
Nonlinear Analysis with Frames. Part III: Algorithms

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC
University of Maryland, College Park, MD

July 28-30, 2015
Modern Harmonic Analysis and Applications

Summer Graduate Program
University of Maryland, College Park, MD 20742



Thanks to our sponsors:

”This material is based upon work supported by the National Science
Foundation under Grants No. DMS-1413249, DMS-1501640. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.”



Table of Contents:

1 Problem Formulation

2 PhaseLift

3 IRLS



Problem Formulation PhaseLift IRLS

Table of Contents

1 Problem Formulation

2 PhaseLift

3 IRLS

Radu Balan (UMD) Phase Retrieval July 28-30, 2015



Problem Formulation PhaseLift IRLS

Problem Formulation
The phase retrieval problem

Let H = Cn. The quotient space Ĥ = Cn/T 1, with classes induced
by x ∼ y if there is real ϕ with x = eiϕy .
Frame F = {f1, · · · , fm} ⊂ Cn and nonlinear maps

α : Ĥ → Rm , α(x) = (|〈x , fk〉|)1≤k≤m .

β : Ĥ → Rm , β(x) =
(
|〈x , fk〉|2

)
1≤k≤m

.

The frame is said phase retrievable (or that it gives phase retrieval) if
α (or β) is injective.

The general phase retrieval problem a.k.a. phaseless reconstruction:
Decide when a given frame is phase retrievable, and, if so, find an
algorithm to recover x from y = α(x) (or from y = β(x)) up to a
global phase factor.
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Problem Formulation
Algorithms

Our Problem Today: Assume F is phase retrievable. Want reconstruction
algorithms.

Recursive Projections: Gerchberg-Saxton
Matrix Estimation: PhaseLift (Candes, Strohmer, Voroninski’12,
CandesLi)
Signal Estimation: Iterative Regularized Least Squares (IRLS),
Wirtinger Flow (Candes’14)
Algorithms for special frames: Reconstruction via Polarization
(Alexeev,Bandeira,Fickus, Mixon; Bodmann,Hammen), Fourier
transform (Lim&co MIT; Bates’82; Bal’09; PhaseLift with Masking;
4n-4 by Bodmann,Hammen), Shift Invariant Frames (Iwen,
Viswanathan,Wang), High Redundancy (BBCE’09)
Algorithms for special signals: sparse signals (... e.g.
Iwen,Viswanathan,Wang)

Today we focus on two algorithms: PhaseLift and IRLS.
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PhaseLift
The Idea

Consider the noiseless case y = β(x). The main idea is embodied in the
following feasibility problem:

Find X
subject to:
X = X ∗ ≥ 0
A(X ) = y

rank(X ) = 1

(Feas)

Alternatively, since there is a unique rank 1 that satisfies this problem:

Min rank(X )
subject to:
X = X ∗ ≥ 0
A(X ) = y

(L0)

Except for rank(X ) the optimization problem would be convex.
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PhaseLift
The Idea - cont’d

IDEA: Replace rank(X ) by trace(X ) as in the Matrix Completion problem.

Once a solution X is found, the vector x can be easily obtained from the
factorization: X = xx∗.
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PhaseLift
The Algorithm

(PhaseLift) min
A(X)=y ,X=X∗≥0

trace(X )

which is a convex optimization problem (a semi-definite program: SDP).

Theorem (Candés-Li 2014)
Assume each vector fk is drawn independently from
N (0, In/2) + iN (0, In/2), or each vector is drawn independently from the
uniform distribution on the complex sphere of radius

√
n. Then there are

universal constants c0, c1, γ > 0 so that for m ≥ c0n, for every x ∈ Cn the
problem (PhaseLift) has the same solution as (L0) with probability at least
1− c1e−γn.

Hand & Demanet (2013) showed (PhaseLift) is in essence a feasibility
problem.
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PhaseLift
Performance Bounds

Consider the measurement model in the presence of noise

y = β(x) + ν

Modify the optimization problem:

min
X=X∗≥0

‖A(X )− y‖1 (PL2)
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PhaseLift
Performance Bounds - cont’d

Modified Phase Lift algorithm is robust to noise:

Theorem (Candés-Li 2014)
Consider the same stochastic process for the random frame F . There is a
universal constant C0 > 0 so that for all x ∈ Cn the solution to (PL2)
obeys

‖X − xx∗‖2 ≤ C0
‖ν‖1

m
For the Gaussian model this holds with the same probability as in the
noiseless case, whereas the probability of failure is exponentially small in n
in the uniform model. The principal eigenvector x0 of X (normalized by
the square root of the principal eigenvalue) obeys

D2(x0, x) ≤ C0 min(‖x‖2,
‖ν‖1

m‖x‖2
).
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Iterative Regularized Least-Squares
The Idea

Consider the measurement process

yk = |〈x , fk〉|2 + νk , 1 ≤ k ≤ m

The Least-Squares criterion:

min
x∈Cn

m∑
k=1
||〈x , fk〉|2 − yk |2

can be understood as the Maximum Likelihood Estimator (MLE) when the
noise vector ν ∈ Rm is normal distributed with zero mean and covariance
σ2Im. However the optimization problem is not convex and has many local
minima.
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Iterative Regularized Least-Squares
The Idea - cont’d

Consider the following optimization criterion:

J(u, v ;λ, µ) =
m∑

k=1

∣∣∣∣12(〈u, fk〉〈fk , v〉+ 〈v , fk〉〈fk , u〉)− yk

∣∣∣∣2
+λ‖u‖22 + µ‖u − v‖22 + λ‖v‖22

The Iterative Regularized Least-Squares (IRLS) algorithm is based on
minimization:

x t+1 = argminuJ(u, x t ;λt , µt)
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Iterative Regularized Least-Squares
The Algorithm: Initialization

Step 1. Initialization. Compute the principal eigenvector of
Ry =

∑m
k=1 yk fk f ∗k using e.g. the power method. Let (e1, a1) be the

eigen-pair with e1 ∈ Cn and a1 ∈ R. If a1 ≤ 0 then set x = 0 and exit.
Otherwise initialize:

x0 =
√

(1− ρ)a1∑m
k=1 |〈e1, fk〉|4

e1 (3.1)

λ0 = ρa1 (3.2)
µ0 = ρa1 (3.3)

t = 0 (3.4)
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Iterative Regularized Least-Squares
The Algorithm: Iterations

Step 2. Iteration. Perform:
2.1 Solve the least-square problem:

x t+1 = argminuJ(u, x t ;λt , µt)

using the conjugate gradient method.
2.2 Update:

λt+1 = γλt , µt = max(γµt , µmin) , t = t + 1
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Iterative Regularized Least-Squares
The Algorithm: Stopping

Step 3. Stopping. Repeat Step 2 until:
The error criterion is achieved: J(x t , x t ; 0, 0) < ε; or

The desired signal-to-noise-ratio is reached: ‖x t‖2

J(x t ,x t ;0,0) > snr ; or
The maximum number of iterations is reached: t > T .

The final estimate can be xT , or the best estimate obtained in the
iteration path: x est = x t0 , where t0 = argmintJ(x t , x t ; 0, 0).

Radu Balan (UMD) Phase Retrieval July 28-30, 2015



Problem Formulation PhaseLift IRLS

Iterative Regularized Least-Squares
The Algorithm: Stopping

Step 3. Stopping. Repeat Step 2 until:
The error criterion is achieved: J(x t , x t ; 0, 0) < ε; or

The desired signal-to-noise-ratio is reached: ‖x t‖2

J(x t ,x t ;0,0) > snr ; or
The maximum number of iterations is reached: t > T .

The final estimate can be xT , or the best estimate obtained in the
iteration path: x est = x t0 , where t0 = argmintJ(x t , x t ; 0, 0).

Radu Balan (UMD) Phase Retrieval July 28-30, 2015



Problem Formulation PhaseLift IRLS

Iterative Regularized Least-Squares
Performance Bounds

Theorem (B. 2013)
Fix 0 6= z0 ∈ Cn. Assume the frame F is so that kerA ∩ S2,1 = {0}. Then
there is a constant A3 > 0 that depends of F so that for every x ∈ Ωz0

and ν ∈ Cn that produce y = β(x) + ν if there are u, v ∈ Cn so that
J(u, v ;λ, µ) < J(x , x ;λ, µ) then

‖Ju, vK− xx∗‖1 ≤
4λ
A3

+ 2‖ν‖2√
A3

(3.5)

Moreover, let Ju, vK = a+e+e∗+ + a−e−e−e∗− be its spectral factorization
with a+ ≥ 0 ≥ a− and ‖e+‖ = ‖e−‖ = 1. Set x̃ = √a+e+. Then

D2(x , x̃)2 ≤ 4λ
A3

+ 2‖ν‖2√
A3

+ ‖ν‖
2
2

4µ + λ‖x‖22
2µ (3.6)

The kernel requirement on A is satisfied for generic frames when m ≥ 6n.
In particular it implies the frame is phase retrievable for Cn.
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Thank you!

Questions?
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