o \mathbb{R} \ , \ D_{p}(\hat{x}, \hat{y}) = \min_{\varphi} \|x - e^{i\varphi}y\|_{p}$$

with the usual *p*-norm on \mathbb{C}^n . In the case p = 2 we obtain

$$D_2(\hat{x}, \hat{y}) = \sqrt{\|x\|^2 + \|y\|^2 - 2|\langle x, y \rangle|}$$

Problem Formulation	Topology of \hat{V} 0000 \bullet	Classes <i>S^{p,q}</i> 0000000	Realification of H	Injectivity Results
Metric Space Distinct Structures	Structures			

Two different structures: topologically equivalent, BUT the metrics are NOT equivalent:

Lemma (BZ15)

The identity map $i : (\hat{H}, D_p) \to (\hat{H}, d_p), i(x) = x$ is continuous but it is not Lipschitz continuous. Likewise, the identity map $i : (\hat{H}, d_p) \to (\hat{H}, D_p), i(x) = x$ is continuous but it is not Lipschitz continuous. Hence the induced topologies on (\hat{H}, D_p) and (\hat{H}, d_p) are the same, but the corresponding metrics are not Lipschitz equivalent.

Problem Formulation	Topology of \hat{V}	Classes $S^{p,q}$	Realification of <i>H</i>	Injectivity Results
Table of Con	tents			

- Problem Formulation
- **2** Topology of \hat{V}
- 3 Classes $S^{p,q}$
 - 4 Realification of H
 - 5 Injectivity Results

▶ < Ξ ▶ <</p>

Problem Formulation	Topology of \hat{V} 00000	Classes $S^{p,q}$ ••••••	Realification of H	Injectivity Results

Classes $\mathcal{S}^{p,q}$ General properties; Witt's decomposition

The following lemma summarizes basic properties of $S^{p,q}$.

Lemma (Bal13)

- For any $p_1 \leq p_2$ and $q_1 \leq q_2$, $\mathcal{S}^{p_1,q_1} \subset \mathcal{S}^{p_2,q_2}$;
- Por any nonnegative integers p, q the following disjoint decomposition holds true

$$\mathcal{S}^{p,q} = \cup_{r=0}^{p} \cup_{s=0}^{q} \mathring{\mathcal{S}}^{r,s} \tag{3.1}$$

where by convention $\mathring{\mathcal{S}}^{p,q} = \emptyset$ for p + q > n.

3 For any $p, q \ge 0$,

$$-\mathcal{S}^{p,q} = \mathcal{S}^{q,p} \tag{3.2}$$

If or any linear operator T : H → H (symmetric or not, invertible or not) and nonnegative integers p, q,

$$T^*\mathcal{S}^{p,q}T\subset \mathcal{S}^{p,q}$$

Radu Balan (UMD)

Phase Retrieval

July 28-30, 2015

Problem Formulation	Topology of \hat{V}	Classes $S^{p,q}$ 000000	Realification of H	Injectivity Results
Classes $\mathcal{S}^{p,q}$				
General properties	Witt's decompos	ition		

Lemma (cont'd)

(Witt's decomposition) For any nonnegative integers p, q, r, s,

$$\mathcal{S}^{p,q} + \mathcal{S}^{r,s} = \mathcal{S}^{p,q} - \mathcal{S}^{s,r} = \mathcal{S}^{p+r,q+s}$$
(3.4)

 $\mathring{S}^{p,q} = \{ T \in \mathscr{S}^{p,q} \text{ have exactly } p \text{ positive eigs and } q \text{ negative eigs} \}$

Problem Formulation	Topology of \hat{V}	Classes $S^{p,q}$ 000000	Realification of <i>H</i>	Injectivity Results
Classes $\mathcal{S}^{p,q}$				

Lemma (Space $S^{1,0}$)

The following hold true:

1
$$\mathring{S}^{1,0} = \{xx^*, x \in H, x \neq 0\};$$

3
$$\mathcal{S}^{1,0} = \{xx^*, x \in H\} = \{0\} \cup \{xx^*, x \in H, x \neq 0\};$$

The set S^{1,0} is a real analytic manifold in Sym(n) of real dimension 2n − 1. As a real manifold, its tangent space at X = xx* is given by

$$T_X \mathring{S}^{1,0} = \left\{ \llbracket x, y \rrbracket := \frac{1}{2} (xy^* + yx^*) , \ y \in \mathbb{C}^n \right\}.$$
(3.5)

The \mathbb{R} -linear embedding $\mathbb{C}^n \mapsto T_X \mathring{S}^{1,0}$ given by $y \mapsto [\![x, y]\!]$ has null space $\{iax , a \in \mathbb{R}\}$.

Problem Formulation	Topology of \hat{V}	Classes $S^{p,q}$ 0000000	Realification of H	Injectivity Results
$\underset{Classes \mathcal{S}^{1,1}}{Class \mathcal{S}^{1,1}} \mathcal{S}^{p,q}$				

Lemma (Space $\mathcal{S}^{1,1}$)

The following hold true:

0
$$S^{1,1} = S^{1,0} - S^{1,0} = S^{1,0} + S^{0,1} = \{ [x, y] , x, y \in H \}$$

2 For any vectors $x, y, u, v \in H$,

$$xx^* - yy^* = [x + y, x - y] = [x - y, x + y]$$
(3.6)

$$\llbracket u, v \rrbracket = \frac{1}{4}(u+v)(u+v)^* - \frac{1}{4}(u-v)(u-v)^* \quad (3.7)$$

Additionally, for any $T \in S^{1,1}$ let $T = a_1 e_1 e_1^* - a_2 e_2 e_2^*$ be its spectral factorization with $a_1, a_2 \ge 0$ and $\langle e_i, e_j \rangle = \delta_{i,j}$. Then

$$T = \llbracket \sqrt{a_1}e_1 + \sqrt{a_2}e_2, \sqrt{a_1}e_1 - \sqrt{a_2}e_2 \rrbracket.$$

Problem Formulation	Topology of V	Classes $S^{p,q}$	Realification of <i>H</i>	Injectivity Results
$\underset{Class\ \mathcal{S}^{1,1}}{Class\ \mathcal{S}^{1,1}} \mathcal{S}^{p,q}$				

Lemma (Space $S^{1,1}$ -cont'd)

 The set S^{1,1} is a real analytic manifold in Sym(n) of real dimension 4n − 4. Its tangent space at X = [[x, y]] is given by

$$T_X \mathring{S}^{1,1} = \{ [\![x,u]\!] + [\![y,v]\!] = \frac{1}{2} (xu^* + ux^* + yv^* + vy^*) , \ u,v \in \mathbb{C}^n \}.$$

The \mathbb{R} -linear embedding $\mathbb{C}^n \times \mathbb{C}^n \mapsto T_X \mathring{S}^{1,1}$ given by $(u, v) \mapsto [\![x, u]\!] + [\![y, v]\!]$ has null space $\{a(ix, 0) + b(0, iy) + c(y, -x) + d(iy, ix), a, b, c, d \in \mathbb{R}\}.$

Problem Formulation	Topology of V	Classes $S^{p,q}$ 0000000	Realification of <i>H</i>	Injectivity Results
Classes $\mathcal{S}^{p,q}$				

Lemma (Space $S^{1,1}$ -cont'd)

• Let $T = \llbracket u, v \rrbracket \in S^{1,1}$. Then its eigenvalues and p-norms are:

$$\begin{aligned} a_{+} &= \frac{1}{2} \left(real(\langle u, v \rangle) + \sqrt{\|u\|^{2} \|v\|^{2} - (imag(\langle u, v \rangle))^{2}} \right) \geq 0 \\ a_{-} &= \frac{1}{2} \left(real(\langle u, v \rangle) - \sqrt{\|u\|^{2} \|v\|^{2} - (imag(\langle u, v \rangle))^{2}} \right) \leq 0 \\ \|T\|_{1} &= \sqrt{\|u\|^{2} \|v\|^{2} - (imag(\langle u, v \rangle))^{2}} \\ \|T\|_{2} &= \sqrt{\frac{1}{2} \left(\|u\|^{2} \|v\|^{2} + (real(\langle u, v \rangle))^{2} - (imag(\langle u, v \rangle))^{2} \right)} \\ \|T\|_{\infty} &= \frac{1}{2} \left(|real(\langle u, v \rangle)| + \sqrt{\|u\|^{2} \|v\|^{2} - (imag(\langle u, v \rangle))^{2}} \right) \end{aligned}$$

Problem Formulation	Topology of \hat{V} 00000	Classes $S^{p,q}$	Realification of H	Injectivity Results
$\underset{Classes \mathcal{S}^{p,q}}{Class \mathcal{S}^{1,1}}$				

Lemma (Space $S^{1,1}$ -cont'd)

5 Let $T = xx^* - yy^* \in S^{1,1}$. Then its eigenvalues and p-norms are:

$$\begin{aligned} a_{+} &= \frac{1}{2} \left(\|x\|^{2} - \|y\|^{2} + \sqrt{(\|x\|^{2} + \|y\|^{2})^{2} - 4|\langle x, y \rangle|^{2}} \right) \geq 0 \\ a_{-} &= \frac{1}{2} \left(\|x\|^{2} - \|y\|^{2} - \sqrt{(\|x\|^{2} + \|y\|^{2})^{2} - 4|\langle x, y \rangle|^{2}} \right) \leq 0 \\ \|T\|_{1} &= \sqrt{(\|x\|^{2} + \|y\|^{2})^{2} - 4|\langle x, y \rangle|^{2}} \\ \|T\|_{2} &= \sqrt{\|x\|^{4} + \|y\|^{4} - 2|\langle x, y \rangle|^{2}} \\ \|T\|_{\infty} &= \frac{1}{2} \left(|\|x\|^{2} - \|y\|^{2} | + \sqrt{(\|x\|^{2} + \|y\|^{2})^{2} - 4|\langle x, y \rangle|^{2}} \right) \end{aligned}$$

イロト イボト イヨト イヨト

Problem Formulation	Topology of \hat{V}	Classes <i>S^{p,q}</i> 0000000	Realification of <i>H</i>	Injectivity Results
Table of Con	tents			

- Problem Formulation
- **2** Topology of \hat{V}
 - 3 Classes $\mathcal{S}^{p,q}$
- 4 Realification of H
 - 5 Injectivity Results

Problem Formulation	Topology of \hat{V}	Classes S ^{p,q}	Realification of <i>H</i> ●○○	Injectivity Results
Realification Realification of <i>H</i>				

$$\mathbf{j}(x) = \left[\begin{array}{c} real(x)\\ imag(x) \end{array}\right]$$

Problem Formulation	Topology of \hat{V}	Classes S ^{p,q}	Realification of $H \bullet \circ \circ$	Injectivity Results
Realification Realification of <i>H</i>				

$$\mathbf{j}(x) = \left[\begin{array}{c} real(x)\\ imag(x) \end{array}\right]$$

Let $\mathcal{V} = \mathbf{j}(V)$ be the embedding of V into \mathbb{R}^{2n} , and let Π denote the orthogonal projection (with respect to the real scalar product on \mathbb{R}^{2n}) onto \mathcal{V} .

Problem Formulation	Topology of \hat{V}	Classes S ^{p,q}	Realification of $H_{\odot \odot}$	Injectivity Results
Realification Realification of <i>H</i>				

$$\mathbf{j}(x) = \left[\begin{array}{c} real(x)\\ imag(x) \end{array}\right]$$

Let $\mathcal{V} = \mathbf{j}(V)$ be the embedding of V into \mathbb{R}^{2n} , and let Π denote the orthogonal projection (with respect to the real scalar product on \mathbb{R}^{2n}) onto \mathcal{V} .

Let J denote the following orthogonal antisymmetric $2n \times 2n$ matrix

$$J = \begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix}$$
(4.8)

where I_n denotes the identity matrix of order $n \times n$. Note the transpose $J^T = -J$, the square $J^2 = -I_{2n}$ and the inverse $J^{-1} = -J$.

Problem Formulation	Topology of \hat{V}	Classes <i>S</i> ^{<i>p</i>,<i>q</i>} 0000000	Realification of <i>H</i> ●○○	Injectivity Results
Realification Realification of <i>H</i>				

$$\mathbf{j}(x) = \left[\begin{array}{c} real(x)\\ imag(x) \end{array}\right]$$

Let $\mathcal{V} = \mathbf{j}(V)$ be the embedding of V into \mathbb{R}^{2n} , and let Π denote the orthogonal projection (with respect to the real scalar product on \mathbb{R}^{2n}) onto \mathcal{V} .

Let J denote the following orthogonal antisymmetric $2n \times 2n$ matrix

$$J = \begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix}$$
(4.8)

where I_n denotes the identity matrix of order $n \times n$. Note the transpose $J^T = -J$, the square $J^2 = -I_{2n}$ and the inverse $J^{-1} = -J$. Note: $\mathbf{j}(ix) = J\mathbf{j}(x)$ for every $x \in H$.

Problem Formulation	Topology of \hat{V}	Classes $S^{p,q}$	Realification of $H \\ \circ \bullet \circ$	Injectivity Results
Realification Realification of fran	ne vectors			

Each vector f_k of the frame set $\mathcal{F} = \{f_1, \dots, f_m\}$ gets mapped into a vector in \mathbb{R}^{2n} denoted by φ_k , and a symmetric operator in $\mathcal{S}^{2,0}(\mathbb{R}^{2n})$ denoted by Φ_k :

$$\varphi_{k} = \mathbf{j}(f_{k}) = \begin{bmatrix} real(f_{k}) \\ imag(f_{k}) \end{bmatrix} , \quad \Phi_{k} = \varphi_{k}\varphi_{k}^{T} + J\varphi_{k}\varphi_{k}^{T}J^{T}$$
(4.9)

Note that when $f_k \neq 0$:

- The symmetric form Φ_k has rank 2 and belongs to $\mathring{S}^{2,0}$.
- Its spectrum has two distinct eigenvalues: $\|\varphi_k\|^2 = \|f_k\|^2$ with multiplicity 2, and 0 with multiplicity 2n 2.
- Furthermore, $\frac{1}{\|\varphi_k\|^2} \Phi_k$ is a rank 2 projection.

Problem Formulation	Topology of \hat{V}	Classes S ^{p,q}	Realification of H $\circ \circ \bullet$	Injectivity Results
Realification Relationships				

Let $\xi = \mathbf{j}(x)$ and $\eta = \mathbf{j}(y)$ denote the realifications of vectors $x, y \in \mathbb{C}^n$. Then a bit of algebra shows that

$$\langle x, f_k \rangle = \langle \xi, \varphi_k \rangle + i \langle \xi, J\varphi_k \rangle$$

$$\langle F_k, xx^* \rangle_{HS} = trace(F_k xx^*) = |\langle x, f_k \rangle|^2 = \langle \Phi_k \xi, \xi \rangle = trace(\Phi \xi \xi^T)$$

$$= \langle \Phi_k, \xi \xi^T \rangle_{HS}$$

$$\langle F_k, \llbracket x, y \rrbracket \rangle_{HS} = trace(F_k\llbracket x, y \rrbracket) = real(\langle x, f_k \rangle \langle f_k, y \rangle) = \langle \Phi_k \xi, \eta \rangle$$

$$= (trace(\Phi_k\llbracket \xi, \eta \rrbracket) = \langle \Phi_k, \llbracket \xi, \eta \rrbracket \rangle$$

where $F_k = [\![f_k, f_k]\!] = f_k f_k^* \in S^{1,0}(H)$.

Problem Formulation	Topology of \hat{V}	Classes $S^{p,q}$ 0000000	Realification of <i>H</i> 000	Injectivity Results
Table of Con	tents			

- Problem Formulation
- **2** Topology of \hat{V}
 - 3 Classes $\mathcal{S}^{p,q}$
 - A Realification of H
- 5 Injectivity Results

∃ ▶ ∢

Problem Formulation	Topology of \hat{V}	Classes $S^{p,q}$ 0000000	Realification of <i>H</i>	Injectivity Results
Injectivity Res	sults			

The following objects play an important role in subsequent theory:

$$R: \mathbb{C}^{n} \to Sym(\mathbb{C}^{n}) \quad , \quad R(x) = \sum_{k=1}^{m} |\langle x, f_{k} \rangle|^{2} f_{k} f_{k}^{*} \quad , \ x \in \mathbb{C}^{n}$$
(5.10)
$$\mathcal{R}: \mathbb{R}^{2n} \to Sym(\mathbb{R}^{2n}) \quad , \quad \mathcal{R}(\xi) = \sum_{k=1}^{m} \Phi_{k} \xi \xi^{T} \Phi_{k} \quad , \ \xi \in \mathbb{R}^{2n}$$
(5.11)
$$\mathcal{S}: \mathbb{R}^{2n} \to Sym(\mathbb{R}^{2n}) \quad , \quad \mathcal{S}(\xi) = \sum_{k: \Phi_{k} \xi \neq 0} \frac{1}{\langle \Phi_{k} \xi, \xi \rangle} \Phi_{k} \xi \xi^{T} \Phi_{k} \quad , \ \xi \in \mathbb{R}^{2n}$$
(2.12)
$$\mathcal{Z}: \mathbb{R}^{2n} \to \mathbb{R}^{2n \times m} \quad , \quad \mathcal{Z}(\xi) = \left[\begin{array}{cc} \Phi_{1} \xi & | & \cdots & | & \Phi_{m} \xi \end{array} \right] \quad , \ \xi \in (\mathbb{R}^{2n}$$
(3.10)

Note $\mathcal{R} = \mathcal{Z}\mathcal{Z}^{\mathsf{T}}$.

Problem Formulation	Topology of \hat{V}	Classes <i>S^{p,q}</i> 0000000	Realification of H	Injectivity Results
Injectivity Res Induced Linear operat	ults ^{.or}			

Recall the key identity:

$$|\langle x, f_k
angle|^2 = trace(F_k X) = \langle F_k, X
angle_{HS}$$

where $X = xx^*$.

Problem Formulation	Topology of \hat{V}	Classes $S^{p,q}$ 0000000	Realification of <i>H</i> 000	Injectivity Results
Injectivity Res Induced Linear opera	ults tor			

Recall the key identity:

$$|\langle x, f_k \rangle|^2 = trace(F_k X) = \langle F_k, X \rangle_{HS}$$

where $X = xx^*$.

Thus the nonlinear map β induces a linear map on the real vector space $Sym(\mathbb{C}^n)$ of symmetric forms over \mathbb{C}^n :

$$\mathbb{A}: Sym(\mathbb{C}^n) \to \mathbb{R}^m \ , \ \mathbb{A}(T) = (\langle T, F_k \rangle_{HS})_{1 \le k \le m} = (\langle Tf_k, f_k \rangle)_{1 \le k \le m}$$

Problem Formulation	Topology of \hat{V} 00000	Classes $\mathcal{S}^{p,q}$	Realification of <i>H</i>	Injectivity Results ○●○○○○○○○
Injectivity Res Induced Linear opera	sults tor			

Recall the key identity:

$$|\langle x, f_k \rangle|^2 = trace(F_k X) = \langle F_k, X
angle_{HS}$$

where $X = xx^*$.

Thus the nonlinear map β induces a linear map on the real vector space $Sym(\mathbb{C}^n)$ of symmetric forms over \mathbb{C}^n :

$$\mathbb{A}: Sym(\mathbb{C}^n) \to \mathbb{R}^m \ , \ \mathbb{A}(T) = (\langle T, F_k \rangle_{HS})_{1 \le k \le m} = (\langle Tf_k, f_k \rangle)_{1 \le k \le m}$$

Similarly it induces a linear map on $Sym(\mathbb{R}^{2n})$ the space of symmetric forms over $\mathbb{R}^{2n} = \mathbf{j}(\mathbb{C}^n)$ that is denoted by \mathcal{A} :

$$\mathcal{A}: Sym(\mathbb{R}^{2n}) \to \mathbb{R}^m , \quad \mathcal{A}(T) = (\langle T, \Phi_k \rangle_{HS})_{1 \le k \le m}$$

= $(\langle T\varphi_k, \varphi_k \rangle + \langle TJ\varphi_k, J\varphi_k \rangle)_{1 \le k \le m}$

Problem Formulation	Topology of \hat{V}	Classes $S^{p,q}$ 0000000	Realification of <i>H</i>	Injectivity Results
Injectivity Re	esults			

Necessary and sufficient condition for injectivity that works in both the real and the complex case:

Theorem (HMW11,BCMN13a,Bal13a)

Let $H = \mathbb{C}^n$ and let V be a real vector space that is also a subset of H,

 $V \subset H$. Denote $\mathcal{V} = \mathbf{j}(V)$ the realification of V. Assume \mathcal{F} is a frame for V. The following are equivalent:

1 The frame \mathcal{F} is phase retrievable with respect to V;

2 ker
$$\mathbb{A} \cap (\mathcal{S}^{1,0}(V) - \mathcal{S}^{1,0}(V)) = \{0\};$$

3 ker
$$\mathbb{A} \cap \mathcal{S}^{1,1}(V) = \{0\};$$

• ker
$$\mathbb{A} \cap (\mathcal{S}^{2,0}(V) \cup \mathcal{S}^{1,1}(V) \cup \mathcal{S}^{0,2}) = \{0\};$$

3 There do not exist vectors $u, v \in V$ with $\llbracket u, v \rrbracket \neq 0$ so that

$$\mathit{real}\left(\langle u, f_k
angle \langle f_k, v
angle
ight) = 0 \ , \ \forall \, 1 \leq k \leq m$$

Problem Formulation	Topology of \hat{V}	Classes $S^{p,q}$	Realification of H	Injectivity Results
Injectivity Re General Form - cont	sults			

Theorem (cont'd)

• ker
$$\mathcal{A} \cap (\mathcal{S}^{1,0}(\mathcal{V}) - \mathcal{S}^{1,0}(\mathcal{V})) = \{0\};$$

• ker
$$\mathcal{A} \cap \mathcal{S}^{1,1}(\mathcal{V}) = \{0\};$$

1 There do not exist vectors $\xi, \eta \in \mathcal{V}$, with $[\![\xi, \eta]\!] \neq 0$ so that

$$\langle \Phi_k \xi, \eta
angle = 0 \ , \ \forall 1 \le k \le m$$

Problem Formulation	Topology of \hat{V}	Classes <i>S</i> ^{<i>p</i>, <i>q</i>} 0000000	Realification of <i>H</i>	Injectivity Results ○○○○●○○○○
Injectivity Rea Real Case	sults			

Theorem (BCE06,Bal12a)

(The real case) Assume $\mathcal{F} \subset \mathbb{R}^n$. The following are equivalent:

•
$$\mathcal{F}$$
 is phase retrievable for $V = \mathbb{R}^n$;

2 $R(x) = \sum_{k=1}^{m} |\langle x, f_k \rangle|^2 f_k f_k^T$ is invertible for every $x \in \mathbb{R}^n$, $x \neq 0$;

③ There do not exist vectors $u, v \in \mathbb{R}^n$ with $u \neq 0$ and $v \neq 0$ so that

$$\langle u, f_k \rangle \langle f_k, v \rangle = 0 \ , \ \forall 1 \leq k \leq m$$

G For any disjoint partition of the frame set F = F₁ ∪ F₂, either F₁ spans ℝⁿ or F₂ spans ℝⁿ.

Problem Formulation	Topology of \hat{V}	Classes $S^{p,q}$ 0000000	Realification of H	Injectivity Results ○○○○○●○○○
Injectivity Rea Real Case-cont'd	sults			

Recall a set $\mathcal{F} \subset \mathbb{C}^n$ is called *full spark* if any subset of *n* vectors is linearly independent.

Corollary (BCE06)

Assume $\mathcal{F} \subset \mathbb{R}^n$. Then

- If \mathcal{F} is phase retrievable for \mathbb{R}^n then $m \geq 2n 1$;
- 2 If m = 2n 1, then \mathcal{F} is phase retrievable if and only if \mathcal{F} is full spark;

Problem Formulation	Topology of \hat{V}	Classes $S^{p,q}$ 0000000	Realification of H	Injectivity Results
Injectivity Res Complex Case	sults			

Theorem (BCMN13a, Bal13a)

(The complex case) The following are equivalent:

- **①** \mathcal{F} is phase retrievable for $H = \mathbb{C}^n$;
- 2 rank($\mathcal{Z}(\xi)$) = 2n 1 for all $\xi \in \mathbb{R}^{2n}$, $\xi \neq 0$;
- 3 dim ker $\mathcal{R}(\xi) = 1$ for all $\xi \in \mathbb{R}^{2n}$, $\xi \neq 0$;
- There do not exist $\xi, \eta \in \mathbb{R}^{2n}$, $\xi \neq 0$ and $\eta \neq 0$ so that $\langle J\xi, \eta \rangle = 0$ and

$$\langle \Phi_k \xi, \eta
angle = 0$$
 , $orall 1 \leq k \leq m$

Problem Formulation	Topology of \hat{V}	Classes $S^{p,q}$ 0000000	Realification of <i>H</i>	Injectivity Results
Injectivity Re	sults			

In terms of cardinality, here is what we know:

Theorem (Mil67,HMW11,BH13,Bal13b,MV13,CEHV13,KE14,Viz15) MW11 If \mathcal{F} is a phase retrievable frame for \mathbb{C}^n then

$$m \ge 4n - 2 - 2b + \begin{cases} 2 & \text{if } n \text{ odd and } b = 3 \mod 4 \\ 1 & \text{if } n \text{ odd and } b = 2 \mod 4 \\ 0 & \text{otherwise} \end{cases}$$

where b = b(n) denotes the number of 1's in the binary expansion of n-1.

BH13 For any positive integer n there is a frame with m = 4n - 4 vectors so that \mathcal{F} is phase retrievable for \mathbb{C}^n ;

Problem Formulation	Topology of V 00000	Classes $S^{p,q}$ 0000000	Realification of <i>H</i>	Injectivity Results
Injectivity Re Cardinality-cont'd	sults			

Theorem

- HV13 If $m \ge 4n 4$ then a (Zariski) generic frame is phase retrievable on \mathbb{C}^n ;
- Bal13b The set of phase retrievable frames is open in $\mathbb{C}^n \times \cdots \times \mathbb{C}^n$. In particular phase retrievable property is stable under small perturbations.
- HV13 If $n = 2^k + 1$ and $m \le 4m 5$ then \mathcal{F} cannot be phase retrievable for \mathbb{C}^n .
- Viz15 For n = 4 there is a frame with m = 11 < 4n 4 = 12 vectors that is phase retrievable.