Nonlinear Analysis with Frames. Part II: Lipschitz Reconstruction

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

July 28-30, 2015 Modern Harmonic Analysis and Applications Summer Graduate Program University of Maryland, College Park, MD 20742

(日) (國) (필) (필) (필) 표

Thanks to our sponsors:

Institute for Mathematics and its Applications UNIVERSITY OF MINNESOTA Driven to Discover**

"This material is based upon work supported by the National Science Foundation under Grants No. DMS-1413249, DMS-1501640. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

Table of Contents:

- 1 Problem Formulation
- 2 Metric Space Structures
- 3 Lipschitz Analysis

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB
Table of Co	ntents			

1 Problem Formulation

- 2 Metric Space Structures
- 3 Lipschitz Analysis

4 Proofs

(日)

Problem Formulation ●○	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000000000000000000000000000000000
Problem For	rmulation			

• Hilbert space $H = \mathbb{C}^n$, $\hat{H} = H/T^1$, frame $\mathcal{F} = \{f_1, \cdots, f_m\} \subset \mathbb{C}^n$ and

$$\alpha: \hat{H} \to \mathbb{R}^m$$
, $\alpha(x) = (|\langle x, f_k \rangle|)_{1 \le k \le m}$.

$$\beta: \hat{H} \to \mathbb{R}^m$$
, $\beta(x) = \left(|\langle x, f_k \rangle|^2 \right)_{1 \le k \le m}$.

The frame is said *phase retrievable* (or that it gives phase retrieval) if α (or β) is injective.

Problem Formulation ●○	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000000000000000000000000000000000
Problem For	rmulation			

• Hilbert space $H = \mathbb{C}^n$, $\hat{H} = H/T^1$, frame $\mathcal{F} = \{f_1, \cdots, f_m\} \subset \mathbb{C}^n$ and

$$\alpha: \hat{H} \to \mathbb{R}^m$$
, $\alpha(x) = (|\langle x, f_k \rangle|)_{1 \le k \le m}$.

$$\beta: \hat{H} \to \mathbb{R}^m$$
, $\beta(x) = \left(|\langle x, f_k \rangle|^2 \right)_{1 \le k \le m}$

The frame is said *phase retrievable* (or that it gives phase retrieval) if α (or β) is injective.

 The general phase retrieval problem a.k.a. phaseless reconstruction: Decide when a given frame is phase retrievable, and, if so, find an algorithm to recover x from y = α(x) (or from y = β(x)) up to a global phase factor.

1

Problem Formulation ○●	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000000000000
Problem For Lipschitz Reconstr	rmulation			

Our Problems Today: Assume \mathcal{F} is phase retrievable.

- Deterministic Analysis.
 - Are the nonliner maps α, β bi-Lipschitz with respect to appropriate metrics?
 - 2 Do they admit left inverses that are globally Lipschitz?
 - What are the Lipschitz constants?
 - Additionally, we want to understand the structure of Lipschitz bounds (to be defined shortly).

Problem Formulation ○●	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000000000000
Problem For Lipschitz Reconstr	rmulation			

Our Problems Today: Assume \mathcal{F} is phase retrievable.

- Deterministic Analysis.
 - Are the nonliner maps α, β bi-Lipschitz with respect to appropriate metrics?
 - 2 Do they admit left inverses that are globally Lipschitz?
 - What are the Lipschitz constants?
 - Additionally, we want to understand the structure of Lipschitz bounds (to be defined shortly).
- Stochastic Analysis.
 - Scramer-Rao Lower Bounds.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB
Table of Co	ntents			

- D Problem Formulation
- 2 Metric Space Structures
- 3 Lipschitz Analysis
- 4 Proofs

∃ ▶ ∢

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 0000000000000	CRLB 000000000000000000000000000000000000
Metric Space	e Structures			

Let $H = \mathbb{C}^n$. The quotient space $\hat{H} = \mathbb{C}^n / T^1$, with classes induced by $x \sim y$ if there is real φ with $x = e^{i\varphi}y$.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs	CRLB 000000000000000000000000000000000000
Metric Space	e Structures			

Topological Structures

Let $H = \mathbb{C}^n$. The quotient space $\hat{H} = \mathbb{C}^n / T^1$, with classes induced by $x \sim y$ if there is real φ with $x = e^{i\varphi}y$. Topologically:

$$\hat{\mathbb{C}^n} = \{0\} \cup \left((0,\infty) \times \mathbb{CP}^{n-1}\right)$$

with

$$\mathring{\mathbb{C}^n} = \hat{\mathbb{C}^n} \setminus \{0\} = (0,\infty) \times \mathbb{CP}^{n-1}$$

a real analytic manifold of real dimension 2n - 1.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB
Metric Space	e Structures			

Topological Structures

Let $H = \mathbb{C}^n$. The quotient space $\hat{H} = \mathbb{C}^n/T^1$, with classes induced by $x \sim y$ if there is real φ with $x = e^{i\varphi}y$. Topologically:

$$\hat{\mathbb{C}^n} = \{0\} \cup \left((0,\infty) \times \mathbb{CP}^{n-1}\right)$$

with

$$\mathring{\mathbb{C}^n} = \hat{\mathbb{C}^n} \setminus \{0\} = (0,\infty) imes \mathbb{CP}^{n-1}$$

a real analytic manifold of real dimension 2n - 1.

Another embedding is into the space of symmetric matrices $Sym(\mathbb{C}^n)$.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB
Metric Spac	e Structures			

Topological Structures

Let $H = \mathbb{C}^n$. The quotient space $\hat{H} = \mathbb{C}^n/T^1$, with classes induced by $x \sim y$ if there is real φ with $x = e^{i\varphi}y$. Topologically:

$$\hat{\mathbb{C}^n} = \{0\} \cup \left((0,\infty) \times \mathbb{CP}^{n-1}\right)$$

with

$$\mathring{\mathbb{C}^n} = \hat{\mathbb{C}^n} \setminus \{0\} = (0,\infty) imes \mathbb{CP}^{n-1}$$

a real analytic manifold of real dimension 2n - 1. Another embedding is into the space of symmetric matrices $Sym(\mathbb{C}^n)$. Specifically let

 $\mathcal{S}^{p,q}(H) = \{T \in Sym(H), T \text{ has at most } p \text{ pos.eigs. and } q \text{ neg.eigs}\}$

Then:

$$\kappa_{\beta}: \hat{H} \to S^{1,0}$$
, $\hat{x} \mapsto = xx^*$, is an embedding.

Problem Formulation	Metric Space Structures ○●○○	Lipschitz Analysis	Proofs 00000000000000	CRLB
Metric Space	e Structures			

The matrix-norm induced metric structure

Fix $1 \le p \le \infty$. The matrix-norm induced distance

$$d_{p}: \hat{H} \times \hat{H}
ightarrow \mathbb{R} \ , \ d_{p}(\hat{x}, \hat{y}) = \|xx^{*} - yy^{*}\|_{p}$$

with the *p*-norm of the singular values. In the case p = 2 we obtain

$$d_2(x,y) = \sqrt{\|x\|^4 + \|y\|^4 - 2|\langle x, y \rangle|^2}$$

Problem Formulation	Metric Space Structures ○●○○	Lipschitz Analysis	Proofs 00000000000000	CRLB
Metric Space	e Structures			

Fix $1 \le p \le \infty$. The matrix-norm induced distance

$$d_{p}: \hat{H} imes \hat{H}
ightarrow \mathbb{R} \;, \; d_{p}(\hat{x}, \hat{y}) = \|xx^{*} - yy^{*}\|_{p}$$

with the *p*-norm of the singular values. In the case p = 2 we obtain

$$d_2(x,y) = \sqrt{\|x\|^4 + \|y\|^4 - 2|\langle x, y \rangle|^2}$$

Lemma (BZ15)

 (d_p)_{1≤p≤∞} are equivalent metrics and the identity map *i*: (Ĥ, d_p) → (Ĥ, d_q), *i*(x) = x has Lipschitz constant

$$Lip_{p,q,n}^{d} = \max(1, 2^{\frac{1}{q}-\frac{1}{p}}).$$

2 The metric space (\hat{H}, d_p) is isometrically isomorphic to $\mathcal{S}^{1,0}$ endowed with the p-norm via $\kappa_{\beta} : \hat{H} \to \mathcal{S}^{1,0}$, $x \mapsto \kappa_{\beta}(x) = xx^*$.

Radu Balan (UMD)

Problem Formulation	Metric Space Structures ○○●○	Lipschitz Analysis	Proofs 00000000000000	CRLB
Metric Spac	e Structures			

The natural metric structure

Fix $1 \le p \le \infty$. The natural metric

$$D_{p}: \hat{H} imes \hat{H} o \mathbb{R} \ , \ D_{p}(\hat{x}, \hat{y}) = \min_{\varphi} \|x - e^{i\varphi}y\|_{p}$$

with the usual *p*-norm on \mathbb{C}^n . In the case p = 2 we obtain

$$D_2(\hat{x}, \hat{y}) = \sqrt{\|x\|^2 + \|y\|^2 - 2|\langle x, y
angle|}$$

Problem Formulation	Metric Space Structures ○○●○	Lipschitz Analysis	Proofs 00000000000000	CRLB
Metric Space	e Structures			

The natural metric structure

Fix $1 \le p \le \infty$. The natural metric

$$\mathcal{D}_{p}: \hat{H} imes \hat{H}
ightarrow \mathbb{R} \;, \; \mathcal{D}_{p}(\hat{x}, \hat{y}) = \min_{arphi} \left\| x - e^{iarphi} y
ight\|_{p}$$

with the usual *p*-norm on \mathbb{C}^n . In the case p = 2 we obtain

$$D_2(\hat{x},\hat{y}) = \sqrt{\|x\|^2 + \|y\|^2 - 2|\langle x,y
angle|}$$

Lemma (BZ15)

 (D_p)_{1≤p≤∞} are equivalent metrics and the identity map *i* : (Ĥ, D_p) → (Ĥ, D_q), *i*(x) = x has Lipschitz constant

$$Lip_{p,q,n}^{D} = \max(1, n^{\frac{1}{q} - \frac{1}{p}}).$$

2 The metric space (\hat{H}, D_2) is Lipschitz isomorphic to $\mathcal{S}^{1,0}$ endowed with the 2-norm via $\kappa_{\alpha} : \hat{H} \to \mathcal{S}^{1,0}$, $x \mapsto \kappa_{\alpha}(x) = \frac{1}{\|x\|} x x^*$.

Metric Space Structures	Problem Formulation	Metric Space Structures ○○○●	Lipschitz Analysis	Proofs	CRLB
	Metric Space Distinct Structure	se Structures			

Two different structures: topologically equivalent, BUT the metrics are NOT equivalent:

Lemma (BZ15)

The identity map $i : (\hat{H}, D_p) \to (\hat{H}, d_p), i(x) = x$ is continuous but it is not Lipschitz continuous. Likewise, the identity map $i : (\hat{H}, d_p) \to (\hat{H}, D_p), i(x) = x$ is continuous but it is not Lipschitz continuous. Hence the induced topologies on (\hat{H}, D_p) and (\hat{H}, d_p) are the same, but the corresponding metrics are not Lipschitz equivalent.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB
Table of Co	ntents			

- **1** Problem Formulation
- 2 Metric Space Structures
- 3 Lipschitz Analysis
 - 4 Proofs

.

Problem Formulation	Metric Space Structures	Lipschitz Analysis ●○○	Proofs 00000000000000	CRLB 00000000000000
Lipschitz Ar	nalysis			

Lipschitz inversion: α

Theorem (BZ15)

Assume \mathcal{F} is a phase retrievable frame for H. Then:

• The map $\alpha : (\hat{H}, D_2) \to (\mathbb{R}^m, \|\cdot\|_2)$ is bi-Lipschitz. Let $\sqrt{A_0}, \sqrt{B_0}$ denote its Lipschitz constants: for every $x, y \in \hat{H}$:

$$A_0 \min_{\varphi} \left\| x - e^{i\varphi} y \right\|_2^2 \leq \sum_{k=1}^m \left\| \langle x, f_k \rangle \right\| - \left\| \langle y, f_k \rangle \right\|^2 \leq B_0 \min_{\varphi} \left\| x - e^{i\varphi} y \right\|_2^2.$$

2 There is a Lipschitz map $\omega : (\mathbb{R}^m, \|\cdot\|_2) \to (\hat{H}, D_2)$ so that: (i) $\omega(\alpha(x)) = x$ for every $x \in \hat{H}$, and (ii) its Lipschitz constant is $Lip(\omega) \leq \frac{4+3\sqrt{2}}{\sqrt{A_0}} = \frac{8.24}{\sqrt{A_0}}.$

Problem Formulation	Metric Space Structures	Lipschitz Analysis ○●○	Proofs 00000000000000	CRLB
Lipschitz Ar	nalysis			

Lipschitz inversion: β

Theorem (BZ15)

Assume \mathcal{F} is a phase retrievable frame for H. Then:

• The map β : $(\hat{H}, d_1) \rightarrow (\mathbb{R}^m, \|\cdot\|_2)$ is bi-Lipschitz. Let $\sqrt{a_0}, \sqrt{b_0}$ denote its Lipschitz constants: for every $x, y \in \hat{H}$:

$$a_0 \|xx^* - yy^*\|_1^2 \le \sum_{k=1}^m \left| |\langle x, f_k
angle|^2 - |\langle y, f_k
angle|^2 \le b_0 \|xx^* - yy^*\|_1^2$$

2 There is a Lipschitz map $\psi : (\mathbb{R}^m, \|\cdot\|_2) \to (\hat{H}, d_1)$ so that: (i) $\psi(\beta(x)) = x$ for every $x \in \hat{H}$, and (ii) its Lipschitz constant is $Lip(\psi) \leq \frac{4+3\sqrt{2}}{\sqrt{a_0}} = \frac{8.24}{\sqrt{a_0}}.$

Problem Formulation	Metric Space Structures	Lipschitz Analysis ○○●	Proofs 00000000000000	CRLB
Lipschiutz A	Analysis			

Prior literature:

< □ > < □ > < □ > < □ > < □ >

Problem Formulation	Metric Space Structures	Lipschitz Analysis ○○●	Proofs 00000000000000	CRLB 000000000000000000000000000000000000
Lipschiutz A	Analysis			

Prior literature:

• 2012: **B.**: Cramer-Rao lower bound in the real case; **Eldar&Mendelson** : map α in the real case

$$\|\alpha(x) - \alpha(y)\| \ge C \|x - y\| \|x + y\|.$$

- 2013: Bandeira, Cahill, Mixon, Nelson: improved the estimate of C.
 B.: β bi-Lipschitz in real and complex case.
- 2014: B.&Yang: Find the exact Lipschitz constant for α in the real case the constants A₀, B₀; B.&Z.:constructed a Lipschitz left inverse for β; B.: lower Lipschitz constant A₀ connected to CRLB's for a non-AWGN model.
- 2015: B.&Z.: Proved α is bi-Lipschitz in the complex case; constructed a Lipschitz left inverse.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs	CRLB 00000000000000
Table of Co	ntents			

- **1** Problem Formulation
- 2 Metric Space Structures
- 3 Lipschitz Analysis

∃ ▶ ∢

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ●ooooooooooooo	CRLB 000000000000000
Proofs Overview				

The proofs involve several steps.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ●ooooooooooooo	CRLB 000000000000000
Proofs ^{Overview}				

The proofs involve several steps.

 Part 1: Injectivity —> bi-Lipschitz: Upper bounds are not too hard; lower bounds: relatively easy for β (the "square" map), but very hard for α.

Proofs Overview	P 0	Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ●○○○○○○○○○○○○	CRLB 000000000000000
	F	P roofs Dverview				

The proofs involve several steps.

- Part 1: Injectivity —> bi-Lipschitz: Upper bounds are not too hard; lower bounds: relatively easy for β (the "square" map), but very hard for α.
- **2** Part 2: Left inverse construction is done in three steps:
 - The left inverse is first extended to ℝ^m into Sym(H) using Kirszbraun's theorem;
 - **2** Then we show that $S^{1,0}(H)$ is a Lipschitz retract in Sym(H);
 - The proof is concluded by composing the two maps.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○●○○○○○○○○○○○	CRLB 000000000000000000000000000000000000
Proofs Part 1: Bi-Lipschit:	zianity for eta			

Key Remark (B.Bodmann,Casazza,Edidin - 2007): The nonlinear map β is the restrictrion of the linear map

$$\mathbb{A}: Sym(H) \to \mathbb{R}^m$$
, $\mathbb{A}(T) = (\langle Tf_k, f_k \rangle)_{1 \le k \le m}$

Specifically: $\beta(x) = \mathbb{A}(xx^*)$.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs o●ooooooooooo	CRLB 000000000000000000000000000000000000
Proofs Part 1: Bi-Lipschit:	zianity for eta			

Key Remark (B.Bodmann,Casazza,Edidin - 2007): The nonlinear map β is the restrictrion of the linear map

 $\mathbb{A}: Sym(H) \to \mathbb{R}^m$, $\mathbb{A}(T) = (\langle Tf_k, f_k \rangle)_{1 \le k \le m}$

Specifically: $\beta(x) = \mathbb{A}(xx^*)$.

$$\begin{aligned} \|\beta(x) - \beta(y)\| &= \|\mathbb{A}(xx^*) - \mathbb{A}(yy^*)\| &= \|\mathbb{A}(xx^* - yy^*)\| \\ &= \|xx^* - yy^*\|\|\mathbb{A}\left(\frac{xx^* - yy^*}{\|xx^* - yy^*\|}\right)\| \end{aligned}$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs o●ooooooooooo	CRLB 000000000000000000000000000000000000
Proofs Part 1: Bi-Lipschit:	zianity for eta			

Key Remark (B.Bodmann,Casazza,Edidin - 2007): The nonlinear map β is the restrictrion of the linear map

$$\mathbb{A}: Sym(H) \to \mathbb{R}^m$$
, $\mathbb{A}(T) = (\langle Tf_k, f_k \rangle)_{1 \le k \le m}$

Specifically: $\beta(x) = \mathbb{A}(xx^*)$.

$$\begin{aligned} \|\beta(x) - \beta(y)\| &= \|\mathbb{A}(xx^*) - \mathbb{A}(yy^*)\| &= \|\mathbb{A}(xx^* - yy^*)\| \\ &= \|xx^* - yy^*\|\|\mathbb{A}\left(\frac{xx^* - yy^*}{\|xx^* - yy^*\|}\right)\| \end{aligned}$$

$$a_{0} = \min_{T \in \mathcal{S}^{1,1}, \|T\|_{1} = 1} \|\mathbb{A}(T)\| > 0 \ , \ b_{0} = \max_{T \in \mathcal{S}^{1,1}, \|T\|_{1} = 1} \|\mathbb{A}(T)\|$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ००●०००००००००	CRLB 00000000000000
Proofs				

Part 2: Extension of the inverse for β

Assume $\beta : (\hat{H}, d_1) \rightarrow (\mathbb{R}^m, \|\cdot\|_2)$ is bi-Lipschitz:

 $a_0 d_1(x,y)^2 \le \|eta(x) - eta(y)\|^2 \le b_0 d_1(x,y)^2$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○●○○○○○○○○○○	CRLB 000000000000000
Proofs				

Part 2: Extension of the inverse for β

Assume $\beta : (\hat{H}, d_1) \to (\mathbb{R}^m, \|\cdot\|_2)$ is bi-Lipschitz:

$$a_0 d_1(x,y)^2 \le \|eta(x) - eta(y)\|^2 \le b_0 d_1(x,y)^2$$

Let $M = \beta(\hat{H}) \subset \mathbb{R}^m$.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 000●000000000	CRLB 00000000000000
_				

Proofs Part 2: Extension of the inverse for β

First identify \hat{H} with $\mathcal{S}^{1,0}(H)$.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○○○●○○○○○○○○	CRLB

Proofs Part 2: Extension of the inverse for β

Then construct the local left inverse $\psi_1: M \to \hat{H}$ with $Lip(\psi_1) = \frac{1}{\sqrt{a_0}}$.

Radu Balan (UMD)

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○○○○●○○○○○○○	CRLB
Proofs				
Part 2 [.] Extension	of the inverse for β			

Use Kirszbraun's theorem to extend isometrically $\psi_2 : \mathbb{R}^m \to Sym(H)$.

Radu Balan (UMD)

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○○○○○●○○○○○○	CRLB

Proofs Part 2: Extension of the inverse for β

Construct a Lipschitz "projection" $\pi : Sym(H) \to S^{1,0}(H)$.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 0000000●00000	CRLB 000000000000000000000000000000000000

Proofs Part 2: Extension of the inverse for β

Compose the two maps to get $\psi : \mathbb{R}^m \to \mathcal{S}^{1,0}$, $\psi = \pi \circ \psi_2$.

Radu Balan (UMD)

July 28-30, 2015

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○○○○○○○●○○○○	CRLB 000000000000000
Proofs Part 2: $S^{1,0}(H)$ as	Lipschitz retract in <i>Sy</i>	vm(H)		

How to obtain $\pi : Sym(H) \to S^{1,0}(H)$?

(日)

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○○○○○○●○○○○	CRLB
Proofs				

Part 2: $S^{1,0}(H)$ as Lipschitz retract in Sym(H)

Lemma

Consider the spectral decomposition of the self-adjoint operator A in Sym(H), $A = \sum_{k=1}^{d} \lambda_{m(k)} P_k$. Then the map

$$\pi: \mathit{Sym}(\mathsf{H}) o \mathcal{S}^{1,0}(\mathsf{H}) \ , \ \pi(\mathsf{A}) = (\lambda_1 - \lambda_2) \mathsf{P}_1$$

satisfies the following two properties:

• for $1 \le p \le \infty$, it is Lipschitz continuous from $(Sym(H), \|\cdot\|_p)$ to $(\mathcal{S}^{1,0}(H), \|\cdot\|_p)$ with Lipschitz constant less than or equal to $3 + 2^{1+\frac{1}{p}}$;

$$(A) = A \text{ for all } A \in S^{1,0}(H).$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○○○○○○●○○○○	CRLB 000000000000000
Proofs Part 2: $S^{1,0}(H)$ a	s Lipschitz retract in S	Sym(H)		

Lemma

Consider the spectral decomposition of the self-adjoint operator A in Sym(H), $A = \sum_{k=1}^{d} \lambda_{m(k)} P_k$. Then the map

$$\pi: \mathit{Sym}(H)
ightarrow \mathcal{S}^{1,0}(H) \;\;,\;\; \pi(A) = (\lambda_1 - \lambda_2) P_1$$

satisfies the following two properties:

• for $1 \le p \le \infty$, it is Lipschitz continuous from $(Sym(H), \|\cdot\|_p)$ to $(\mathcal{S}^{1,0}(H), \|\cdot\|_p)$ with Lipschitz constant less than or equal to $3 + 2^{1+\frac{1}{p}}$;

$$(A) = A \text{ for all } A \in \mathcal{S}^{1,0}(H).$$

Proof uses Weyl's inequality and spectral formula on a complex integration contour by Zwald & Blanchard (2006).

Radu Balan (UMD)

Problem Formulation M	Metric Space Structures	Lipschitz Analysis	Proofs 000000000000000000000000000000000000	CRLB 000000000000000
Proofs Part 1: Bi-Lipschitzia	anity of $lpha$			

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○○○○○○○○●○○○	CRLB 000000000000000000000000000000000000
Proofs Part 1: Bi-Lipschi	itzianity of α			

• The global lower and upper Lipschitz bounds:

$$A_0 = \inf_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2} , \ B_0 = \sup_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2}$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○○○○○○○○●○○○	CRLB 000000000000000000000000000000000000
Proofs Part 1: Bi-Linschi	itzianity of α			

• The global lower and upper Lipschitz bounds:

$$A_{0} = \inf_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_{2}^{2}}{D_{2}(x,y)^{2}} , \ B_{0} = \sup_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_{2}^{2}}{D_{2}(x,y)^{2}}$$

2 The type I local lower and upper Lipschitz bounds at $z \in \hat{H}$:

$$A(z) = \lim_{r \to 0} \inf_{\substack{x, y \in \hat{H} \\ D_2(x, z) < r \\ D_2(y, z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x, y)^2}, \ B(z) = \lim_{r \to 0} \sup_{\substack{x, y \in \hat{H} \\ D_2(x, z) < r \\ D_2(y, z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x, y)^2}$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○○○○○○○○●○○○	CRLB
Proofs	$t_{zianity}$ of α			

• The global lower and upper Lipschitz bounds:

$$A_{0} = \inf_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_{2}^{2}}{D_{2}(x,y)^{2}} , \ B_{0} = \sup_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_{2}^{2}}{D_{2}(x,y)^{2}}$$

2 The type I local lower and upper Lipschitz bounds at $z \in \hat{H}$:

$$A(z) = \lim_{r \to 0} \inf_{\substack{x, y \in \hat{H} \\ D_2(x, z) < r \\ D_2(y, z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x, y)^2}, \ B(z) = \lim_{r \to 0} \sup_{\substack{x, y \in \hat{H} \\ D_2(x, z) < r \\ D_2(y, z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x, y)^2}$$

③ The type II local lower and upper Lipschitz bounds at $z \in \hat{H}$:

$$\tilde{A}(z) = \lim_{r \to 0} \inf_{\substack{x \in \hat{H} \\ D_2(x,z) < r}} \frac{\|\alpha(x) - \alpha(z)\|_2^2}{D_2(x,z)^2}, \ \tilde{B}(z) = \lim_{r \to 0} \sup_{\substack{x \in \hat{H} \\ D_2(x,z) < r}} \frac{\|\alpha(x) - \alpha(z)\|_2^2}{D_2(x,y)^2}$$

Radu Balan (UMD)

Problem Formulation M	letric Space Structures	Lipschitz Analysis	Proofs ○○○○○○○○○●○○	CRLB 000000000000000
Proofs Part 1: Bi-Lipschitzia	anity of $lpha$			

We need to analyze the real structure of \hat{H} .

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○○○○○○○○○●○○	CRLB
Proofs Part 1: Bi-Linschi	itzianity of α			

We need to analyze the real structure of \hat{H} . Let $\varphi_1, \dots, \varphi_m, \zeta \in \mathbb{R}^{2n}$, $\Phi_1, \dots, \Phi_m \in Sym(\mathbb{R}^{2n})$, $J \in \mathbb{R}^{2n \times 2n}$ defined by:

$$\Phi_{k} = \varphi_{k}\varphi_{k}^{\mathsf{T}} + J\varphi_{k}\varphi_{k}^{\mathsf{T}}J^{\mathsf{T}}, \varphi_{k} = \begin{bmatrix} \operatorname{real}(f_{k}) \\ \operatorname{imag}(f_{k}) \end{bmatrix}, J = \begin{bmatrix} 0 & -I_{n} \\ I_{n} & 0 \end{bmatrix}, \zeta = \begin{bmatrix} \operatorname{real}(z) \\ \operatorname{imag}(z) \end{bmatrix}$$

Key relations: $\langle z, f_k \rangle = \langle \zeta, \varphi_k \rangle + i \langle \zeta, J \varphi_k \rangle$, $|\langle z, f_k \rangle| = \sqrt{\langle \Phi_k \zeta, \zeta \rangle}$.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○○○○○○○○●○○	CRLB 000000000000000000000000000000000000
Proofs Part 1: Bi-Lipschi	tzianity of α			

We need to analyze the real structure of \hat{H} . Let $\varphi_1, \dots, \varphi_m, \zeta \in \mathbb{R}^{2n}$, $\Phi_1, \dots, \Phi_m \in Sym(\mathbb{R}^{2n})$, $J \in \mathbb{R}^{2n \times 2n}$ defined by:

$$\Phi_{k} = \varphi_{k}\varphi_{k}^{\mathsf{T}} + J\varphi_{k}\varphi_{k}^{\mathsf{T}}J^{\mathsf{T}}, \varphi_{k} = \begin{bmatrix} \operatorname{real}(f_{k}) \\ \operatorname{imag}(f_{k}) \end{bmatrix}, J = \begin{bmatrix} 0 & -I_{n} \\ I_{n} & 0 \end{bmatrix}, \zeta = \begin{bmatrix} \operatorname{real}(z) \\ \operatorname{imag}(z) \end{bmatrix}$$

Key relations: $\langle z, f_k \rangle = \langle \zeta, \varphi_k \rangle + i \langle \zeta, J \varphi_k \rangle$, $|\langle z, f_k \rangle| = \sqrt{\langle \Phi_k \zeta, \zeta \rangle}$. Consider the following objects:

$$\begin{aligned} \mathcal{R}: \mathbb{R}^{2n} \to Sym(\mathbb{R}^{2n}) \quad , \quad \mathcal{R}(\xi) &= \sum_{k=1}^{m} \Phi_k \xi \xi^T \Phi_k \; , \; \xi \in \mathbb{R}^{2n} \\ \mathcal{S}: \mathbb{R}^{2n} \to Sym(\mathbb{R}^{2n}) \quad , \quad \mathcal{S}(\xi) &= \sum_{k: \Phi_k \xi \neq 0} \frac{1}{\langle \Phi_k \xi, \xi \rangle} \Phi_k \xi \xi^T \Phi_k \; , \; \xi \in \mathbb{R}^{2n} \end{aligned}$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○○○○○○○○○○	CRLB 000000000000000000000000000000000000
Proofs	for α			

Theorem (BZ15)

Assume \mathcal{F} is phase retrievable for $H = \mathbb{C}^n$ and A, B are its optimal frame bounds. Then:

- For every $0 \neq z \in \mathbb{C}^n$, $A(z) = \lambda_{2n-1}(\mathcal{S}(\zeta))$ (the next to the smallest eigenvalue);
- 2 $A_0 = A(0) > 0;$
- For every $z \in \mathbb{C}^n$, $\tilde{A}(z) = \lambda_{2n-1} \left(S(\zeta) + \sum_{k: \langle z, f_k \rangle = 0} \Phi_k \right)$ (the next to the smallest eigenvalue);
- $\tilde{A}(0) = A$, the optimal lower frame bound;
- For every $z \in \mathbb{C}^n$, $B(z) = \tilde{B}(z) = \lambda_1 \left(S(\zeta) + \sum_{k: \langle z, f_k \rangle = 0} \Phi_k \right)$ (the largest eigenvalue);
- $B_0 = B(0) = \tilde{B}(0) = B$, the optimal upper frame bound;

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs ○○○○○○○○○○○●	CRLB 0000000000000000
Proofs				

Theorem (cont'd)

Lipschitz bounds for β

- For every 0 ≠ z ∈ Cⁿ, a(z) = ã(z) = λ_{2n-1}(R(ζ))/||z||² (the next to the smallest eigenvalue);
- For every $0 \neq z \in \mathbb{C}^n$, $b(z) = \tilde{b}(z) = \lambda_1(\mathcal{R}(\zeta))/||z||^2$ (the largest eigenvalue);
- $a_0 = \min_{\|\xi\|=1} \lambda_{2n-1}(\mathcal{R}(\xi))$ is also the largest constant to that $\mathcal{R}(\xi) \ge a_0(\|\xi\|^2 I J\xi\xi^T J^T);$

 $\begin{array}{l} \textcircled{0} \quad b(0) = \widetilde{b}(0) = b_0 = \max_{\|\xi\|=1} \lambda_1(\mathcal{R}(\xi)) \text{ is also the } 4^{th} \text{ power of the} \\ \text{frame analysis operator norm } T : (\mathbb{C}^n, \|\cdot\|_2) \to (\mathbb{R}^m, \|\cdot\|_4): \\ b_0 = \|T\|_{B(l^2, l^4)}^4 = \max_{\|x\|_2=1} \sum_{k=1}^m |\langle x, f_k \rangle|^4; \end{array}$

(1) $\tilde{a}(0)$ is given by $\tilde{a}(0) = \min_{\|z\|=1} \sum_{k=1}^{m} |\langle z, f_k \rangle|^4$.

< ロ > < 同 > < 三 > < 三 >

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB
Table of Co	ntents			

- 1 Problem Formulation
- 2 Metric Space Structures
- 3 Lipschitz Analysis
- 4 Proofs

< ロ > < 同 > < 回 > < 国

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB ●000000000000000000000000000000000000
CRLB Stochastic Models	5			

$$y_k = |\langle x, f_k \rangle + \mu_k|^p + \nu_k \ , \ 1 \le k \le m$$

where $(\mu_k)_k, (\nu_k)_k$ are two noise processes.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB ●000000000000000000000000000000000000
CRLB	5			

$$y_k = |\langle x, f_k \rangle + \mu_k|^p + \nu_k \ , \ 1 \le k \le m$$

where $(\mu_k)_k, (\nu_k)_k$ are two noise processes.

• The Additive White Gaussian Noise (AWGN) Model: $\mu_k = 0$, p = 2 and $\nu_k \sim \mathbb{N}(0, \sigma^2)$ i.i.d.

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k \ , \ 1 \le k \le m$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB ●000000000000000000000000000000000000
CRLB Stochastic Models				

$$y_k = |\langle x, f_k \rangle + \mu_k|^p + \nu_k \ , \ 1 \le k \le m$$

where $(\mu_k)_k, (\nu_k)_k$ are two noise processes.

• The Additive White Gaussian Noise (AWGN) Model: $\mu_k = 0$, p = 2 and $\nu_k \sim \mathbb{N}(0, \sigma^2)$ i.i.d.

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k$$
, $1 \le k \le m$

2 Non-AWGN Model: $\mu_k \sim \mathbb{CN}(0, \rho^2)$, i.i.d. and $\nu_k = 0$: $y_k = |\langle x, f_k \rangle + \mu_k|^p$, $1 \le k \le m$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB ●000000000000000000000000000000000000
CRLB Stochastic Models				

$$y_k = |\langle x, f_k \rangle + \mu_k|^p + \nu_k \ , \ 1 \le k \le m$$

where $(\mu_k)_k, (\nu_k)_k$ are two noise processes.

• The Additive White Gaussian Noise (AWGN) Model: $\mu_k = 0$, p = 2and $\nu_k \sim \mathbb{N}(0, \sigma^2)$ i.i.d.

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k$$
, $1 \le k \le m$

2 Non-AWGN Model: $\mu_k \sim \mathbb{CN}(0, \rho^2)$, i.i.d. and $\nu_k = 0$:

$$y_k = |\langle x, f_k \rangle + \mu_k |^p$$
 , $1 \le k \le m$

An estimator: $\omega : \mathbb{R}^m \to H$. Unbiased if: $\mathbb{E}[\omega(y); x] = x$. Fix a direction $z_0 \in H$ and fix the global phase so that $\langle x, z_0 \rangle > 0$. We want universal performance bounds of any unbiased estimator.

Radu Balan (UMD)

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB ○●○○○○○○○○○○○
CRLB Methodology				

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 0000000000000	CRLB ○●○○○○○○○○○○○
CRLB Methodology				

3 🕨 🖌 3

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 0000000000000	CRLB ○●○○○○○○○○○○○
CRLB Methodology				

Step 2: Compute Fisher Information Matrix $\mathbb{I}(\xi) = \mathbb{E}_{noise} \left[(\nabla_x \log p(y; x)) (\nabla_x \log p(y; x))^* \right]$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 0000000000000	CRLB ○●○○○○○○○○○○○
CRLB Methodology				

Step 2: Compute Fisher Information Matrix $\mathbb{I}(\xi) = \mathbb{E}_{noise} \left[(\nabla_x \log p(y; x)) (\nabla_x \log p(y; x))^* \right]$

Step 3: Determine CRLB

Assume the Oracle provided global phase model.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 0000000000000	CRLB ○●○○○○○○○○○○○
CRLB Methodology				

Step 2: Compute Fisher Information Matrix $\mathbb{I}(\xi) = \mathbb{E}_{noise} \left[(\nabla_x \log p(y; x)) (\nabla_x \log p(y; x))^* \right]$

Step 3: Determine CRLB

Assume the Oracle provided global phase model.

Step 4: Identifiability

Determine CRLB based injectivity conditions.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000000000000000000000000000000000
CRLB				
Fisher Info Matrix	for the AWGN Mode			

The AWGN model:

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k \ , \
u_k \sim \mathbb{N}(0, \sigma^2) \ , \ 1 \leq k \leq m.$$

*ロ * * (日) * * ほ * * ほ

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000000000000000000000000000000000
CRLB				

The AWGN model:

$$y_k = |\langle x, f_k
angle|^2 +
u_k$$
 , $u_k \sim \mathbb{N}(0, \sigma^2)$, $1 \leq k \leq m_k$

• The likelihood function:

$$p(y; x, \sigma^2) = \prod_{k=1}^{m} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2} (y_k - |\langle x, f_k \rangle|^2)^2} = \prod_{k=1}^{m} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2} (y_k - \langle \Phi_k \xi, \xi \rangle)^2}$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 0000000000000	CRLB 00●0000000000
CRLB				

The AWGN model:

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k \ , \
u_k \sim \mathbb{N}(0, \sigma^2) \ , \ 1 \leq k \leq m.$$

• The likelihood function:

$$p(y; x, \sigma^2) = \prod_{k=1}^m \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2} \left(y_k - |\langle x, f_k \rangle|^2 \right)^2} = \prod_{k=1}^m \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2} \left(y_k - \langle \Phi_k \xi, \xi \rangle \right)^2}$$

• Fisher Information Matrix:

$$\mathbb{I} = \mathbb{E}\left[(\nabla_x \log p(y; x)) (\nabla_x \log p(y; x))^* \right]$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000000000000000000000000000000000
CRLB				

The AWGN model:

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k \ , \
u_k \sim \mathbb{N}(0, \sigma^2) \ , \ 1 \leq k \leq m.$$

• The likelihood function:

$$p(y; x, \sigma^2) = \prod_{k=1}^m \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2} \left(y_k - |\langle x, f_k \rangle|^2 \right)^2} = \prod_{k=1}^m \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2} \left(y_k - \langle \Phi_k \xi, \xi \rangle \right)^2}$$

• Fisher Information Matrix:

$$\mathbb{I} = \mathbb{E}\left[(\nabla_x \log p(y; x)) (\nabla_x \log p(y; x))^* \right]$$

• $\mathbb{I}^{AWGN,real}(x) = \frac{4}{\sigma^2} \sum_{k=1}^m |\langle x, f_k \rangle|^2 f_k f_k^T = \frac{4}{\sigma^2} \sum_{k=1}^m (f_k f_k^T) x x^T (f_k f_k^T)$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs	CRLB 00●0000000000
CRLB				

The AWGN model:

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k \ , \
u_k \sim \mathbb{N}(0, \sigma^2) \ , \ 1 \leq k \leq m.$$

• The likelihood function:

$$p(y; x, \sigma^2) = \prod_{k=1}^m \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2} \left(y_k - |\langle x, f_k \rangle|^2 \right)^2} = \prod_{k=1}^m \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2} \left(y_k - \langle \Phi_k \xi, \xi \rangle \right)^2}$$

• Fisher Information Matrix:

$$\mathbb{I} = \mathbb{E}\left[(\nabla_x \log p(y; x)) (\nabla_x \log p(y; x))^* \right]$$

• $\mathbb{I}^{AWGN,real}(x) = \frac{4}{\sigma^2} \sum_{k=1}^m |\langle x, f_k \rangle|^2 f_k f_k^T = \frac{4}{\sigma^2} \sum_{k=1}^m (f_k f_k^T) x T(f_k f_k^T)$

•
$$\mathbb{I}^{AWGN,cplx}(x) = \frac{4}{\sigma^2} \sum_{k=1}^{m} \Phi_k \xi \xi^* \Phi_k$$
 [Bal13,BCMN13]

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs	CRLB 00●0000000000
CRLB				

The AWGN model:

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k \ , \
u_k \sim \mathbb{N}(0, \sigma^2) \ , \ 1 \leq k \leq m.$$

• The likelihood function:

$$p(y; x, \sigma^2) = \prod_{k=1}^m \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2} \left(y_k - |\langle x, f_k \rangle|^2 \right)^2} = \prod_{k=1}^m \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2} \left(y_k - \langle \Phi_k \xi, \xi \rangle \right)^2}$$

• Fisher Information Matrix:

$$\mathbb{I} = \mathbb{E}\left[(\nabla_x \log p(y; x)) (\nabla_x \log p(y; x))^* \right]$$

• $\mathbb{I}^{AWGN,real}(x) = \frac{4}{\sigma^2} \sum_{k=1}^m |\langle x, f_k \rangle|^2 f_k f_k^T = \frac{4}{\sigma^2} \sum_{k=1}^m (f_k f_k^T) x T(f_k f_k^T)$

•
$$\mathbb{I}^{AWGN,cplx}(x) = \frac{4}{\sigma^2} \sum_{k=1}^{m} \Phi_k \xi \xi^* \Phi_k$$
 [Bal13,BCMN13]

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 0000000000000	CRLB 000●000000000

The Cramer-Rao Lower Bound for AWGN Model

Fix
$$z_0 \in \mathbb{C}^n$$
, $\|z_0\| = 1$, let $\zeta_0 = [\mathit{real}(z_0) \; \mathit{imag}(z_0)]^{\mathcal{T}}$ and set

$$\Omega_{z_0} = \{\xi \in \mathbb{R}^{2n} , \ \langle \xi, \zeta_0 \rangle) \geq 0, \langle \xi, J\zeta_0 \rangle) = 0 \}.$$

Let $\Pi_{z_0} = 1 - J\zeta_0\zeta_0^*J^*$ with J the symplectic form matrix.

Theorem

Assume the measurement model $y_k = |\langle x, f_k \rangle|^2 + \nu_k$ with ν_k i.i.d. $\mathbb{N}(0, \sigma^2)$, and $\xi \in \mathring{\Omega}_{z_0}$. Then the covariance of any unbiased estimtor $\omega : \mathbb{R}^m \to \mathbb{C}^n$ is bounded below by

$$Cov[\omega(y);\xi] \ge \left(\prod_{z_0} \mathbb{I}^{AWGN}(\xi)\prod_{z_0}\right)^{\dagger}.$$

In particular: $\mathbb{E}[\|\omega(y) - \xi\|^2; \xi] \ge trace \left\{ \left(\prod_{z_0} \mathbb{I}^{AWGN}(\xi) \prod_{z_0} \right)^{\dagger} \right\}.$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs	CRLB 0000€00000000
CRLB				

Consider the Non-AWGN model:

$$y_k = |\langle x, f_k \rangle + \mu_k|^2 \ , \ \mu_k \sim \mathbb{CN}(0, \rho^2) \ , \ 1 \leq k \leq m.$$

イロト イポト イヨト イヨ

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB
CRIR				

Consider the Non-AWGN model:

$$y_k = |\langle x, f_k \rangle + \mu_k|^2 \ , \ \mu_k \sim \mathbb{CN}(0, \rho^2) \ , \ 1 \leq k \leq m.$$

• The likelihood function:

$$p(y;x) = \frac{1}{\rho^{2m}} exp\left\{-\frac{1}{\rho^2} \left(\sum_{k=1}^m y_k + \sum_{k=1}^m |\langle x, f_k \rangle|^2\right)\right\} \prod_{k=1}^m l_0\left(\frac{2|\langle x, f_k \rangle|\sqrt{y_k}}{\rho^2}\right)$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 00000000000000
CRIR				

Consider the Non-AWGN model:

$$y_k = |\langle x, f_k \rangle + \mu_k|^2 \ , \ \mu_k \sim \mathbb{CN}(0, \rho^2) \ , \ 1 \leq k \leq m.$$

• The likelihood function:

$$p(y;x) = \frac{1}{\rho^{2m}} exp\left\{-\frac{1}{\rho^2} \left(\sum_{k=1}^m y_k + \sum_{k=1}^m |\langle x, f_k \rangle|^2\right)\right\} \prod_{k=1}^m l_0\left(\frac{2|\langle x, f_k \rangle|\sqrt{y_k}}{\rho^2}\right)$$

• With realification, log-likelihood:

$$log p(y;\xi) = -2m \log \rho + \sum_{k=1}^{m} log l_0 \left(\frac{2\sqrt{y_k \langle \Phi_k \xi, \xi \rangle}}{\rho^2} \right) - \frac{1}{\rho^2} \sum_{k=1}^{m} y_k - \frac{1}{\rho^2} \sum_{k=1}^{m} \langle \Phi_k \xi, \xi \rangle.$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 0000000000000	CRLB 00000●0000000
CRLB				

Likelihood and Derivations for Non-AWGN

Key Estimate:

Lemma

For the Non-AWGN model in this paper and for each k,

$$\mathbb{E}\left[\frac{I_1}{I_0}\left(\frac{2\sqrt{y_k\langle\Phi_k\xi,\xi\rangle}}{\rho^2}\right)\sqrt{\frac{y_k}{\langle\Phi_k\xi,\xi\rangle}}\right] = 1.$$

3 d d d

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000●000000

Theorem

The Fisher information matrix for the Non-AWGN model is given by

$$\mathbb{I}^{nonAWGN}(\xi) = \frac{4}{\rho^4} \sum_{k=1}^m \left(G_1\left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2}\right) - 1 \right) \Phi_k \xi \xi^* \Phi_k$$
$$= \frac{4}{\rho^2} \sum_{k=1}^m G_2\left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2}\right) \frac{1}{\langle \Phi_k \xi, \xi \rangle} \Phi_k \xi \xi^* \Phi_k$$

where

$$G_1(a) = rac{e^{-a}}{8a^3} \int_0^\infty rac{l_1^2(t)}{l_0(t)} t^3 e^{-rac{t^2}{4a}} dt \ , \ \ G_2(a) = a(G_1(a)-1)$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 0000000000000000
CRLB The Cramer-Rao L	ower Bound for the N	lon-AWGN Mode	1	

Fix
$$z_0 \in \mathbb{C}^n$$
, $\|z_0\| = 1$, let $\zeta_0 = [real(z_0) \ imag(z_0)]^T$ and set

$$\Omega_{z_0} = \{ \xi \in \mathbb{R}^{2n} , \langle \xi, \zeta_0 \rangle \} \ge 0, \langle \xi, J\zeta_0 \rangle = 0 \}.$$

Let $\Pi_{z_0} = 1 - J\zeta_0\zeta_0^*J^*$ with J the symplectic form matrix.

Theorem

Assume the measurement model $y_k = |\langle x, f_k \rangle + \mu_k|^p$ with μ_k i.i.d. $\mathbb{CN}(0, \rho^2)$, and $\xi \in \mathring{\Omega}_{z_0}$. Then the covariance of any unbiased estimtor $\omega : \mathbb{R}^m \to \mathbb{C}^n$ is bounded below by

$$Cov[\omega(y);\xi] \geq (\prod_{z_0} \mathbb{I}(\xi) \prod_{z_0})^{\dagger}.$$

In particular: $\mathbb{E}[\|\omega(y) - \xi\|^2; \xi] \ge trace\left\{(\prod_{z_0} \mathbb{I}(\xi) \prod_{z_0})^{\dagger}\right\}.$
Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000000000000000000000000000000000

CRLB Comparisons for Asymptotic Regimes

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000000000000000000000000000000000

CRLB Comparisons for Asymptotic Regimes

Form 1: Low SNR

$$\mathbb{I}^{nonAWGN}(\xi) = \frac{4}{\rho^4} \sum_{k=1}^m \left(G_1\left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2}\right) - 1 \right) \Phi_k \xi \xi^* \Phi_k$$

$$\approx \frac{4}{\rho^4} \sum_{k=1}^m \Phi_k \xi \xi^* \Phi_k$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000000000000000000000000000000000

CRLB Comparisons for Asymptotic Regimes

Form 1: Low SNR

$$\mathbb{I}^{nonAWGN}(\xi) = \frac{4}{\rho^4} \sum_{k=1}^m \left(G_1\left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2}\right) - 1 \right) \Phi_k \xi \xi^* \Phi_k$$

$$\approx \frac{4}{\rho^4} \sum_{k=1}^m \Phi_k \xi \xi^* \Phi_k$$

Form 2: High SNR

$$\mathbb{I}^{nonAWGN}(\xi) = \frac{4}{\rho^2} \sum_{k=1}^m G_2\left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2}\right) \frac{1}{\langle \Phi_k \xi, \xi \rangle} \Phi_k \xi \xi^* \Phi_k$$

$$\approx \frac{2}{\rho^2} \sum_{k=1}^m \frac{1}{\langle \Phi_k \xi, \xi \rangle} \Phi_k \xi \xi^* \Phi_k$$

Recall $\mathbb{I}^{AWGN, cpl_{x}}(\xi) = \frac{4}{\sigma^{2}} \sum_{k=1}^{m} \Phi_{k} \xi \xi^{*} \Phi_{k}$. Let *B* be frame upper bound.

Lemma

$$\frac{\sigma^2}{\rho^4} \left(\mathsf{G}_1(\frac{B\|\xi\|^2}{\rho^2}) - 1 \right) \mathbb{I}^{\mathsf{AWGN}, \mathsf{cplx}} \leq \mathbb{I}^{\mathsf{nonAWGN}}(\xi) \leq \frac{\sigma^2}{\rho^4} \mathbb{I}^{\mathsf{AWGN}, \mathsf{cplx}}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB
CRLB AWGN vs. non-A	WGN: The Identifiabili	itv Problem		

Recall $\mathbb{I}^{AWGN,cplx}(\xi) = \frac{4}{\sigma^2} \sum_{k=1}^{m} \Phi_k \xi \xi^* \Phi_k$. Let *B* be frame upper bound.

Lemma

$$\frac{\sigma^2}{\rho^4} \left(\mathsf{G}_1(\frac{B\|\xi\|^2}{\rho^2}) - 1 \right) \mathbb{I}^{\mathsf{AWGN}, \mathsf{cplx}} \leq \mathbb{I}^{\mathsf{nonAWGN}}(\xi) \leq \frac{\sigma^2}{\rho^4} \mathbb{I}^{\mathsf{AWGN}, \mathsf{cplx}}$$

Theorem

The following are equivalent:

- **1** The frame \mathcal{F} is phase retrievable;
- 2 For every $0 \neq \xi \in \mathbb{R}^{2n}$, $rank(\mathbb{I}^{nonAWGN}(\xi)) = 2n 1$;
- For every $0 \neq \xi \in \mathbb{R}^{2n}$, $rank(\mathbb{I}^{AWGN, cpl_X}(\xi)) = 2n 1$;

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000000000000000000000000000000000
CRLB Other nonlinear m	naps			

Consider the model:

$$z_k = |\langle x, f_k \rangle + \mu_k|^p$$
 , $1 \le k \le m$

where $p \neq 0$ and (μ_1, \dots, μ_m) are i.i.d. $\mathbb{CN}(0, \rho^2)$.

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000000000000000000000000000000000
CRLB Other nonlinear m	naps			

Consider the model:

$$z_k = |\langle x, f_k \rangle + \mu_k |^p$$
, $1 \le k \le m$

where $p \neq 0$ and (μ_1, \dots, μ_m) are i.i.d. $\mathbb{CN}(0, \rho^2)$.

It turns out the Fisher information matrix is the same as before:

$$\mathbb{I}^{nonAWGN,p\neq 0}(\xi) = \mathbb{I}^{nonAWGN,p=2}(\xi)$$

$$= \frac{4}{\rho^4} \sum_{k=1}^m \left(G_1\left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2}\right) - 1 \right) \Phi_k \xi \xi^* \Phi_k$$

$$= \frac{4}{\rho^2} \sum_{k=1}^m G_2\left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2}\right) \frac{1}{\langle \Phi_k \xi, \xi \rangle} \Phi_k \xi \xi^* \Phi_k$$

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB 000000000000000000000000000000000000
CRLB Oracle-based Esti	mator			

Current estimator:

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs 00000000000000	CRLB
CRLB Oracle-based Estin	mator			

A more natural estimator is given by:

Open Problem: What is the CRLB in this case?

Radu Balan (UMD)

Phase Retrieval

July 28-30, 2015

Problem Formulation	Metric Space Structures	Lipschitz Analysis	Proofs	CRLB
00	0000	000	00000000000000	00000000000000

References

- R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. **20** (2006), 345–356.
- R. Balan, B. Bodmann, P. Casazza, D. Edidin, Painless reconstruction from Magnitudes of Frame Coefficients, J.Fourier Anal.Applic., 15 (4) (2009), 488–501.
- R. Balan, Reconstruction of Signals from Magnitudes of Frame Representations, arXiv submission arXiv:1207.1134
- R. Balan, Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case, available online arXiv:1304.1839v1, Found.Comput.Math. 2015, http://dx.doi.org/10.1007/s10208-015-9261-0
 - R. Balan and Y. Wang, Invertibility and Robustness of Phaseless Reconstruction, available online arXiv:1308.4718v1, Appl. Comp. Harm. Anal., 38 (2015), 469–488.

Radu Balan (UMD)

- A. S. Bandeira, J. Cahill, D. Mixon, A. A. Nelson, Saving phase: Injectivity and Stability for phase retrieval, arXiv submission, arXiv: 1302.4618, Appl. Comp. Harm. Anal. 37 (1) (2014), 106–125.
- Y. C. Eldar, S. Mendelson, *Phase retrieval: Stability and recovery guarantees*, available online: arXiv:1211.0872.
- M.J. Hirn, E. Le Gruyer, A general theorem of existence of quasi absolutely minimal Lipschitz extensions, arXiv:1211.5700v2 [math.FA], 8 Aug 2013.
- L. Zwald, G. Blanchard, *On the convergence of eigenspaces in kernel Principal Component Analysis*, Proc. NIPS 05, vol. 18, 1649-1656, MIT Press, 2006.