## Nonlinear Analysis with Frames. Part III: Algorithms

#### Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

July 28-30, 2015 Modern Harmonic Analysis and Applications Summer Graduate Program University of Maryland, College Park, MD 20742

Thanks to our sponsors:

Institute for Mathematics and its Applications UNIVERSITY OF MINNESOTA Driven to Discover\*\*





"This material is based upon work supported by the National Science Foundation under Grants No. DMS-1413249, DMS-1501640. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

# Table of Contents:

1 Problem Formulation





# Table of Contents

## 1 Problem Formulation

### 2 PhaseLift

### 3 IRLS

Radu Balan (UMD)

(日)

#### Problem Formulation The phase retrieval problem

- Let H = C<sup>n</sup>. The quotient space Ĥ = C<sup>n</sup>/T<sup>1</sup>, with classes induced by x ~ y if there is real φ with x = e<sup>iφ</sup>y.
- Frame  $\mathcal{F} = \{f_1, \cdots, f_m\} \subset \mathbb{C}^n$  and nonlinear maps

$$\alpha: \hat{H} \to \mathbb{R}^m$$
,  $\alpha(x) = (|\langle x, f_k \rangle|)_{1 \le k \le m}$ .

$$eta: \hat{H} o \mathbb{R}^m \ , \ \ eta(x) = \left( |\langle x, f_k 
angle |^2 
ight)_{1 \le k \le m}.$$

The frame is said *phase retrievable* (or that it gives phase retrieval) if  $\alpha$  (or  $\beta$ ) is injective.

#### Problem Formulation The phase retrieval problem

- Let H = C<sup>n</sup>. The quotient space Ĥ = C<sup>n</sup>/T<sup>1</sup>, with classes induced by x ~ y if there is real φ with x = e<sup>iφ</sup>y.
- Frame  $\mathcal{F} = \{f_1, \cdots, f_m\} \subset \mathbb{C}^n$  and nonlinear maps

$$lpha: \hat{H} o \mathbb{R}^m$$
 ,  $lpha(x) = (|\langle x, f_k 
angle|)_{1 \le k \le m}$ 

$$\beta: \hat{H} \to \mathbb{R}^m$$
,  $\beta(x) = \left( |\langle x, f_k \rangle|^2 \right)_{1 \le k \le m}$ 

The frame is said *phase retrievable* (or that it gives phase retrieval) if  $\alpha$  (or  $\beta$ ) is injective.

 The general phase retrieval problem a.k.a. phaseless reconstruction: Decide when a given frame is phase retrievable, and, if so, find an algorithm to recover x from y = α(x) (or from y = β(x)) up to a global phase factor.

Radu Balan (UMD)

# Problem Formulation

# Problem Formulation Algorithms

- Recursive Projections: Gerchberg-Saxton
- Matrix Estimation: PhaseLift (Candes, Strohmer, Voroninski'12, CandesLi)
- Signal Estimation: Iterative Regularized Least Squares (IRLS), Wirtinger Flow (Candes'14)
- Algorithms for special frames: Reconstruction via Polarization (Alexeev,Bandeira,Fickus, Mixon; Bodmann,Hammen), Fourier transform (Lim&co MIT; Bates'82; Bal'09; PhaseLift with Masking; 4n-4 by Bodmann,Hammen), Shift Invariant Frames (Iwen, Viswanathan,Wang), High Redundancy (BBCE'09)
- Algorithms for special signals: sparse signals (... e.g. Iwen,Viswanathan,Wang)

# Problem Formulation Algorithms

- Recursive Projections: Gerchberg-Saxton
- Matrix Estimation: PhaseLift (Candes, Strohmer, Voroninski'12, CandesLi)
- Signal Estimation: Iterative Regularized Least Squares (IRLS), Wirtinger Flow (Candes'14)
- Algorithms for special frames: Reconstruction via Polarization (Alexeev,Bandeira,Fickus, Mixon; Bodmann,Hammen), Fourier transform (Lim&co MIT; Bates'82; Bal'09; PhaseLift with Masking; 4n-4 by Bodmann,Hammen), Shift Invariant Frames (Iwen, Viswanathan,Wang), High Redundancy (BBCE'09)
- Algorithms for special signals: sparse signals (... e.g. Iwen,Viswanathan,Wang)

# Problem Formulation Algorithms

- Recursive Projections: Gerchberg-Saxton
- Matrix Estimation: PhaseLift (Candes, Strohmer, Voroninski'12, CandesLi)
- Signal Estimation: Iterative Regularized Least Squares (IRLS), Wirtinger Flow (Candes'14)
- Algorithms for special frames: Reconstruction via Polarization (Alexeev,Bandeira,Fickus, Mixon; Bodmann,Hammen), Fourier transform (Lim&co MIT; Bates'82; Bal'09; PhaseLift with Masking; 4n-4 by Bodmann,Hammen), Shift Invariant Frames (Iwen, Viswanathan,Wang), High Redundancy (BBCE'09)
- Algorithms for special signals: sparse signals (... e.g. Iwen,Viswanathan,Wang)

# Table of Contents

### Problem Formulation



## 3 IRLS

Radu Balan (UMD)

글 🖌 🔺 글

Image: A matrix and a matrix

| Problem Formulation   | PhaseLift<br>●○○○○ | IRLS<br>0000000 |
|-----------------------|--------------------|-----------------|
| PhaseLift<br>The Idea |                    |                 |

Consider the noiseless case  $y = \beta(x)$ . The main idea is embodied in the following feasibility problem:

Find X  
subject to:  
$$X = X^* \ge 0$$
 (Feas  
 $\mathbb{A}(X) = y$   
rank $(X) = 1$ 

Image: Image:

3 d d d

| Problem Formulation   | PhaseLift<br>●०००० | IRLS<br>0000000 |
|-----------------------|--------------------|-----------------|
| PhaseLift<br>The Idea |                    |                 |

Consider the noiseless case  $y = \beta(x)$ . The main idea is embodied in the following feasibility problem:

Find 
$$X$$
  
subject to:  
 $X = X^* \ge 0$  (Feas)  
 $\mathbb{A}(X) = y$   
rank $(X) = 1$ 

Alternatively, since there is a unique rank 1 that satisfies this problem:

$$\begin{array}{ll} \mathrm{Min} & \operatorname{rank}(X)\\ \mathrm{subject} & \mathrm{to:} \\ X = X^* \geq 0\\ \mathbb{A}(X) = y \end{array} \tag{L0}$$

Except for rank(X) the optimization problem would be convex.

| Problem Formulation            | PhaseLift<br>o●ooo | IRLS<br>0000000 |
|--------------------------------|--------------------|-----------------|
| PhaseLift<br>The Idea - cont'd |                    |                 |

#### IDEA: Replace rank(X) by trace(X) as in the Matrix Completion problem.

| Problem Formulation            | PhaseLift<br>○●○○○ | IRLS<br>0000000 |
|--------------------------------|--------------------|-----------------|
| PhaseLift<br>The Idea - cont'd |                    |                 |

IDEA: Replace rank(X) by trace(X) as in the Matrix Completion problem. Once a solution X is found, the vector x can be easily obtained from the factorization:  $X = xx^*$ .

Image: A matrix and a matrix

| Problem Formulation | PhaseLift | IRLS |
|---------------------|-----------|------|
|                     | 00000     |      |
|                     |           |      |
|                     |           |      |
| PhaseLift           |           |      |
| The Algorithm       |           |      |

$$(\text{PhaseLift}) \qquad \min_{\mathbb{A}(X)=y, X=X^* \geq 0} trace(X)$$

which is a convex optimization problem (a semi-definite program: SDP).

| Problem Formulation | PhaseLift<br>○○●○○ | IRLS<br>0000000 |
|---------------------|--------------------|-----------------|
| PhaseLift           |                    |                 |

$$(\text{PhaseLift}) \qquad \min_{\mathbb{A}(X)=y, X=X^* \geq 0} trace(X)$$

which is a convex optimization problem (a semi-definite program: SDP).

#### Theorem (Candés-Li 2014)

The Algorithm

Assume each vector  $f_k$  is drawn independently from  $\mathcal{N}(0, I_n/2) + i\mathcal{N}(0, I_n/2)$ , or each vector is drawn independently from the uniform distribution on the complex sphere of radius  $\sqrt{n}$ . Then there are universal constants  $c_0, c_1, \gamma > 0$  so that for  $m \ge c_0 n$ , for every  $x \in \mathbb{C}^n$  the problem (PhaseLift) has the same solution as (L0) with probability at least  $1 - c_1 e^{-\gamma n}$ .

| Problem Formulation | PhaseLift<br>○○●○○ | IRLS<br>0000000 |
|---------------------|--------------------|-----------------|
| PhaseLift           |                    |                 |

$$(\text{PhaseLift}) \qquad \min_{\mathbb{A}(X)=y, X=X^* \geq 0} trace(X)$$

which is a convex optimization problem (a semi-definite program: SDP).

#### Theorem (Candés-Li 2014)

The Algorithm

Assume each vector  $f_k$  is drawn independently from  $\mathcal{N}(0, I_n/2) + i\mathcal{N}(0, I_n/2)$ , or each vector is drawn independently from the uniform distribution on the complex sphere of radius  $\sqrt{n}$ . Then there are universal constants  $c_0, c_1, \gamma > 0$  so that for  $m \ge c_0 n$ , for every  $x \in \mathbb{C}^n$  the problem (PhaseLift) has the same solution as (L0) with probability at least  $1 - c_1 e^{-\gamma n}$ .

Hand & Demanet (2013) showed (PhaseLift) is in essence a feasibility problem.

Radu Balan (UMD)

| <b>Problem Formulation</b>      | PhaseLift<br>○○○●○ | IRLS<br>0000000 |
|---------------------------------|--------------------|-----------------|
| PhaseLift<br>Performance Bounds |                    |                 |

#### Consider the measurement model in the presence of noise

$$y = \beta(x) + \nu$$

< □ > < 同 >

| Problem Formulation | PhaseLift<br>○○○●○ | IRLS<br>0000000 |
|---------------------|--------------------|-----------------|
| PhaseLift           |                    |                 |

Consider the measurement model in the presence of noise

$$y = \beta(x) + \nu$$

Modify the optimization problem:

$$\min_{X=X^*\geq 0} \|\mathbb{A}(X) - y\|_1 \tag{PL2}$$

Performance Bounds

| Problem Formulation | PhaseLift | IRLS    |
|---------------------|-----------|---------|
|                     | 00000     | 0000000 |
|                     |           |         |

#### PhaseLift Performance Bounds - cont'd

Modified Phase Lift algorithm is robust to noise:

## Theorem (Candés-Li 2014)

Consider the same stochastic process for the random frame  $\mathcal{F}$ . There is a universal constant  $C_0 > 0$  so that for all  $x \in C^n$  the solution to (PL2) obeys

$$\|X - xx^*\|_2 \le C_0 \frac{\|\nu\|_1}{m}$$

For the Gaussian model this holds with the same probability as in the noiseless case, whereas the probability of failure is exponentially small in n in the uniform model. The principal eigenvector  $x^0$  of X (normalized by the square root of the principal eigenvalue) obeys

$$D_2(x^0, x) \leq C_0 \min(\|x\|_2, \frac{\|\nu\|_1}{m\|x\|_2}).$$

# Table of Contents

### Problem Formulation

2 PhaseLift



∃ → < ∃</p>

Image: A matrix and a matrix

# Iterative Regularized Least-Squares The Idea

Consider the measurement process

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k$$
,  $1 \le k \le m$ 

The Least-Squares criterion:

$$\min_{x\in\mathbb{C}^n}\sum_{k=1}^m ||\langle x,f_k\rangle|^2 - y_k|^2$$

can be understood as the Maximum Likelihood Estimator (MLE) when the noise vector  $\nu \in \mathbb{R}^m$  is normal distributed with zero mean and covariance  $\sigma^2 I_m$ . However the optimization problem is not convex and has many local minima.

# Iterative Regularized Least-Squares The Idea - cont'd

#### Consider the following optimization criterion:

$$J(u, v; \lambda, \mu) = \sum_{k=1}^{m} \left| \frac{1}{2} (\langle u, f_k \rangle \langle f_k, v \rangle + \langle v, f_k \rangle \langle f_k, u \rangle) - y_k \right|^2 \\ + \lambda \|u\|_2^2 + \mu \|u - v\|_2^2 + \lambda \|v\|_2^2$$

# Iterative Regularized Least-Squares The Idea - cont'd

#### Consider the following optimization criterion:

$$J(u, v; \lambda, \mu) = \sum_{k=1}^{m} \left| \frac{1}{2} (\langle u, f_k \rangle \langle f_k, v \rangle + \langle v, f_k \rangle \langle f_k, u \rangle) - y_k \right|^2 \\ + \lambda \|u\|_2^2 + \mu \|u - v\|_2^2 + \lambda \|v\|_2^2$$

The Iterative Regularized Least-Squares (IRLS) algorithm is based on minimization:

$$x^{t+1} = \operatorname{argmin}_{u} J(u, x^{t}; \lambda_{t}, \mu_{t})$$

#### Iterative Regularized Least-Squares The Algorithm: Initialization

**Step 1. Initialization.** Compute the principal eigenvector of  $R_y = \sum_{k=1}^m y_k f_k f_k^*$  using e.g. the power method. Let  $(e_1, a_1)$  be the eigen-pair with  $e_1 \in \mathbb{C}^n$  and  $a_1 \in \mathbb{R}$ . If  $a_1 \leq 0$  then set x = 0 and exit. Otherwise initialize:

$$x^{0} = \sqrt{\frac{(1-\rho)a_{1}}{\sum_{k=1}^{m} |\langle e_{1}, f_{k} \rangle|^{4}}} e_{1}$$
(3.1)

$$A_0 = \rho a_1 \tag{3.2}$$

$$\iota_0 = \rho a_1 \tag{3.3}$$

$$t = 0 \tag{3.4}$$

#### Iterative Regularized Least-Squares The Algorithm: Iterations

# **Step 2. Iteration.** Perform: 2.1 Solve the least-square problem:

$$x^{t+1} = \operatorname{argmin}_{u} J(u, x^{t}; \lambda_{t}, \mu_{t})$$

using the conjugate gradient method. 2.2 Update:

$$\lambda_{t+1} = \gamma \lambda_t$$
 ,  $\mu_t = max(\gamma \mu_t, \mu_{min})$  ,  $t = t+1$ 

## Iterative Regularized Least-Squares The Algorithm: Stopping

Step 3. Stopping. Repeat Step 2 until:

- The error criterion is achieved:  $J(x^t, x^t; 0, 0) < \varepsilon$ ; or
- The desired signal-to-noise-ratio is reached:  $\frac{\|x^t\|^2}{J(x^t,x^t;0.0)} > snr$ ; or
- The maximum number of iterations is reached: t > T.

## Iterative Regularized Least-Squares The Algorithm: Stopping

Step 3. Stopping. Repeat Step 2 until:

- The error criterion is achieved:  $J(x^t, x^t; 0, 0) < \varepsilon$ ; or
- The desired signal-to-noise-ratio is reached:  $\frac{\|x^t\|^2}{J(x^t.x^t:0.0)} > snr$ ; or
- The maximum number of iterations is reached: t > T.

The final estimate can be  $x^{T}$ , or the best estimate obtained in the iteration path:  $x^{est} = x^{t_0}$ , where  $t_0 = \operatorname{argmin}_t J(x^t, x^t; 0, 0)$ .

### Iterative Regularized Least-Squares Performance Bounds

#### Theorem (B. 2013)

Fix  $0 \neq z_0 \in \mathbb{C}^n$ . Assume the frame  $\mathcal{F}$  is so that ker  $\mathbb{A} \cap \mathcal{S}^{2,1} = \{0\}$ . Then there is a constant  $A_3 > 0$  that depends of  $\mathcal{F}$  so that for every  $x \in \Omega_{z_0}$ and  $\nu \in \mathbb{C}^n$  that produce  $y = \beta(x) + \nu$  if there are  $u, v \in \mathbb{C}^n$  so that  $J(u, v; \lambda, \mu) < J(x, x; \lambda, \mu)$  then

$$\|\llbracket u, v \rrbracket - xx^* \|_1 \le \frac{4\lambda}{A_3} + \frac{2\|\nu\|_2}{\sqrt{A_3}}$$
(3.5)

Moreover, let  $\llbracket u, v \rrbracket = a_+e_+e_+^* + a_-e_-e_-e_-^*$  be its spectral factorization with  $a_+ \ge 0 \ge a_-$  and  $\lVert e_+ \rVert = \lVert e_- \rVert = 1$ . Set  $\tilde{x} = \sqrt{a_+}e_+$ . Then

$$D_2(x,\tilde{x})^2 \le \frac{4\lambda}{A_3} + \frac{2\|\nu\|_2}{\sqrt{A_3}} + \frac{\|\nu\|_2^2}{4\mu} + \frac{\lambda\|x\|_2^2}{2\mu}$$
(3.6)

### Iterative Regularized Least-Squares Performance Bounds

#### Theorem (B. 2013)

Fix  $0 \neq z_0 \in \mathbb{C}^n$ . Assume the frame  $\mathcal{F}$  is so that ker  $\mathbb{A} \cap \mathcal{S}^{2,1} = \{0\}$ . Then there is a constant  $A_3 > 0$  that depends of  $\mathcal{F}$  so that for every  $x \in \Omega_{z_0}$ and  $\nu \in \mathbb{C}^n$  that produce  $y = \beta(x) + \nu$  if there are  $u, v \in \mathbb{C}^n$  so that  $J(u, v; \lambda, \mu) < J(x, x; \lambda, \mu)$  then

$$\|\llbracket u, v \rrbracket - xx^* \|_1 \le \frac{4\lambda}{A_3} + \frac{2\|\nu\|_2}{\sqrt{A_3}}$$
(3.5)

Moreover, let  $\llbracket u, v \rrbracket = a_+e_+e_+^* + a_-e_-e_-e_-^*$  be its spectral factorization with  $a_+ \ge 0 \ge a_-$  and  $\lVert e_+ \rVert = \lVert e_- \rVert = 1$ . Set  $\tilde{x} = \sqrt{a_+}e_+$ . Then

$$D_2(x,\tilde{x})^2 \le \frac{4\lambda}{A_3} + \frac{2\|\nu\|_2}{\sqrt{A_3}} + \frac{\|\nu\|_2^2}{4\mu} + \frac{\lambda\|x\|_2^2}{2\mu}$$
(3.6)

Thank you!

Questions?

Radu Balan (UMD)

Phase Retrieval

E ► E ∽ a July 28-30, 2015

<ロト < 部ト < 注ト < 注</p>

| Problem Formulation | PhaseLift | IRLS   |
|---------------------|-----------|--------|
|                     |           | 000000 |
|                     |           |        |
|                     |           |        |

#### References

- B. Alexeev, A.S. Bandeira, M. Fickus, D.G. Mixon, *Phase retrieval with polarization*, SIAM J. on Imag.Sci., **7**(1):35–66, 2014.
- R. Balan, B. Bodmann, P. Casazza, D. Edidin, Painless reconstruction from Magnitudes of Frame Coefficients, J.Fourier Anal.Applic., 15 (4) (2009), 488–501.
- R. Balan, Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case, available online arXiv:1304.1839v1, Found.Comput.Math. 2015, http://dx.doi.org/10.1007/s10208-015-9261-0
- B. Bodmann, N. Hammen, Algorithms and error bounds for noisy phase retrieval with low-redundancy frames, arXiv:1412.6678v1 [Dec.2014]

- E.J. Cand/'es, T. Strohmer, V. Voroninski, *Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming*, Comm.Pure Appl.Math., **66**(8):1241–1274, 2013.
- E.J. Cand/'es, X. Li, Solving quadratic equations via phaselift when there are about as many equations as unknowns, Found.Comput.Math., 14(5):1017–1026, 2014.
- E.J. Cand/'es, X. Li, M. Soltanolkotabi, *Phase retrieval from coded diffraction patterns*, arXiv:1310.3240, 2013.
- E.J. Cand/'es, X. Li, M. Soltanolkotabi, *Phase Retrieval via Wirtinger Flow: Theory and Aplgorithms*
- **R**.W. Gerchberg, *A practical algorithm for the determination of phase from image and diffraction plane pictures*, Optik, 35:237, 1972.
  - M. Iwen, A. Viswanathan, Y. Wang, *Robust Sparse Phase Retrieval Made Easy*, 2014.

J.R. Fienup, *Phase retrieval algorithms: a comparison*, Applied optics, **21**(15):2758–2769, 1982.

(日)