Nonlinear Analysis with Frames. Part II: Lipschitz Reconstruction

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

$$
\text { July 28-30, } 2015
$$

Modern Harmonic Analysis and Applications
Summer Graduate Program University of Maryland, College Park, MD 20742

Thanks to our sponsors:

Institute for Mathematics and its Applications

University of Minnesota Driven to Discover ${ }^{\text {m }}$

SIEMENS

"This material is based upon work supported by the National Science Foundation under Grants No. DMS-1413249, DMS-1501640. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

Table of Contents：

（1）Problem Formulation
（2）Metric Space Structures
（3）Lipschitz Analysis
（4）Proofs
（5）CRLB

〈口（岛
三 \quad QQ

Table of Contents

(1) Problem Formulation

(2) Metric Space Structures

(3) Lipschitz Analysis
(4) Proofs
(5) CRLB

Problem Formulation

The phase retrieval problem

- Hilbert space $H=\mathbb{C}^{n}, \hat{H}=H / T^{1}$, frame $\mathcal{F}=\left\{f_{1}, \cdots, f_{m}\right\} \subset \mathbb{C}^{n}$ and

$$
\begin{aligned}
& \alpha: \hat{H} \rightarrow \mathbb{R}^{m}, \quad \alpha(x)=\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m} \\
& \beta: \hat{H} \rightarrow \mathbb{R}^{m}, \quad \beta(x)=\left(\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)_{1 \leq k \leq m}
\end{aligned}
$$

The frame is said phase retrievable (or that it gives phase retrieval) if α (or β) is injective.

Problem Formulation

The phase retrieval problem

- Hilbert space $H=\mathbb{C}^{n}, \hat{H}=H / T^{1}$, frame $\mathcal{F}=\left\{f_{1}, \cdots, f_{m}\right\} \subset \mathbb{C}^{n}$ and

$$
\begin{aligned}
& \alpha: \hat{H} \rightarrow \mathbb{R}^{m}, \quad \alpha(x)=\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m} \\
& \beta: \hat{H} \rightarrow \mathbb{R}^{m}, \quad \beta(x)=\left(\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)_{1 \leq k \leq m}
\end{aligned}
$$

The frame is said phase retrievable (or that it gives phase retrieval) if α (or β) is injective.

- The general phase retrieval problem a.k.a. phaseless reconstruction: Decide when a given frame is phase retrievable, and, if so, find an algorithm to recover x from $y=\alpha(x)$ (or from $y=\beta(x)$) up to a global phase factor.

Problem Formulation

Lipschitz Reconstruction

Our Problems Today: Assume \mathcal{F} is phase retrievable.

- Deterministic Analysis.
(1) Are the nonliner maps α, β bi-Lipschitz with respect to appropriate metrics?
(2) Do they admit left inverses that are globally Lipschitz?
(3) What are the Lipschitz constants?
(9) Additionally, we want to understand the structure of Lipschitz bounds (to be defined shortly).

Problem Formulation

Lipschitz Reconstruction

Our Problems Today: Assume \mathcal{F} is phase retrievable.

- Deterministic Analysis.
(1) Are the nonliner maps α, β bi-Lipschitz with respect to appropriate metrics?
(2) Do they admit left inverses that are globally Lipschitz?
(3) What are the Lipschitz constants?
(9) Additionally, we want to understand the structure of Lipschitz bounds (to be defined shortly).
- Stochastic Analysis.
(5) Cramer-Rao Lower Bounds.

Table of Contents

(1) Problem Formulation
(2) Metric Space Structures
(3) Lipschitz Analysis
(4) Proofs
(5) CRLB

Metric Space Structures

Topological Structures

Let $H=\mathbb{C}^{n}$. The quotient space $\hat{H}=\mathbb{C}^{n} / T^{1}$, with classes induced by $x \sim y$ if there is real φ with $x=e^{i \varphi} y$.

Metric Space Structures

Topological Structures

Let $H=\mathbb{C}^{n}$. The quotient space $\hat{H}=\mathbb{C}^{n} / T^{1}$, with classes induced by $x \sim y$ if there is real φ with $x=e^{i \varphi} y$.
Topologically:

$$
\hat{\mathbb{C}}^{n}=\{0\} \cup\left((0, \infty) \times \mathbb{C P}^{n-1}\right)
$$

with

$$
\stackrel{\circ}{\mathbb{C}^{n}}=\hat{\mathbb{C}^{n}} \backslash\{0\}=(0, \infty) \times \mathbb{C P}^{n-1}
$$

a real analytic manifold of real dimension $2 n-1$.

Metric Space Structures

Topological Structures

Let $H=\mathbb{C}^{n}$. The quotient space $\hat{H}=\mathbb{C}^{n} / T^{1}$, with classes induced by $x \sim y$ if there is real φ with $x=e^{i \varphi} y$.
Topologically:

$$
\hat{\mathbb{C}}^{n}=\{0\} \cup\left((0, \infty) \times \mathbb{C P}^{n-1}\right)
$$

with

$$
\stackrel{\circ}{\mathbb{C}^{n}}=\hat{\mathbb{C}^{n}} \backslash\{0\}=(0, \infty) \times \mathbb{C P}^{n-1}
$$

a real analytic manifold of real dimension $2 n-1$.
Another embedding is into the space of symmetric matrices $\operatorname{Sym}\left(\mathbb{C}^{n}\right)$.

Metric Space Structures

Topological Structures

Let $H=\mathbb{C}^{n}$. The quotient space $\hat{H}=\mathbb{C}^{n} / T^{1}$, with classes induced by $x \sim y$ if there is real φ with $x=e^{i \varphi} y$.
Topologically:

$$
\hat{\mathbb{C}}^{n}=\{0\} \cup\left((0, \infty) \times \mathbb{C P}^{n-1}\right)
$$

with

$$
\stackrel{\circ}{\mathbb{C}^{n}}=\hat{\mathbb{C}^{n}} \backslash\{0\}=(0, \infty) \times \mathbb{C P}^{n-1}
$$

a real analytic manifold of real dimension $2 n-1$.
Another embedding is into the space of symmetric matrices $\operatorname{Sym}\left(\mathbb{C}^{n}\right)$. Specifically let

$$
\mathcal{S}^{p, q}(H)=\{T \in \operatorname{Sym}(H), T \text { has at most } p \text { pos.eigs. and } q \text { neg.eigs }\}
$$

Then:

$$
\kappa_{\beta}: \hat{H} \rightarrow \mathcal{S}^{1,0} \quad, \quad \hat{x} \mapsto=x x^{*} \quad, \quad \text { is an embedding. }
$$

Metric Space Structures

The matrix-norm induced metric structure
Fix $1 \leq p \leq \infty$. The matrix-norm induced distance

$$
d_{p}: \hat{H} \times \hat{H} \rightarrow \mathbb{R}, d_{p}(\hat{x}, \hat{y})=\left\|x x^{*}-y y^{*}\right\|_{p}
$$

with the p-norm of the singular values. In the case $p=2$ we obtain

$$
d_{2}(x, y)=\sqrt{\|x\|^{4}+\|y\|^{4}-2|\langle x, y\rangle|^{2}}
$$

Metric Space Structures

The matrix-norm induced metric structure
Fix $1 \leq p \leq \infty$. The matrix-norm induced distance

$$
d_{p}: \hat{H} \times \hat{H} \rightarrow \mathbb{R}, d_{p}(\hat{x}, \hat{y})=\left\|x x^{*}-y y^{*}\right\|_{p}
$$

with the p-norm of the singular values. In the case $p=2$ we obtain

$$
d_{2}(x, y)=\sqrt{\|x\|^{4}+\|y\|^{4}-2|\langle x, y\rangle|^{2}}
$$

Lemma (BZ15)

(1) $\left(d_{p}\right)_{1 \leq p \leq \infty}$ are equivalent metrics and the identity map $i:\left(\hat{H}, d_{p}\right) \rightarrow\left(\hat{H}, d_{q}\right), i(x)=x$ has Lipschitz constant

$$
L i p_{p, q, n}^{d}=\max \left(1,2^{\frac{1}{q}-\frac{1}{p}}\right) .
$$

(2) The metric space $\left(\hat{H}, d_{p}\right)$ is isometrically isomorphic to $\mathcal{S}^{1,0}$ endowed with the p-norm via $\kappa_{\beta}: \hat{H} \rightarrow \mathcal{S}^{1,0} \quad, \quad x \mapsto \kappa_{\beta}(x)=x x^{*}$.

Metric Space Structures

The natural metric structure
Fix $1 \leq p \leq \infty$. The natural metric

$$
D_{p}: \hat{H} \times \hat{H} \rightarrow \mathbb{R}, \quad D_{p}(\hat{x}, \hat{y})=\min _{\varphi}\left\|x-e^{i \varphi} y\right\|_{p}
$$

with the usual p-norm on \mathbb{C}^{n}. In the case $p=2$ we obtain

$$
D_{2}(\hat{x}, \hat{y})=\sqrt{\|x\|^{2}+\|y\|^{2}-2|\langle x, y\rangle|}
$$

Metric Space Structures

The natural metric structure
Fix $1 \leq p \leq \infty$. The natural metric

$$
D_{p}: \hat{H} \times \hat{H} \rightarrow \mathbb{R}, \quad D_{p}(\hat{x}, \hat{y})=\min _{\varphi}\left\|x-e^{i \varphi} y\right\|_{p}
$$

with the usual p-norm on \mathbb{C}^{n}. In the case $p=2$ we obtain

$$
D_{2}(\hat{x}, \hat{y})=\sqrt{\|x\|^{2}+\|y\|^{2}-2|\langle x, y\rangle|}
$$

Lemma (BZ15)

(1) $\left(D_{p}\right)_{1 \leq p \leq \infty}$ are equivalent metrics and the identity map $i:\left(\hat{H}, D_{p}\right) \rightarrow\left(\hat{H}, D_{q}\right), i(x)=x$ has Lipschitz constant

$$
L i p_{p, q, n}^{D}=\max \left(1, n^{\frac{1}{q}-\frac{1}{p}}\right)
$$

(2) The metric space $\left(\hat{H}, D_{2}\right)$ is Lipschitz isomorphic to $\mathcal{S}^{1,0}$ endowed with the 2-norm via $\kappa_{\alpha}: \hat{H} \rightarrow \mathcal{S}^{1,0} \quad, \quad x \mapsto \kappa_{\alpha}(x)=\frac{1}{\|x\|} x x^{*}$.

Metric Space Structures
 Distinct Structures

Two different structures: topologically equivalent, BUT the metrics are NOT equivalent:

Lemma (BZ15)

The identity map $i:\left(\hat{H}, D_{p}\right) \rightarrow\left(\hat{H}, d_{p}\right), i(x)=x$ is continuous but it is not Lipschitz continuous. Likewise, the identity map
$i:\left(\hat{H}, d_{p}\right) \rightarrow\left(\hat{H}, D_{p}\right), i(x)=x$ is continuous but it is not Lipschitz continuous. Hence the induced topologies on $\left(\hat{H}, D_{p}\right)$ and $\left(\hat{H}, d_{p}\right)$ are the same, but the corresponding metrics are not Lipschitz equivalent.

Table of Contents

(1) Problem Formulation

(2) Metric Space Structures
(3) Lipschitz Analysis

Lipschitz Analysis

Lipschitz inversion: α

Theorem (BZ15)

Assume \mathcal{F} is a phase retrievable frame for H. Then:
(1) The map $\alpha:\left(\hat{H}, D_{2}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right)$ is bi-Lipschitz. Let $\sqrt{A_{0}}, \sqrt{B_{0}}$ denote its Lipschitz constants: for every $x, y \in \hat{H}$:

$$
A_{0} \min _{\varphi}\left\|x-e^{i \varphi} y\right\|_{2}^{2} \leq \sum_{k=1}^{m}\left\|\left\langle x, f_{k}\right\rangle|-|\left\langle y, f_{k}\right\rangle\right\|^{2} \leq B_{0} \min _{\varphi}\left\|x-e^{i \varphi} y\right\|_{2}^{2}
$$

(2) There is a Lipschitz map $\omega:\left(\mathbb{R}^{m},\|\cdot\|_{2}\right) \rightarrow\left(\hat{H}, D_{2}\right)$ so that: (i) $\omega(\alpha(x))=x$ for every $x \in \hat{H}$, and (ii) its Lipschitz constant is $\operatorname{Lip}(\omega) \leq \frac{4+3 \sqrt{2}}{\sqrt{A_{0}}}=\frac{8.24}{\sqrt{A_{0}}}$.

Lipschitz Analysis

Lipschitz inversion: β

Theorem (BZ15)

Assume \mathcal{F} is a phase retrievable frame for H. Then:
(1) The $\operatorname{map} \beta:\left(\hat{H}, d_{1}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right)$ is bi-Lipschitz. Let $\sqrt{a_{0}}, \sqrt{b_{0}}$ denote its Lipschitz constants: for every $x, y \in \hat{H}$:

$$
a_{0}\left\|x x^{*}-y y^{*}\right\|_{1}^{2} \leq\left.\sum_{k=1}^{m}| |\left\langle x, f_{k}\right\rangle\right|^{2}-\left.\left|\left\langle y, f_{k}\right\rangle\right|^{2}\right|^{2} \leq b_{0}\left\|x x^{*}-y y^{*}\right\|_{1}^{2} .
$$

(2) There is a Lipschitz map $\psi:\left(\mathbb{R}^{m},\|\cdot\|_{2}\right) \rightarrow\left(\hat{H}, d_{1}\right)$ so that: (i) $\psi(\beta(x))=x$ for every $x \in \hat{H}$, and (ii) its Lipschitz constant is $\operatorname{Lip}(\psi) \leq \frac{4+3 \sqrt{2}}{\sqrt{a_{0}}}=\frac{8.24}{\sqrt{a_{0}}}$.

Lipschiutz Analysis
 Prior Works

Prior literature:

Lipschiutz Analysis
 Prior Works

Prior literature:

- 2012: B.: Cramer-Rao lower bound in the real case; Eldar\&Mendelson : map α in the real case

$$
\|\alpha(x)-\alpha(y)\| \geq C\|x-y\|\|x+y\|
$$

- 2013: Bandeira, Cahill,Mixon,Nelson: improved the estimate of C. B.: β bi-Lipschitz in real and complex case.
- 2014: B.\&Yang: Find the exact Lipschitz constant for α in the real case - the constants $A_{0}, B_{0} ; \mathbf{B} . \& Z$.:constructed a Lipschitz left inverse for β; B.: lower Lipschitz constant A_{0} connected to CRLB's for a non-AWGN model.
- 2015: B.\&Z.: Proved α is bi-Lipschitz in the complex case; constructed a Lipschitz left inverse.

Table of Contents

(1) Problem Formulation

(2) Metric Space Structures
(3) Lipschitz Analysis
(4) Proofs

Proofs

Overview

The proofs involve several steps.

Proofs

Overview

The proofs involve several steps.
(1) Part 1: Injectivity \longrightarrow bi-Lipschitz: Upper bounds are not too hard; lower bounds: relatively easy for β (the "square" map), but very hard for α.

Proofs

Overview

The proofs involve several steps.
(1) Part 1: Injectivity \longrightarrow bi-Lipschitz: Upper bounds are not too hard; lower bounds: relatively easy for β (the "square" map), but very hard for α.
(2) Part 2: Left inverse construction is done in three steps:
(1) The left inverse is first extended to \mathbb{R}^{m} into Sym (H) using Kirszbraun's theorem;
(2) Then we show that $\mathcal{S}^{1,0}(H)$ is a Lipschitz retract in $\operatorname{Sym}(H)$;
(3) The proof is concluded by composing the two maps.

Proofs

Part 1: Bi-Lipschitzianity for β

Key Remark (B.Bodmann,Casazza,Edidin - 2007): The nonlinear map β is the restrictrion of the linear map

$$
\mathbb{A}: \operatorname{Sym}(H) \rightarrow \mathbb{R}^{m} \quad, \quad \mathbb{A}(T)=\left(\left\langle T f_{k}, f_{k}\right\rangle\right)_{1 \leq k \leq m}
$$

Specifically: $\beta(x)=\mathbb{A}\left(x x^{*}\right)$.

Proofs

Part 1: Bi-Lipschitzianity for β

Key Remark (B.Bodmann,Casazza,Edidin - 2007): The nonlinear map β is the restrictrion of the linear map

$$
\mathbb{A}: \operatorname{Sym}(H) \rightarrow \mathbb{R}^{m} \quad, \quad \mathbb{A}(T)=\left(\left\langle T f_{k}, f_{k}\right\rangle\right)_{1 \leq k \leq m}
$$

Specifically: $\beta(x)=\mathbb{A}\left(x x^{*}\right)$.

$$
\begin{aligned}
\|\beta(x)-\beta(y)\|=\left\|\mathbb{A}\left(x x^{*}\right)-\mathbb{A}\left(y y^{*}\right)\right\| & =\left\|\mathbb{A}\left(x x^{*}-y y^{*}\right)\right\| \\
& =\left\|x x^{*}-y y^{*}\right\| \| \mathbb{A}\left(\frac{x x^{*}-y y^{*}}{\left\|x x^{*}-y y^{*}\right\|}\right)
\end{aligned}
$$

Proofs

Part 1: Bi-Lipschitzianity for β

Key Remark (B.Bodmann,Casazza,Edidin - 2007): The nonlinear map β is the restrictrion of the linear map

$$
\mathbb{A}: \operatorname{Sym}(H) \rightarrow \mathbb{R}^{m} \quad, \quad \mathbb{A}(T)=\left(\left\langle T f_{k}, f_{k}\right\rangle\right)_{1 \leq k \leq m}
$$

Specifically: $\beta(x)=\mathbb{A}\left(x x^{*}\right)$.

$$
\begin{aligned}
&\|\beta(x)-\beta(y)\|=\left\|\mathbb{A}\left(x x^{*}\right)-\mathbb{A}\left(y y^{*}\right)\right\|=\left\|\mathbb{A}\left(x x^{*}-y y^{*}\right)\right\| \\
&=\left\|x x^{*}-y y^{*}\right\| \| \mathbb{A}\left(\frac{x x^{*}-y y^{*}}{\left\|x x^{*}-y y^{*}\right\|}\right) \\
& a_{0}=\min _{T \in \mathcal{S}^{1,1},\|T\|_{1}=1}\|\mathbb{A}(T)\|>0, \quad b_{0}=\max _{T \in \mathcal{S}^{1,1},\|T\|_{1}=1}\|\mathbb{A}(T)\|
\end{aligned}
$$

Proofs

Part 2: Extension of the inverse for β
Assume $\beta:\left(\hat{H}, d_{1}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right)$ is bi-Lipschitz:

$$
a_{0} d_{1}(x, y)^{2} \leq\|\beta(x)-\beta(y)\|^{2} \leq b_{0} d_{1}(x, y)^{2}
$$

Proofs

Part 2: Extension of the inverse for β

Assume $\beta:\left(\hat{H}, d_{1}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right)$ is bi-Lipschitz:

$$
a_{0} d_{1}(x, y)^{2} \leq\|\beta(x)-\beta(y)\|^{2} \leq b_{0} d_{1}(x, y)^{2}
$$

Let $M=\beta(\hat{H}) \subset \mathbb{R}^{m}$.

Proofs

Part 2: Extension of the inverse for β

First identify \hat{H} with $\mathcal{S}^{1,0}(H)$.

Proofs

Part 2: Extension of the inverse for β

Then construct the local left inverse $\psi_{1}: M \rightarrow \hat{H}$ with $\operatorname{Lip}\left(\psi_{1}\right)=\frac{1}{\sqrt{a_{0}}}$.

Proofs

Part 2: Extension of the inverse for β

Use Kirszbraun's theorem to extend isometrically $\psi_{2}: \mathbb{R}^{m} \rightarrow \operatorname{Sym}(H)$.

Proofs

Part 2: Extension of the inverse for β

Construct a Lipschitz "projection" $\pi: \operatorname{Sym}(H) \rightarrow \mathcal{S}^{1,0}(H)$.

Proofs

Part 2: Extension of the inverse for β

Compose the two maps to get $\psi: \mathbb{R}^{m} \rightarrow \mathcal{S}^{1,0}, \psi=\pi \circ \psi_{2}$.

Proofs

Part 2: $\mathcal{S}^{1,0}(H)$ as Lipschitz retract in Sym (H)
How to obtain $\pi: \operatorname{Sym}(H) \rightarrow \mathcal{S}^{1,0}(H)$?

Proofs

Part 2: $\mathcal{S}^{1,0}(H)$ as Lipschitz retract in $\operatorname{Sym}(H)$

Lemma

Consider the spectral decomposition of the self-adjoint operator A in $\operatorname{Sym}(H), A=\sum_{k=1}^{d} \lambda_{m(k)} P_{k}$. Then the map

$$
\pi: \operatorname{Sym}(H) \rightarrow \mathcal{S}^{1,0}(H) \quad, \quad \pi(A)=\left(\lambda_{1}-\lambda_{2}\right) P_{1}
$$

satisfies the following two properties:
(1) for $1 \leq p \leq \infty$, it is Lipschitz continuous from $\left(\operatorname{Sym}(H),\|\cdot\|_{p}\right)$ to $\left(\mathcal{S}^{1,0}(H),\|\cdot\|_{p}\right)$ with Lipschitz constant less than or equal to $3+2^{1+\frac{1}{p}}$;
(2) $\pi(A)=A$ for all $A \in \mathcal{S}^{1,0}(H)$.

Proofs

Part 2: $\mathcal{S}^{1,0}(H)$ as Lipschitz retract in $\operatorname{Sym}(H)$

Lemma

Consider the spectral decomposition of the self-adjoint operator A in $\operatorname{Sym}(H), A=\sum_{k=1}^{d} \lambda_{m(k)} P_{k}$. Then the map

$$
\pi: \operatorname{Sym}(H) \rightarrow \mathcal{S}^{1,0}(H) \quad, \quad \pi(A)=\left(\lambda_{1}-\lambda_{2}\right) P_{1}
$$

satisfies the following two properties:
(1) for $1 \leq p \leq \infty$, it is Lipschitz continuous from $\left(\operatorname{Sym}(H),\|\cdot\|_{p}\right)$ to $\left(\mathcal{S}^{1,0}(H),\|\cdot\|_{p}\right)$ with Lipschitz constant less than or equal to $3+2^{1+\frac{1}{p}}$;
(2) $\pi(A)=A$ for all $A \in \mathcal{S}^{1,0}(H)$.

Proof uses Weyl's inequality and spectral formula on a complex integration contour by Zwald \& Blanchard (2006).

Proofs

Part 1: Bi-Lipschitzianity of α

The analysis requires a deeper understanding of local behavior.

Proofs

Part 1: Bi-Lipschitzianity of α

The analysis requires a deeper understanding of local behavior.
(1) The global lower and upper Lipschitz bounds:

$$
A_{0}=\inf _{x, y \in \hat{H}} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}}, B_{0}=\sup _{x, y \in \hat{H}} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}}
$$

Proofs

Part 1: Bi-Lipschitzianity of α

The analysis requires a deeper understanding of local behavior.
(1) The global lower and upper Lipschitz bounds:

$$
A_{0}=\inf _{x, y \in \hat{H}} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}}, B_{0}=\sup _{x, y \in \hat{H}} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}}
$$

(2) The type I local lower and upper Lipschitz bounds at $z \in \hat{H}$:

$$
A(z)=\lim _{r \rightarrow 0} \inf _{\substack{x, y \in \hat{H} \\ D_{2}(x, z)<r \\ D_{2}(y, z)<r}} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}}, B(z)=\lim _{r \rightarrow 0} \sup _{\substack{x, y \in \hat{H} \\ D_{2}(x, z)<r \\ D_{2}(y, z)<r}} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}}
$$

Proofs

Part 1: Bi-Lipschitzianity of α

The analysis requires a deeper understanding of local behavior.
(1) The global lower and upper Lipschitz bounds:

$$
A_{0}=\inf _{x, y \in \hat{H}} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}}, B_{0}=\sup _{x, y \in \hat{H}} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}}
$$

(2) The type I local lower and upper Lipschitz bounds at $z \in \hat{H}$:

$$
A(z)=\lim _{r \rightarrow 0} \inf _{\substack{x, y \in \hat{H} \\ D_{2}(x, z)<r \\ D_{2}(y, z)<r}} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}}, B(z)=\lim _{r \rightarrow 0} \sup _{\substack{x, y \in \hat{H} \\ D_{2}(x, z)<r \\ D_{2}(y, z)<r}} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}}
$$

(3) The type II local lower and upper Lipschitz bounds at $z \in \hat{H}$:

$$
\tilde{A}(z)=\lim _{r \rightarrow 0} \inf _{\substack{x \in \hat{H} \\ D_{2}(x, z)<r}} \frac{\|\alpha(x)-\alpha(z)\|_{2}^{2}}{D_{2}(x, z)^{2}}, \tilde{B}(z)=\lim _{r \rightarrow 0} \sup _{\substack{x \in \hat{H} \\ D_{2}(x, z)<r}} \frac{\|\alpha(x)-\alpha(z)\|_{2}^{2}}{D_{2}(x, y)^{2}}
$$

Proofs

Part 1: Bi-Lipschitzianity of α

We need to analyze the real structure of \hat{H}.

Proofs

Part 1: Bi-Lipschitzianity of α

We need to analyze the real structure of \hat{H}.
Let $\varphi_{1}, \cdots, \varphi_{m}, \zeta \in \mathbb{R}^{2 n}, \Phi_{1}, \cdots, \Phi_{m} \in \operatorname{Sym}\left(\mathbb{R}^{2 n}\right), J \in \mathbb{R}^{2 n \times 2 n}$ defined by:
$\Phi_{k}=\varphi_{k} \varphi_{k}^{T}+J \varphi_{k} \varphi_{k}^{T} J^{T}, \varphi_{k}=\left[\begin{array}{c}\operatorname{real}\left(f_{k}\right) \\ \operatorname{imag}\left(f_{k}\right)\end{array}\right], J=\left[\begin{array}{cc}0 & -I_{n} \\ I_{n} & 0\end{array}\right], \zeta=\left[\begin{array}{c}\operatorname{real}(z) \\ \operatorname{imag}(z)\end{array}\right.$
Key relations: $\left\langle z, f_{k}\right\rangle=\left\langle\zeta, \varphi_{k}\right\rangle+i\left\langle\zeta, J \varphi_{k}\right\rangle,\left|\left\langle z, f_{k}\right\rangle\right|=\sqrt{\left\langle\Phi_{k} \zeta, \zeta\right\rangle}$.

Proofs

Part 1: Bi-Lipschitzianity of α

We need to analyze the real structure of \hat{H}.
Let $\varphi_{1}, \cdots, \varphi_{m}, \zeta \in \mathbb{R}^{2 n}, \Phi_{1}, \cdots, \Phi_{m} \in \operatorname{Sym}\left(\mathbb{R}^{2 n}\right), J \in \mathbb{R}^{2 n \times 2 n}$ defined by:
$\Phi_{k}=\varphi_{k} \varphi_{k}^{T}+J \varphi_{k} \varphi_{k}^{T} J^{T}, \varphi_{k}=\left[\begin{array}{c}\operatorname{real}\left(f_{k}\right) \\ \operatorname{imag}\left(f_{k}\right)\end{array}\right], J=\left[\begin{array}{cc}0 & -I_{n} \\ I_{n} & 0\end{array}\right], \zeta=\left[\begin{array}{c}\operatorname{real}(z) \\ \operatorname{imag}(z)\end{array}\right.$
Key relations: $\left\langle z, f_{k}\right\rangle=\left\langle\zeta, \varphi_{k}\right\rangle+i\left\langle\zeta, J \varphi_{k}\right\rangle,\left|\left\langle z, f_{k}\right\rangle\right|=\sqrt{\left\langle\Phi_{k} \zeta, \zeta\right\rangle}$.
Consider the following objects:

$$
\begin{aligned}
& \mathcal{R}: \mathbb{R}^{2 n} \rightarrow \operatorname{Sym}\left(\mathbb{R}^{2 n}\right) \quad, \quad \mathcal{R}(\xi)=\sum_{k=1}^{m} \Phi_{k} \xi \xi^{T} \Phi_{k}, \xi \in \mathbb{R}^{2 n} \\
& \mathcal{S}: \mathbb{R}^{2 n} \rightarrow \operatorname{Sym}\left(\mathbb{R}^{2 n}\right) \quad, \quad \mathcal{S}(\xi)=\sum_{k: \Phi_{k} \xi \neq 0} \frac{1}{\left\langle\Phi_{k} \xi, \xi\right\rangle} \Phi_{k} \xi \xi^{T} \Phi_{k}, \quad \xi \in \mathbb{R}^{2 n}
\end{aligned}
$$

Proofs

Lipschitz bounds for α

Theorem (BZ15)

Assume \mathcal{F} is phase retrievable for $H=\mathbb{C}^{n}$ and A, B are its optimal frame bounds. Then:
(1) For every $0 \neq z \in \mathbb{C}^{n}, A(z)=\lambda_{2 n-1}(\mathcal{S}(\zeta))$ (the next to the smallest eigenvalue);
(2) $A_{0}=A(0)>0$;
(3) For every $z \in \mathbb{C}^{n}, \tilde{A}(z)=\lambda_{2 n-1}\left(\mathcal{S}(\zeta)+\sum_{k:\left\langle z, f_{k}\right\rangle=0} \Phi_{k}\right)$ (the next to the smallest eigenvalue);
(9) $\tilde{A}(0)=A$, the optimal lower frame bound;
(0. For every $z \in \mathbb{C}^{n}, B(z)=\tilde{B}(z)=\lambda_{1}\left(\mathcal{S}(\zeta)+\sum_{k:\left\langle z, f_{k}\right\rangle=0} \Phi_{k}\right)$ (the largest eigenvalue);
(0) $B_{0}=B(0)=\tilde{B}(0)=B$, the optimal upper frame bound;

Proofs

Lipschitz bounds for β

Theorem (cont'd)

(1) For every $0 \neq z \in \mathbb{C}^{n}, a(z)=\tilde{a}(z)=\lambda_{2 n-1}(\mathcal{R}(\zeta)) /\|z\|^{2}$ (the next to the smallest eigenvalue);
(8) For every $0 \neq z \in \mathbb{C}^{n}, b(z)=\tilde{b}(z)=\lambda_{1}(\mathcal{R}(\zeta)) /\|z\|^{2}$ (the largest eigenvalue);
(0) $a_{0}=\min _{\|\xi\|=1} \lambda_{2 n-1}(\mathcal{R}(\xi))$ is also the largest constant to that $\mathcal{R}(\xi) \geq a_{0}\left(\|\xi\|^{2} I-J \xi \xi^{T} J^{T}\right) ;$
(10) $b(0)=\tilde{b}(0)=b_{0}=\max _{\|\xi\|=1} \lambda_{1}(\mathcal{R}(\xi))$ is also the $4^{\text {th }}$ power of the frame analysis operator norm $T:\left(\mathbb{C}^{n},\|\cdot\|_{2}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{4}\right)$:
$b_{0}=\|T\|_{B\left(I^{2}, /^{4}\right)}^{4}=\max _{\|x\|_{2}=1} \sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{4} ;$
(11) $\tilde{a}(0)$ is given by $\tilde{a}(0)=\min _{\|z\|=1} \sum_{k=1}^{m}\left|\left\langle z, f_{k}\right\rangle\right|^{4}$.

Table of Contents

(1) Problem Formulation

(2) Metric Space Structures
(3) Lipschitz Analysis
(4) Proofs
(5) CRLB

CRLB

Stochastic Models
Consider the measurement process:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{p}+\nu_{k} \quad, \quad 1 \leq k \leq m
$$

where $\left(\mu_{k}\right)_{k},\left(\nu_{k}\right)_{k}$ are two noise processes.

CRLB

Stochastic Models

Consider the measurement process:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{p}+\nu_{k} \quad, \quad 1 \leq k \leq m
$$

where $\left(\mu_{k}\right)_{k},\left(\nu_{k}\right)_{k}$ are two noise processes.
(1) The Additive White Gaussian Noise (AWGN) Model: $\mu_{k}=0, p=2$ and $\nu_{k} \sim \mathbb{N}\left(0, \sigma^{2}\right)$ i.i.d.

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k}, \quad 1 \leq k \leq m
$$

CRLB

Stochastic Models

Consider the measurement process:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{p}+\nu_{k} \quad, \quad 1 \leq k \leq m
$$

where $\left(\mu_{k}\right)_{k},\left(\nu_{k}\right)_{k}$ are two noise processes.
(1) The Additive White Gaussian Noise (AWGN) Model: $\mu_{k}=0, p=2$ and $\nu_{k} \sim \mathbb{N}\left(0, \sigma^{2}\right)$ i.i.d.

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k}, \quad 1 \leq k \leq m
$$

(2) Non-AWGN Model: $\mu_{k} \sim \mathbb{C N}\left(0, \rho^{2}\right)$, i.i.d. and $\nu_{k}=0$:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{p} \quad, \quad 1 \leq k \leq m
$$

CRLB

Stochastic Models

Consider the measurement process:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{p}+\nu_{k} \quad, \quad 1 \leq k \leq m
$$

where $\left(\mu_{k}\right)_{k},\left(\nu_{k}\right)_{k}$ are two noise processes.
(1) The Additive White Gaussian Noise (AWGN) Model: $\mu_{k}=0, p=2$ and $\nu_{k} \sim \mathbb{N}\left(0, \sigma^{2}\right)$ i.i.d.

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k}, \quad 1 \leq k \leq m
$$

(2) Non-AWGN Model: $\mu_{k} \sim \mathbb{C N}\left(0, \rho^{2}\right)$, i.i.d. and $\nu_{k}=0$:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{p} \quad, \quad 1 \leq k \leq m
$$

An estimator: $\omega: \mathbb{R}^{m} \rightarrow H$. Unbiased if: $\mathbb{E}[\omega(y) ; x]=x$.
Fix a direction $z_{0} \in H$ and fix the global phase so that $\left\langle x, z_{0}\right\rangle>0$. We want universal performance bounds of any unbiased estimator.

CRLB

Methodology

CRLB

Methodology

Step 1: Construct the likelihood $p(y ; x$, Noise Parameters)

CRLB

Methodology

Step 1: Construct the likelihood $p(y ; x$, Noise Parameters)

Step 2: Compute Fisher Information Matrix $\mathbb{I}(\xi)=\mathbb{E}_{\text {noise }}\left[\left(\nabla_{x} \log p(y ; x)\right)\left(\nabla_{x} \log p(y ; x)\right)^{*}\right]$

CRLB

Methodology

Step 1: Construct the likelihood $p(y ; x$, Noise Parameters)

Step 2: Compute Fisher Information Matrix $\mathbb{I}(\xi)=\mathbb{E}_{\text {noise }}\left[\left(\nabla_{x} \log p(y ; x)\right)\left(\nabla_{x} \log p(y ; x)\right)^{*}\right]$

Step 3: Determine CRLB

Assume the Oracle provided global phase model.

CRLB

Methodology

Step 1: Construct the likelihood $p(y ; x$, Noise Parameters)

Step 2: Compute Fisher Information Matrix $\mathbb{I}(\xi)=\mathbb{E}_{\text {noise }}\left[\left(\nabla_{x} \log p(y ; x)\right)\left(\nabla_{x} \log p(y ; x)\right)^{*}\right]$

Step 3: Determine CRLB

Assume the Oracle provided global phase model.

Step 4: Identifiability

Determine CRLB based injectivity conditions.

CRLB

Fisher Info Matrix for the AWGN Model

The AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k} \quad, \quad \nu_{k} \sim \mathbb{N}\left(0, \sigma^{2}\right), 1 \leq k \leq m .
$$

CRLB

Fisher Info Matrix for the AWGN Model

The AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k} \quad, \quad \nu_{k} \sim \mathbb{N}\left(0, \sigma^{2}\right), 1 \leq k \leq m .
$$

- The likelihood function:
$p\left(y ; x, \sigma^{2}\right)=\prod_{k=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(y_{k}-\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)^{2}}=\prod_{k=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(y_{k}-\left\langle\Phi_{k} \xi, \xi\right\rangle\right)^{2}}$

CRLB

Fisher Info Matrix for the AWGN Model
The AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k} \quad, \quad \nu_{k} \sim \mathbb{N}\left(0, \sigma^{2}\right), 1 \leq k \leq m .
$$

- The likelihood function:
$p\left(y ; x, \sigma^{2}\right)=\prod_{k=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(y_{k}-\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)^{2}}=\prod_{k=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(y_{k}-\left\langle\Phi_{k} \xi, \xi\right\rangle\right)^{2}}$
- Fisher Information Matrix:

$$
\mathbb{I}=\mathbb{E}\left[\left(\nabla_{x} \log p(y ; x)\right)\left(\nabla_{x} \log p(y ; x)\right)^{*}\right]
$$

CRLB

Fisher Info Matrix for the AWGN Model
The AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k} \quad, \quad \nu_{k} \sim \mathbb{N}\left(0, \sigma^{2}\right), 1 \leq k \leq m
$$

- The likelihood function:
$p\left(y ; x, \sigma^{2}\right)=\prod_{k=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(y_{k}-\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)^{2}}=\prod_{k=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(y_{k}-\left\langle\Phi_{k} \xi, \xi\right\rangle\right)^{2}}$
- Fisher Information Matrix:

$$
\mathbb{I}=\mathbb{E}\left[\left(\nabla_{x} \log p(y ; x)\right)\left(\nabla_{x} \log p(y ; x)\right)^{*}\right]
$$

- $\mathbb{I}^{A W G N, \text { real }}(x)=\frac{4}{\sigma^{2}} \sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{T}=\frac{4}{\sigma^{2}} \sum_{k=1}^{m}\left(f_{k} f_{k}^{T}\right) x x^{T}\left(f_{k} f_{k}^{T}\right)$

CRLB

Fisher Info Matrix for the AWGN Model
The AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k} \quad, \quad \nu_{k} \sim \mathbb{N}\left(0, \sigma^{2}\right), 1 \leq k \leq m
$$

- The likelihood function:
$p\left(y ; x, \sigma^{2}\right)=\prod_{k=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(y_{k}-\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)^{2}}=\prod_{k=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(y_{k}-\left\langle\Phi_{k} \xi, \xi\right\rangle\right)^{2}}$
- Fisher Information Matrix:

$$
\mathbb{I}=\mathbb{E}\left[\left(\nabla_{x} \log p(y ; x)\right)\left(\nabla_{x} \log p(y ; x)\right)^{*}\right]
$$

- $\mathbb{I}^{A W G N, \text { real }}(x)=\frac{4}{\sigma^{2}} \sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{T}=\frac{4}{\sigma^{2}} \sum_{k=1}^{m}\left(f_{k} f_{k}^{T}\right) x x^{T}\left(f_{k} f_{k}^{T}\right)$
- $\mathbb{I}^{A W G N, c p 1 x}(x)=\frac{4}{\sigma^{2}} \sum_{k=1}^{m} \Phi_{k} \xi \xi^{*} \Phi_{k} \quad$ [Bal13,BCMN13]

CRLB

Fisher Info Matrix for the AWGN Model
The AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k} \quad, \quad \nu_{k} \sim \mathbb{N}\left(0, \sigma^{2}\right), 1 \leq k \leq m
$$

- The likelihood function:
$p\left(y ; x, \sigma^{2}\right)=\prod_{k=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(y_{k}-\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)^{2}}=\prod_{k=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(y_{k}-\left\langle\Phi_{k} \xi, \xi\right\rangle\right)^{2}}$
- Fisher Information Matrix:

$$
\mathbb{I}=\mathbb{E}\left[\left(\nabla_{x} \log p(y ; x)\right)\left(\nabla_{x} \log p(y ; x)\right)^{*}\right]
$$

- $\mathbb{I}^{A W G N, \text { real }}(x)=\frac{4}{\sigma^{2}} \sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{T}=\frac{4}{\sigma^{2}} \sum_{k=1}^{m}\left(f_{k} f_{k}^{T}\right) x x^{T}\left(f_{k} f_{k}^{T}\right)$
- $\mathbb{I}^{A W G N, c p 1 x}(x)=\frac{4}{\sigma^{2}} \sum_{k=1}^{m} \Phi_{k} \xi \xi^{*} \Phi_{k} \quad$ [Bal13,BCMN13]

CRLB

The Cramer-Rao Lower Bound for AWGN Model

Fix $z_{0} \in \mathbb{C}^{n},\left\|z_{0}\right\|=1$, let $\zeta_{0}=\left[\operatorname{real}\left(z_{0}\right) \operatorname{imag}\left(z_{0}\right)\right]^{T}$ and set

$$
\left.\left.\Omega_{z_{0}}=\left\{\xi \in \mathbb{R}^{2 n},\left\langle\xi, \zeta_{0}\right\rangle\right) \geq 0,\left\langle\xi, J \zeta_{0}\right\rangle\right)=0\right\}
$$

Let $\Pi_{z_{0}}=1-J \zeta_{0} \zeta_{0}^{*} J^{*}$ with J the symplectic form matrix.

Theorem

Assume the measurement model $y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k}$ with ν_{k} i.i.d. $\mathbb{N}\left(0, \sigma^{2}\right)$, and $\xi \in \AA_{z_{0}}$. Then the covariance of any unbiased estimtor $\omega: \mathbb{R}^{m} \rightarrow \mathbb{C}^{n}$ is bounded below by

$$
\operatorname{Cov}[\omega(y) ; \xi] \geq\left(\Pi_{z_{0}} \mathbb{I}^{A W G N}(\xi) \Pi_{z_{0}}\right)^{\dagger}
$$

In particular: $\mathbb{E}\left[\|\omega(y)-\xi\|^{2} ; \xi\right] \geq \operatorname{trace}\left\{\left(\Pi_{z_{0}} \mathbb{I}^{A W G N}(\xi) \Pi_{z_{0}}\right)^{\dagger}\right\}$.

CRLB

Fisher Info Matrix for the Non-AWGN Model
Consider the Non-AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{2} \quad, \quad \mu_{k} \sim \mathbb{C N}\left(0, \rho^{2}\right), 1 \leq k \leq m .
$$

CRLB

Fisher Info Matrix for the Non-AWGN Model
Consider the Non-AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{2} \quad, \quad \mu_{k} \sim \mathbb{C N}\left(0, \rho^{2}\right), 1 \leq k \leq m .
$$

- The likelihood function:
$p(y ; x)=\frac{1}{\rho^{2 m}} \exp \left\{-\frac{1}{\rho^{2}}\left(\sum_{k=1}^{m} y_{k}+\sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)\right\} \prod_{k=1}^{m} I_{0}\left(\frac{2\left|\left\langle x, f_{k}\right\rangle\right| \sqrt{y_{k}}}{\rho^{2}}\right)$

CRLB

Fisher Info Matrix for the Non-AWGN Model
Consider the Non-AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{2} \quad, \quad \mu_{k} \sim \mathbb{C N}\left(0, \rho^{2}\right), 1 \leq k \leq m .
$$

- The likelihood function:

$$
p(y ; x)=\frac{1}{\rho^{2 m}} \exp \left\{-\frac{1}{\rho^{2}}\left(\sum_{k=1}^{m} y_{k}+\sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)\right\} \prod_{k=1}^{m} I_{0}\left(\frac{2\left|\left\langle x, f_{k}\right\rangle\right| \sqrt{y_{k}}}{\rho^{2}}\right)
$$

- With realification, log-likelihood:

$$
\begin{aligned}
\log p(y ; \xi) & =-2 m \log \rho+\sum_{k=1}^{m} \log I_{0}\left(\frac{2 \sqrt{y_{k}\left\langle\Phi_{k} \xi, \xi\right\rangle}}{\rho^{2}}\right)-\frac{1}{\rho^{2}} \sum_{k=1}^{m} y_{k}- \\
& -\frac{1}{\rho^{2}} \sum_{k=1}^{m}\left\langle\Phi_{k} \xi, \xi\right\rangle .
\end{aligned}
$$

CRLB

Likelihood and Derivations for Non-AWGN

Key Estimate:

Lemma

For the Non-AWGN model in this paper and for each k,

$$
\mathbb{E}\left[\frac{I_{1}}{I_{0}}\left(\frac{2 \sqrt{y_{k}\left\langle\Phi_{k} \xi, \xi\right\rangle}}{\rho^{2}}\right) \sqrt{\frac{y_{k}}{\left\langle\Phi_{k} \xi, \xi\right\rangle}}\right]=1 .
$$

CRLB

Fisher Info Matrix for the Non-AWGN Model

Theorem

The Fisher information matrix for the Non-AWGN model is given by

$$
\begin{aligned}
\mathbb{I}^{\text {nonAWGN }}(\xi)= & \frac{4}{\rho^{4}} \sum_{k=1}^{m}\left(G_{1}\left(\frac{\left\langle\Phi_{k} \xi, \xi\right\rangle}{\rho^{2}}\right)-1\right) \Phi_{k} \xi \xi^{*} \Phi_{k} \\
& =\frac{4}{\rho^{2}} \sum_{k=1}^{m} G_{2}\left(\frac{\left\langle\Phi_{k} \xi, \xi\right\rangle}{\rho^{2}}\right) \frac{1}{\left\langle\Phi_{k} \xi, \xi\right\rangle} \Phi_{k} \xi \xi^{*} \Phi_{k}
\end{aligned}
$$

where

$$
G_{1}(a)=\frac{e^{-a}}{8 a^{3}} \int_{0}^{\infty} \frac{I_{1}^{2}(t)}{I_{0}(t)} t^{3} e^{-\frac{t^{2}}{4 a}} d t \quad, \quad G_{2}(a)=a\left(G_{1}(a)-1\right)
$$

CRLB

The Cramer-Rao Lower Bound for the Non-AWGN Model
Fix $z_{0} \in \mathbb{C}^{n},\left\|z_{0}\right\|=1$, let $\zeta_{0}=\left[\operatorname{real}\left(z_{0}\right) \operatorname{imag}\left(z_{0}\right)\right]^{T}$ and set

$$
\left.\left.\Omega_{z_{0}}=\left\{\xi \in \mathbb{R}^{2 n},\left\langle\xi, \zeta_{0}\right\rangle\right) \geq 0,\left\langle\xi, J \zeta_{0}\right\rangle\right)=0\right\}
$$

Let $\Pi_{z_{0}}=1-J \zeta_{0} \zeta_{0}^{*} J^{*}$ with J the symplectic form matrix.

Theorem

Assume the measurement model $y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{p}$ with μ_{k} i.i.d. $\mathbb{C N}\left(0, \rho^{2}\right)$, and $\xi \in \Omega_{z_{0}}$. Then the covariance of any unbiased estimtor $\omega: \mathbb{R}^{m} \rightarrow \mathbb{C}^{n}$ is bounded below by

$$
\operatorname{Cov}[\omega(y) ; \xi] \geq\left(\Pi_{z_{0}} \mathbb{I}(\xi) \Pi_{z_{0}}\right)^{\dagger}
$$

In particular: $\mathbb{E}\left[\|\omega(y)-\xi\|^{2} ; \xi\right] \geq \operatorname{trace}\left\{\left(\Pi_{z_{0}} \mathbb{I}(\xi) \Pi_{z_{0}}\right)^{\dagger}\right\}$.

CRLB

Comparisons for Asymptotic Regimes

CRLB

Comparisons for Asymptotic Regimes

$$
\begin{aligned}
& \text { Form 1: Low SNR } \\
& \mathbb{I}^{\text {nonAWGN }}(\xi)= \\
& \frac{4}{\rho^{4}} \sum_{k=1}^{m}\left(G_{1}\left(\frac{\left\langle\Phi_{k} \xi, \xi\right\rangle}{\rho^{2}}\right)-1\right) \Phi_{k} \xi \xi^{*} \Phi_{k} \\
& \approx \frac{4}{\rho^{4}} \sum_{k=1}^{m} \Phi_{k} \xi \xi^{*} \Phi_{k}
\end{aligned}
$$

CRLB

Comparisons for Asymptotic Regimes

Form 1: Low SNR

$$
\begin{aligned}
& \mathbb{I}^{\text {nonAWGN }}(\xi)= \\
& \frac{4}{\rho^{4}} \sum_{k=1}^{m}\left(G_{1}\left(\frac{\left\langle\Phi_{k} \xi, \xi\right\rangle}{\rho^{2}}\right)-1\right) \Phi_{k} \xi \xi^{*} \Phi_{k} \\
& \approx \frac{4}{\rho^{4}} \sum_{k=1}^{m} \Phi_{k} \xi \xi^{*} \Phi_{k}
\end{aligned}
$$

Form 2: High SNR

$$
\begin{aligned}
& \mathbb{I}^{\text {nonAWGN }}(\xi)= \\
& \frac{4}{\rho^{2}} \sum_{k=1}^{m} G_{2}\left(\frac{\left\langle\Phi_{k} \xi, \xi\right\rangle}{\rho^{2}}\right) \frac{1}{\left\langle\Phi_{k} \xi, \xi\right\rangle} \Phi_{k} \xi \xi^{*} \Phi_{k} \\
& \approx \frac{2}{\rho^{2}} \sum_{k=1}^{m} \frac{1}{\left\langle\Phi_{k} \xi, \xi\right\rangle} \Phi_{k} \xi \xi^{*} \Phi_{k}
\end{aligned}
$$

CRLB

AWGN vs. non-AWGN: The Identifiability Problem

Recall $\mathbb{I}^{A W G N, c p l x}(\xi)=\frac{4}{\sigma^{2}} \sum_{k=1}^{m} \Phi_{k} \xi \xi^{*} \Phi_{k}$. Let B be frame upper bound.
Lemma

$$
\frac{\sigma^{2}}{\rho^{4}}\left(G_{1}\left(\frac{B\|\xi\|^{2}}{\rho^{2}}\right)-1\right) \mathbb{I}^{A W G N, c \rho \mid x} \leq \mathbb{I}^{\text {nonAWGN }}(\xi) \leq \frac{\sigma^{2}}{\rho^{4}} \mathbb{I}^{A W G N, c p / x}
$$

CRLB

AWGN vs. non-AWGN: The Identifiability Problem

Recall $\mathbb{I}^{A W G N, c p / x}(\xi)=\frac{4}{\sigma^{2}} \sum_{k=1}^{m} \Phi_{k} \xi \xi^{*} \Phi_{k}$. Let B be frame upper bound.
Lemma

$$
\frac{\sigma^{2}}{\rho^{4}}\left(G_{1}\left(\frac{B\|\xi\|^{2}}{\rho^{2}}\right)-1\right) \mathbb{I}^{A W G N, c p / x} \leq \mathbb{I}^{n o n A W G N}(\xi) \leq \frac{\sigma^{2}}{\rho^{4}} \mathbb{I}^{A W G N, c p l x}
$$

Theorem

The following are equivalent:
(1) The frame \mathcal{F} is phase retrievable;
(2) For every $0 \neq \xi \in \mathbb{R}^{2 n}, \operatorname{rank}\left(\mathbb{I}^{\text {nonAWGN }}(\xi)\right)=2 n-1$;
(0) For every $0 \neq \xi \in \mathbb{R}^{2 n}, \operatorname{rank}\left(\mathbb{I}^{A W G N, c p l x}(\xi)\right)=2 n-1$;

CRLB

Other nonlinear maps

Consider the model:

$$
z_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{p} \quad, \quad 1 \leq k \leq m
$$

where $p \neq 0$ and $\left(\mu_{1}, \cdots, \mu_{m}\right)$ are i.i.d. $\mathbb{C N}\left(0, \rho^{2}\right)$.

CRLB

Other nonlinear maps

Consider the model:

$$
z_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{p} \quad, \quad 1 \leq k \leq m
$$

where $p \neq 0$ and $\left(\mu_{1}, \cdots, \mu_{m}\right)$ are i.i.d. $\mathbb{C N}\left(0, \rho^{2}\right)$.

It turns out the Fisher information matrix is the same as before:

$$
\begin{aligned}
\mathbb{I}^{n o n A W G N, p \neq 0}(\xi) & =\mathbb{I}^{n o n A W G N, p=2}(\xi) \\
& =\frac{4}{\rho^{4}} \sum_{k=1}^{m}\left(G_{1}\left(\frac{\left\langle\Phi_{k} \xi, \xi\right\rangle}{\rho^{2}}\right)-1\right) \Phi_{k} \xi \xi^{*} \Phi_{k} \\
& =\frac{4}{\rho^{2}} \sum_{k=1}^{m} G_{2}\left(\frac{\left\langle\Phi_{k} \xi, \xi\right\rangle}{\rho^{2}}\right) \frac{1}{\left\langle\Phi_{k} \xi, \xi\right\rangle} \Phi_{k} \xi \xi^{*} \Phi_{k}
\end{aligned}
$$

CRLB
 Oracle-based Estimator

Current estimator:

CRLB

Oracle-based Estimator

A more natural estimator is given by:

Open Problem: What is the CRLB in this case?

References

- R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. 20 (2006), 345-356.

R R. Balan, B. Bodmann, P. Casazza, D. Edidin, Painless reconstruction from Magnitudes of Frame Coefficients, J.Fourier Anal.Applic., 15 (4) (2009), 488-501.
R. Balan, Reconstruction of Signals from Magnitudes of Frame Representations, arXiv submission arXiv:1207.1134

R R. Balan, Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case, available online arXiv:1304.1839v1, Found.Comput.Math. 2015, http://dx.doi.org/10.1007/s10208-015-9261-0

R R. Balan and Y. Wang, Invertibility and Robustness of Phaseless Reconstruction, available online arXiv:1308.4718v1, Appl. Comp. Harm. Anal., 38 (2015), 469-488.

A．S．Bandeira，J．Cahill，D．Mixon，A．A．Nelson，Saving phase： Injectivity and Stability for phase retrieval，arXiv submission，arXiv： 1302．4618，Appl．Comp．Harm．Anal． 37 （1）（2014），106－125．

圊 Y．C．Eldar，S．Mendelson，Phase retrieval：Stability and recovery guarantees，available online：arXiv：1211．0872．

囯 M．J．Hirn，E．Le Gruyer，A general theorem of existence of quasi absolutely minimal Lipschitz extensions，arXiv：1211．5700v2［math．FA］， 8 Aug 2013.

围 L．Zwald，G．Blanchard，On the convergence of eigenspaces in kernel Principal Component Analysis，Proc．NIPS 05，vol．18，1649－1656， MIT Press， 2006.

