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Abstract. Frame design for phaseless reconstruction is now part of the broader problem
of nonlinear recon- struction and is an emerging topic in harmonic analysis. The problem
of phaseless reconstruction can be simply stated as follows. Given the magnitudes of the
coefficients of an output of a linear redundant system (frame), we want to reconstruct the
unknown input. This problem has first occurred in X-ray crystallography starting from
the early 20th century. The same nonlinear reconstruction problem shows up in speech
processing, particularly in speech recognition.

In this lecture we shall cover existing analysis results as well as algorithms for signal
recovery including: necessary and sufficient conditions for injectivity, Lipschitz bounds of
the nonlinear map and its left inverses, stochastic performance bounds, convex relaxation
algorithms for inversion, least-squares inversion algorithms.

1. Introduction

This lecture notes concerns the problem of finite dimensional vector reconstruction from
magnitudes of frame coefficients. While the problem can be stated in the more general
context of infinite dimensional Hilbert spaces, in these lectures we focus exclusively on the
finite dimensional case. In this case any spanning set is a frame. Specifically let H = Cn

denote the n dimensional complex Hilbert space and let F = {f1, · · · , fm} be a set of m ≥ n
vectors that span H. Fix a real linear space V , that is also subset of H, V ⊂ H. Our
problem is to study when a vector x ∈ V can be reconstructed from magnitudes of its frame
coefficients {|〈x, fk〉| , 1 ≤ k ≤ m}, and how to do so efficiently. This setup covers both the
real case and the complex case as studied before in literature: in the real case F ⊂ V = Rn;
in the complex case V = H = Cn. Note we assume V is a real linear space which may not
be closed under multiplication with complex scalars.
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Consider the following additional notations. Let

(1.1) T : H → Cm , (T (x))k = 〈x, fk〉 , 1 ≤ k ≤ m

denote the frame analysis map. Its adjoint is called the synthesis map and is defined by

(1.2) T ∗ : Cm → H , T ∗(c) =
m∑
k=1

ckfk

We define now the main nonlinear function we discussed in this paper x 7→ α(x) = (|〈x, fk〉|)1≤k≤m.
For two vectors x, y ∈ H, consider the equivalence relation x ∼ y if and only if there is a
constant c of magnitude 1 so that x = cy. Thus x ∼ y if and only if x = eiϕy for some real
ϕ. Let Ĥ = H/ ∼ denote the quotient space. Note the nonlinear α is well defined on Ĥ
since α(cx) = α(x) for all scalars c with |c| = 1. We let α denote the quotient map

(1.3) α : Ĥ → Rm , (α(x))k = |〈x, fk〉| , 1 ≤ k ≤ m

For purposes that will become clear later let us define also the map

(1.4) β : Ĥ → Rm , (β(x))k = |〈x, fk〉|2 , 1 ≤ k ≤ m

For the subspace V denote by V̂ the set of equivalence classes V̂ = {x̂ , x ∈ V }.

Definition 1.1. The frame F is called a phase retrievable frame with respect to a set V if
the restriction α|V̂ is injective.

In this paper we study the following problems:

(1) Find necessary and sufficient conditions for α|V̂ to be a one-to-one (injective) map;
(2) Study Lipschitz properties of maps α, β and their inverses;
(3) Study robustness guarantees (such as Cramer-Rao Lower Bounds) for any inversion

algorithm;
(4) Recovery using convex algorithms (e.g. PhaseLift and PhaseCut);
(5) Recovery using iterative least-squares algorithms.

2. Geometry of Ĥ and Sp,q spaces

2.1. Ĥ. Recall Ĥ = Ĉn = Cn/ ∼= Cn/T 1 where T 1 = {z ∈ C , |z| = 1}. Algebraically

Ĉn is a homogeneous space being invariant to multiplications by positive real scalars. In
particular any x ∈ Ĉn \ {0} has a unique decomposition x = rp, where r = ‖x‖ > 0 and
p ∈ CPn−1 is in the projective space CPn−1 = P(Cn). Thus topologically

Ĉn = {0} ∪
(
(0,∞)× CPn−1

)
The subset

˚̂Cn = Ĉn \ {0} = (0,∞)× CPn−1

is a real analytic manifold.
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Now consider the set V̂ of equivalence classes associated to vectors in V . Similar to Ĥ it
admits the following decomposition

V̂ = {0} ∪ ((0,∞)× P(V ))

where P(V ) = { {zx , z ∈ C} , x ∈ V, x 6= 0} denote the projective space associated to V .
The interior subset

˚̂
V = V̂ \ {0} = (0,∞)× P(V )

is a real analytic manifold of (real) dimension 1 + dimR P(V ).
Two important cases are as follows:

• Real case. V = Rn embedded as x ∈ Rn 7→ x + i0 ∈ Cn = H. Then two vectors
x, y ∈ V are ∼ equivalent if and only if x = y or x = −y. Similarly, the projective
space P(V ) is difeomorphically equivalent to the real projective space RPn−1 which
is of dimension n− 1. Thus

dimR(
˚̂
V ) = n

• Complex case. V = Cn which has real dimension 2n. Then the projective space
P(V ) = CPn−1 has real dimension 2n− 2 (it is also a Khäler manifold) and thus

dimR(
˚̂
V ) = 2n− 1

2.2. Sp,q. Consider now Sym(H) = {T : Cn → Cn , T = T ∗} the real vector space of self-
adjoint operators over H = Cn endowed with the Hilbert-Schmidt scalar product 〈T, S〉HS =
trace(TS). We also use the notation Sym(V) for the real vector space of symmetric operators
over a vector space V . In both cases symmetric means the operator T satisfies 〈Tx, y〉 =
〈x, Ty〉 for every x, y in the underlying vector space (H or V , respectively). T ∗ means the
adjoint operator of T , and therefore the transpose conjugate of T , when T is a matrix. When
T is a an operator acting on a real vector space, T T denotes its adjoint. For two vectors
x, y ∈ Cn we denote

(2.5) Jx, yK =
1

2
(xy∗ + yx∗) ∈ Sym(Cn)

their symmetric outer product. On Sym(H) and B(H) = Cn×n we consider the class of
p-norms defined by the p-norm of the vector of singular values:

(2.6) ‖T‖p =

{
max1≤k≤n σk(T ) for p =∞

(
∑n

k=1 σ
p
k)

1/p
for 1 ≤ p <∞

where σk =
√
λk(T ∗T ), 1 ≤ k ≤ n, are the singular values of T , with λk(S), 1 ≤ k ≤ n,

denoting eigenvalues of S.
Fix two integers p, q ≥ 0 and set

(2.7)
Sp,q(H) = {T ∈ Sym(H) , T has at most p positive eigenvalues and at most q negative eigenvalues}
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(2.8)

S̊p,q(H) = {T ∈ Sym(H) , T has exactly p positive eigenvalues and exactly q negative eigenvalues}

For instance S̊0,0(H) = S0,0(H) = {0} and S̊1,0(H) is the set of all non-negative rank one
operators. When there is no confusion we shall drop the underlying vector space H from
notation.

The following basic properties can be found in [Ba13], Lemma 3.6 (the last statement is a
special instance of the Witt’s decomposition theorem):

Lemma 2.1.

(1) For any p1 ≤ p2 and q1 ≤ q2, Sp1,q1 ⊂ Sp2,q2;
(2) For any nonnegative integers p, q the following disjoint decomposition holds true

(2.9) Sp,q = ∪pr=0 ∪
q
s=0 S̊r,s

where by convention S̊p,q = ∅ for p+ q > n.
(3) For any p, q ≥ 0,

(2.10) −Sp,q = Sq,p

(4) For any linear operator T : H → H (symmetric or not, invertible or not) and
nonnegative integers p, q,

(2.11) T ∗Sp,qT ⊂ Sp,q

(5) For any nonnegative integers p, q, r, s,

(2.12) Sp,q + Sr,s = Sp,q − Ss,r = Sp+r,q+s

The spaces S1,0 and S1,1 play a special role in the following chapters. We summarize next
their properties (see Lemmas 3.7 and 3.9 in [Ba13], and the comment after Lemma 9 in
[BCMN13]).

Lemma 2.2 (Space S1,0). The following hold true:

(1) S̊1,0 = {xx∗ , x ∈ H, x 6= 0};
(2) S1,0 = {xx∗ , x ∈ H} = {0} ∪ {xx∗ , x ∈ H, x 6= 0};
(3) The set S̊1,0 is a real analytic manifold in Sym(n) of real dimension 2n − 1. As a

real manifold, its tangent space at X = xx∗ is given by

(2.13) TX S̊1,0 =

{
Jx, yK =

1

2
(xy∗ + yx∗) , y ∈ Cn

}
.

The R-linear embedding Cn 7→ TX S̊1,0 given by y 7→ Jx, yK has null space {iax , a ∈
R}.

Lemma 2.3 (Space S1,1). The following hold true:

(1) S1,1 = S1,0 − S1,0 = S1,0 + S0,1 = {Jx, yK , x, y ∈ H};
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(2) For any vectors x, y, u, v ∈ H,

xx∗ − yy∗ = Jx+ y, x− yK = Jx− y, x+ yK(2.14)

Ju, vK =
1

4
(u+ v)(u+ v)∗ − 1

4
(u− v)(u− v)∗(2.15)

Additionally, for any T ∈ S1,1 let T = a1 e1e
∗
1 − a2e2e

∗
2 be its spectral factorization

with a1, a2 ≥ 0 and 〈ei, ej〉 = δi,j. Then

T = J
√
a1e1 +

√
a2e2,

√
a1e1 −

√
a2e2K.

(3) The set S̊1,1 is a real analytic manifold in Sym(n) of real dimension 4n − 4. Its
tangent space at X = Jx, yK is given by

(2.16) TX S̊1,1 = {Jx, uK + Jy, vK =
1

2
(xu∗ + ux∗ + yv∗ + vy∗) , u, v ∈ Cn}.

The R-linear embedding Cn ×Cn 7→ TX S̊1,1 given by (u, v) 7→ Jx, uK + Jy, vK has null
space {a(ix, 0) + b(0, iy) + c(y,−x) + d(iy, ix) , a, b, c, d ∈ R}.

(4) Let T = Ju, vK ∈ S1,1. Then its eigenvalues and p-norms are:

a+ =
1

2

(
real(〈u, v〉) +

√
‖u‖2‖v‖2 − (imag(〈u, v〉))2

)
≥ 0(2.17)

a− =
1

2

(
real(〈u, v〉)−

√
‖u‖2‖v‖2 − (imag(〈u, v〉))2

)
≤ 0(2.18)

‖T‖1 =

√
‖u‖2‖v‖2 − (imag(〈u, v〉))2(2.19)

‖T‖2 =

√
1

2

(
‖u‖2‖v‖2 + (real(〈u, v〉))2 − (imag(〈u, v〉))2

)
(2.20)

‖T‖∞ =
1

2

(
|real(〈u, v〉)|+

√
‖u‖2‖v‖2 − (imag(〈u, v〉))2

)
(2.21)

(5) Let T = xx∗ − yy∗ ∈ S1,1. Then its eigenvalues and p-norms are:

a+ =
1

2

(
‖x‖2 − ‖y‖2 +

√
(‖x‖2 + ‖y‖2)2 − 4|〈x, y〉|2

)
(2.22)

a− =
1

2

(
‖x‖2 − ‖y‖2 −

√
(‖x‖2 + ‖y‖2)2 − 4|〈x, y〉|2

)
(2.23)

‖T‖1 =

√
(‖x‖2 + ‖y‖2)2 − 4|〈x, y〉|2(2.24)

‖T‖2 =

√
‖x‖4 + ‖y‖4 − 2|〈x, y〉|2(2.25)

‖T‖∞ =
1

2

(
|‖x‖2 − ‖y‖2|+

√
(‖x‖2 + ‖y‖2)2 − 4|〈x, y〉|2

)
(2.26)
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Note the above results hold true for the case of symmetric operators over real subspaces,
say V . In particular the factorization at Lemma 2.3(a) implies:

(2.27) S1,1(V ) = S1,0(V )− S1,0(V ) = S1,0(V ) + S0,1(V ) = {Ju, vK , u, v ∈ V }

Minimally, the result holds for subsets V ⊂ H that are closed under addition and substrac-
tion.

2.3. Metrics. The space Ĥ = Ĉn admits two classes of distances (metrics). The first class
is the ”natural metric” induced by the quotient space structure. The second metric is a
matrix-norm induced distance.

Fix 1 ≤ p ≤ ∞.
The natural metric denoted by Dp : Ĥ × Ĥ → R is defined by

(2.28) Dp(x̂, ŷ) = min
ϕ∈[0,2π)

‖x− eiϕy‖p

where x ∈ x̂ and y ∈ ŷ. In the case p = 2 the distance becomes

D2(x̂, ŷ) =

√
‖x‖2 + ‖y‖2 − 2|〈x, y〉|

By abuse of notation we use also Dp(x, y) = Dp(x̂, ŷ) since the distance does not depend ont
he choice of representatiove.

The matrix-norm induced distance denoted by dp : Ĥ × Ĥ → R is defined by

(2.29) dp(x̂, ŷ) = ‖xx∗ − yy∗‖p
where again x ∈ x̂ and y ∈ ŷ. In the case p = 2 we obtain

d2(x, y) =

√
‖x‖4 + ‖y‖4 − 2|〈x, y〉|2

By abuse of notation we use also dp(x, y) = dp(x̂, ŷ) since the distance does not depend ont
he choice of representatiove.

As analyzed in [BZ14], Proposition 2.4, Dp is not equivalent to dp, however Dp is an
equivalent distance to Dq and similarily, dp is equivalent to dq, for any 1 ≤ p, q ≤ q (see also
[BZ15] for the last claim below):

Lemma 2.4.

(1) For each 1 ≤ p ≤ ∞, Dp and dp are distances (metrics) on Ĥ;

(2) (Dp)1≤p≤∞ are equivalent metrics, that is each Dp induces the same topology on Ĥ

and, for every 1 ≤ p, q ≤ ∞, the identity map i : (Ĥ,Dp) → (Ĥ,Dq), i(x) = x, is
Lipschitz continuous with (upper) Lipschitz constant

LipDp,q,n = max(1, n
1
q
− 1
p )
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(3) (dp)1≤p≤∞ are equivalent metrics, that is each dp induces the same topology on Ĥ

and, for every 1 ≤ p, q ≤ ∞, the identity map i : (Ĥ, dp) → (Ĥ, dq), i(x) = x, is
Lipschitz continuous with (upper) Lipschitz constant

Lipdp,q,n = max(1, 2
1
q
− 1
p ).

(4) The identity map i : (Ĥ,Dp)→ (Ĥ, dp), i(x) = x is continuous but it is not Lipschitz

continuous. The identity map i : (Ĥ, dp)→ (Ĥ,Dp), i(x) = x is continuous but it is

not Lipschitz continuous. Hence the induced topologies on (Ĥ,Dp) and (Ĥ, dp) are
the same, but the corresponding metrics are not Lipschitz equivalent.

(5) The metric space (Ĥ, dp) is isometrically isomorphic to S1,0 endowed with the p-norm.
The isomorphism is given by the map

κβ : Ĥ → S1,0 , x 7→ Jx, xK = xx∗.

(6) The metric space (Ĥ,D2) is Lipschitz isomorphic (not isometric) with S1,0 endowed
with the 2-norm. The bi-Lipschitz map

κα : Ĥ → S1,0 , x 7→ kappaα(x) =

{
1
‖x‖xx

∗ if x 6= 0

0 otherwise

has lower Lipschitz constant 1 and upper Lipschitz constant
√

2.

Note the Lipschitz bound LipDp,q,n is equal to the operator norm of the identity between

(Cn, ‖ · ‖p) and (Cn, ‖ · ‖q): LipDp,q,n = ‖I‖lp(Cn)→lq(Cn). Note also the equality Lipdp,q,n =

LipDp,q,2. A consequence of the last two claims in the above result is that while the identity

map between (Ĥ,Dp) and (Ĥ, dq) is not bi-Lipschitz, the map x 7→ 1√
‖x‖
x is bi-Lipschitz.

3. The Injectivity Problem

In this section we summarize existing results on the injectivity of the maps α and β. Our
plan is to present the real and the complex case in a unified way.

Recall we denoted by V a real vector space which is subset of H = Cn. The special two
cases are V = Rn (the real case) and V = Cn (the complex case).

First we describe the realification of H and V . Consider the R-linear map  : Cn → R2n

defined by

(x) =

[
real(x)
imag(x)

]
Let V = (V ) be the embedding of V into R2n, and let Π denote the orthogonal projection
(with respect to the real scalar product on R2n) onto V . Let J denote the folowing orthogonal
antisymmetric 2n× 2n matrix

(3.30) J =

[
0 −In
In 0

]



8 RADU BALAN

where In denotes the identity matrix of order n×n. Note the transpose JT = −J , the square
J2 = −I2n and the inverse J−1 = −J .

Each vector fk of the frame set F = {f1, · · · , fm} gets mapped into a vector in R2n denoted
by ϕk, and a symmetric operator in S2,0(R2n) denoted by Φk:

(3.31) ϕk = (fk) =

[
real(fk)
imag(fk)

]
, Φk = ϕkϕ

T
k + Jϕkϕ

T
k J

T

Note that when fk 6= 0 the symmetric form Φk has rank 2 and belongs to S̊2,0. Its spectrum
has two distinct eigenvalues: ‖ϕk‖2 = ‖fk‖2 with multiplicity 2, and 0 with multiplicity
2n− 2. Furthermore, 1

‖ϕk‖2
Φk is a rank 2 projection.

Let ξ = (x) and η = (y) denote the realifications of vectors x, y ∈ Cn. Then a bit of
algebra shows that

〈x, fk〉 = 〈ξ, ϕk〉+ i〈ξ, Jϕk〉(3.32)

〈Fk, xx∗〉HS = trace (Fkxx
∗) = |〈x, fk〉|2 = 〈Φkξ, ξ〉 = trace

(
ΦξξT

)
= 〈Φk, ξξ

T 〉HS
〈Fk, Jx, yK〉HS = trace (FkJx, yK) = real(〈x, fk〉〈fk, y〉) = 〈Φkξ, η〉 = (trace(ΦkJξ, ηK) = 〈Φk, Jξ, ηK〉HS
where Fk = Jfk, fkK = fkf

∗
k ∈ S1,0(H).

The following objects play an important role in subsequent theory:

R : Cn → Sym(Cn) , R(x) =
m∑
k=1

|〈x, fk〉|2fkf ∗k , x ∈ Cn(3.33)

R : R2n → Sym(R2n) , R(ξ) =
m∑
k=1

Φkξξ
TΦk , ξ ∈ R2n(3.34)

S : R2n → Sym(R2n) , S(ξ) =
∑

k:Φkξ 6=0

1

〈Φkξ, ξ〉
Φkξξ

TΦk , ξ ∈ R2n(3.35)

Z : R2n → R2n×m , Z(ξ) =
[

Φ1ξ | · · · | Φmξ
]
, ξ ∈ R2n(3.36)

Note R = ZZT .
Following [BBCE07] we note that |〈x, fk〉|2) is the Hilbert-Schmidt scalar product between

two rank 1 symmetric forms:

|〈x, fk〉|2 = trace (FkX) = 〈Fk, X〉HS
where X = xx∗. Thus the nonlinear map β induces a linear map on the real vector space
Sym(Cn) of symmetric forms over Cn:

(3.37) A : Sym(Cn)→ Rm , A(T ) = (〈T, Fk〉HS)1≤k≤m = (〈Tfk, fk〉)1≤k≤m

Similarly it induces a linear map on Sym(R2n) the space of symmetric forms over R2n = (Cn)
that is denoted by A:

(3.38) A : Sym(R2n)→ Rm , A(T ) = (〈T,Φk〉HS)1≤k≤m = (〈Tϕk, ϕk〉+〈TJϕk, Jϕk〉)1≤k≤m
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Now we are ready to state a necessary and sufficient condition for injectivity that works in
both the real and the complex case:

Theorem 3.1 ([HMW11, BCMN13, Ba13]). Let H = Cn and let V be a real vector space
that is also a subset of H, V ⊂ H. Denote V = (V ) the realification of V . Assume F is a
frame for V . The following are equivalent:

(1) The frame F is phase retrievable with respect to V ;
(2) kerA ∩ (S1,0(V )− S1,0(V )) = {0};
(3) kerA ∩ S1,1(V ) = {0};
(4) kerA ∩ (S2,0(V ) ∪ S1,1(V ) ∪ S0,2) = {0};
(5) There do not exist vectors u, v ∈ V with Ju, vK 6= 0 so that

real (〈u, fk〉〈fk, v〉) = 0 , ∀ 1 ≤ k ≤ m

(6) kerA ∩ (S1,0(V)− S1,0(V)) = {0};
(7) kerA ∩ S1,1(V) = {0};
(8) There do not exist vectors ξ, η ∈ V, with Jξ, ηK 6= 0 so that

〈Φkξ, η〉 = 0 , ∀ 1 ≤ k ≤ m

Proof.
(1)⇔ (2) It is immediate once we noticed that any element in the null space of A of the

form xx∗ − yy∗ means A(xx∗) = A(yy∗) for some x, y ∈ V with x̂ 6= ŷ.
(2)⇔ (3) and (3)⇔ (5) are consequences of (2.27).
In (4) note that kerA ∩ S2,0(V ) = {0} = kerA ∩ S0,2(V ) since F is frame for V . Thus

(3)⇔ (4).
(6),(7) and (8) are simply restatements of (2),(3) and (4) using the realification framework.

2

In case (4) above, note S2,0(V )∪S1,1(V )∪S0,2 is the set of all rank-2 symmetric operators
in Sym(V ) (This case, in particular, has been proposed in [BCMN13]).

The above general injectivity result is next made more explicit in the cases V = Cn and
V = Rn.

Theorem 3.2 ([BCE06, Ba12]). (The real case) Assume F ⊂ Rn. The following are equiv-
alent:

(1) F is phase retrievable for V = Rn;
(2) R(x) is invertible for every x ∈ Rn, x 6= 0;
(3) There do not exist vectors u, v ∈ Rn with u 6= 0 and v 6= 0 so that

〈u, fk〉〈fk, v〉 = 0 , ∀ 1 ≤ k ≤ m

(4) For any disjoint partition of the frame set F = F1 ∪ F2, either F1 spans Rn or F2

spans Rn.

Recall a set F ⊂ Cn is called full spark if any subset of n vectors is linearly independent.
Then an immediate corrolary of the above result is the following
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Corollary 3.3 ([BCE06]). Assume F ⊂ Rn. Then

(1) If F is phase retrievable for Rn then m ≥ 2n− 1;
(2) If m = 2n− 1, then F is phase retrievable if and only if F is full spark;

Proof
Indeed, the first claim follows from Theorem 3.2(4): If m ≤ 2n−2 then there is a partition

of F into two subsets each of cardinal less than or equal to n− 1. Thus neither set can span
Rn. Contradition.

The second claim is immediate from same statement as above. 2

A more careful analysis of Theorem 3.2(4) gives a receipe of constructing two non-similar
vectors x, y ∈ Rn so that α(x) = α(y). Indeed, if F = F1∪F2 so that dim span(F1) < n and
dim span(F2) < n then there are non-zero vectors u, v ∈ Rn with 〈u, fk〉 = 0 for all k ∈ I and
〈v, fk〉 = 0 for all k ∈ Ic. Here I is the index set of frame vectors in F1 and Ic denotes its
complement in {1, · · · ,m}. Set x = u+ v and y = u− v. Then |〈x, fk〉| = |〈v, fk〉| = |〈v, fk〉|
for all k ∈ I, and |〈x, fk〉| = |〈u, fk〉| = |〈y, fk〉| for all k ∈ Ic. Thus α(x) = α(y), but x 6= y
and x 6= −y.

Theorem 3.4 ([BCMN13, Ba13]). (The complex case) The following are equivalent:

(1) F is phase retrievable for H = Cn;
(2) rank(Z(ξ)) = 2n− 1 for all ξ ∈ R2n, ξ 6= 0;
(3) dim kerR(ξ) = 1 for all ξ ∈ R2n, ξ 6= 0;
(4) There do not exist ξ, η ∈ R2n, ξ 6= 0 and η 6= 0 so that 〈Jξ, η〉 = 0 and

(3.39) 〈Φkξ, η〉 = 0 , ∀1 ≤ k ≤ m

In terms of cardinality, here is what we know:

Theorem 3.5 ([Mi67, HMW11, BH13, Ba13b, MV13, CEHV13, KE14, Viz15]).

(1) [HMW11] If F is a phase retrievable frame for Cn then

(3.40) m ≥ 4n− 2− 2b+

 2 if n odd and b = 3mod 4
1 if n odd and b = 2mod 4
0 otherwise

where b = b(n) denotes the number of 1’s in the binary expansion of n− 1.
(2) [BH13] For any positive integer n there is a frame with m = 4n − 4 vectors so that
F is phase retrievable for Cn;

(3) [CEHV13] If m ≥ 4n− 4 then a (Zariski) generic frame is phase retrievable on Cn;
(4) [Ba13b] The set of phase retrievable frames is open in Cn × · · · × Cn. In particular

phase retrievable property is stable under small perturbations.
(5) [CEHV13] If n = 2k + 1 and m ≤ 4m− 5 then F cannot be phase retrievable for Cn.
(6) [Viz15] For n = 4 there is a frame with m = 11 < 4n− 4 = 12 vectors that is phase

retrievable.
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4. Finite Fourier Frames and z-Transforms

In this section we discuss the specific case of Finite Fourier Frames and sampling of the
z-transform.

4.1. The FFT. Consider the case H = Cn and of Finite Fourier Transform (FFT) whose
frame vectors are given by

(4.41) fk =


1

e2πik/m

e2πi2k/m

...
e2πi(n−1)k/m

 , 1 ≤ m.

First we derive the Patterson’s Auto-Correlation Function and then we show the reconstruc-
tion problem is equivalent with a spectral factorization problem. For a vector x ∈ Cn, the
map β : Ĥ → Rm is given by, for every 1 ≤ k ≤ m,
(4.42)

(β(x))k = |
n∑
t=1

e−2πikt/mxt|2 =
n∑

t1,t2=1

e−2πik(t1−t2)/mxt1xt2 =
n−1∑

τ=−(n−1)

e−2πikτ/m
∑

1 ≤ t1, t2 ≤ n

t1 − t2 = τ

xt1xt2 .

Let us denote by r = (rτ )−(n−1)≤τ≤n−1 the autcorrelation of signal x,

(4.43) rτ =
∑

1 ≤ t1, t2 ≤ n

t1 − t2 = τ

xt1xt2 =


∑n−τ

t=1 xt+τxt if 0 ≤ τ ≤ n− 1∑n
t=1−τ xt+τxt if −n+ 1 ≤ τ < 0

.

Statistically speaking we should call r = (rτ ) the unnormalized sample auto-covariance, but
for simplicity we prefer to use the term autocorrelation instead. Note that r satisfies the
symmetry relation

r−τ = rτ

in other words, it has conjugate parity. Thus

(β(x))k =
n−1∑

τ=−(n−1)

e−2πikτ/mrτ , 1 ≤ k ≤ m,

which is the finite Fourier transform of the sequence r. The transform is invertible provided
m ≥ 2n− 1, where 2n− 1 is the cardinal of the set of distinct values of τ , {−(n− 1),−(n−
2), · · · ,−1, 0, 1, 2, · · · , n − 2, n − 1}. In the following we assume m ≥ 2n − 1. The inverse
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finite Fourier transform gives:

(4.44) rτ =
1

m

m∑
k=1

e2πikτ/m(β(x))k , −(n− 1) ≤ τ ≤ n− 1.

Thus the sample autocovariance can be computed directly from the magnitudes of frame
coefficients, without need for phases. In the X-Ray Crystallography context r = (rτ ) rep-
resentes the autocorrelation function of the electron density, known also as the Patterson
function [Patt35].

Next we parametrize all possible vectors in Cn that have the same magnitudes of Fourier
coefficients. We should that in general the map β is not injective. Nevertheless we can
find the exact structure of β−1(c). These results can be found in literature. For instance
[LaFrBa87] presents an image reconstruction algorithm based on spectral factorizations pre-
sented in Theorems 4.1, 4.3 below.

First we let X(z) and R(z) denote the z-transforms of vectors x and r, respectively:

X(z) =
n∑
k=1

zk−1xk , R(z) =
n−1∑

τ=−n+1

zτrτ

A direct computation shows

R(z) =
n−1∑

τ=−n+1

∑
1 ≤ t1, t2 ≤ n

t1 − t2 = τ

zt1−1xt1z
−(t2−1)xt2 = X(z)X̄(

1

z
)

where X̄(u) =
∑n

k=1 u
kxk is obtained by conjugating only the coefficients of polynomial

X(u). Thus we obtained that finding the vector x reduces to a factorization problem for the
z-transform of the auto-covariance function. Note that R(z) is a Laurent polynomial that
satisfies:

R(
1

z
) = R̄(z) = R(z̄)

R(eiω) = |X(eiω)|2 ≥ 0

Thus if w ∈ C is a zero of the polynomial H(z) = zn−1R(z), that is R(w) = 0, then so is
1
w̄

, that means R( 1
w̄

) = 0. In particular note w 6= 0. Let W = {w1, · · · , w2n−2} denote the
set of all 2n− 2 zeros of H, including multiplicities. On the other hand H(z) = zn−1R(z) =
X(z)(zn−1X̄(1

z
)) shows that the set of zeros of polynomial X(z) is a subset ofW . In fact we

proved the following result

Theorem 4.1. Consider the finite Fourier frame (4.41) with m ≥ 2n−1. Given c = β(x) ∈
Rm compute the autocorrelation vector r ∈ C2n−1 by (4.44) and then the set W of 2n − 2
zeros of H(z) = zn−1R(z). The following hold true:
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(1) The set W1 of n − 1 zeros of X(z) is a subset of W that satisfies the following
properties: (i) if w ∈ W1 then 1

w̄
∈ W \ W1; (ii) If |w| = 1 then w has even

multiplicity.
(2) Let W2 ⊂ W be a subset of n− 1 numbers (allowing for posible repetitions) that sat-

isfies the following property: if w ∈ W2 then 1
w̄
∈ W \W2. Construct the polynomial

(4.45) X̃(z) = C
∏
w∈W2

(z − w) =
n∑
k=1

zk−1x̃k

where C is a constant so that
∑n

k=1 |x̃k|2 = r0. Then x̃ = (x̃k)1≤k≤n ∈ Cn satisfies
β(x̃) = β(x).

Note the constant C in 4.47) is given explicitly as follows. Let y1, · · · , yn ∈ C be the
coefficient of

∏
w∈W2

=
∑n

k=1 z
k−1yk. Then

(4.46) C = eiϕ
√

r0

|y1|2 + · · ·+ |yn|2
,

with ϕ ∈ [0, 2π). Note we use the concept of set in a slightly more general way: we allow for
repetitions of elements, and we keep track of elements when taking union of sets.

This theorem parametrizes all possible classes ˆ̃x ∈ Cn of vectors that have the same
magnitudes of Fourier coefficients: each class is associated with a distinct subset W2 ⊂ W
that satisfies the property in part (2) of the theorem. For distinct (simple) zeros of H(z)
the possible number of subsets W2 is 2n−1. When repetitions occur, the number is smaller.
Specifically the number if given by the following result.

Proposition 4.2. Consider the setup in Theorem 4.1. Let d1 denote the number of distinct
zeros inW of magnitude strictly larger than 1, say w1, w2, · · · , wd1. Let n1, n2, · · · , nd1 denote
their multiplicities. Let d0 denote the number of distinct zeros on the unit circle (hence each
of magnitude one). Denote by 2p1, · · · , 2pd0 their (even) multiplicities. Then the number of
distinct partitions of W that satisfy part 2 of Theorem 4.1, and hence the number of classes
in β−1(c) is

d1∏
k=1

(
2nk
nk

) d0∏
k=1

(
2pk
pk

)
On the other hand, when more information on x is known, such as x is a real vector and/or

sparse, then fewer admissible partitions of the set W are possible. For instance if x ∈ Rn

then if w ∈ W1 then so is w̄ ∈ W1, In this case the previous result takes the following form:

Theorem 4.3. Consider the finite Fourier frame (4.41) with m ≥ 2n−1. Given c = β(x) ∈
Rm for some x ∈ Rn, compute the autocorrelation vector r ∈ C2n−1 by (4.44) and then the
set W of 2n− 2 zeros of H(z) = zn−1R(z). The following hold true:

(1) The set W1 of n − 1 zeros of X(z) is a subset of W that satisfies the following
properties: (i) if w ∈ W1 then w̄ ∈ W1 and 1

w
, 1
w̄
∈ W \ W1; (ii) if |w| = 1 then w

has even multiplicity;
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(2) Let W2 ⊂ W be a subset of n − 1 numbers (allowing for posible repetitions) that
satisfies the following property: if w ∈ W2 then w̄ ∈ W2 and 1

w
, 1
w̄
∈ W \ W2.

Construct the polynomial

(4.47) X̃(z) = C
∏
w∈W2

(z − w) =
n∑
k=1

zk−1x̃k

where C is a constant so that
∑n

k=1 |x̃k|2 = r0. Then x̃ = (x̃k)1≤k≤n ∈ Rn satisfies
β(x̃) = β(x).

In this case, when all zeros of H(z) are simple (have no multiplicity), let nc and nr denote
the number of complex 4-tuples and real pairs of zeros:

W = {w1, w1,
1

w1

,
1

w1

, · · · , wnc , wnc ,
1

wnc
,

1

wnc
} ∪ {p1,

1

p1

, · · · , pnr ,
1

pnr
}.

Then the number of distinct classes in R̂n that have the same magnitudes of frame coefficients
is 2nc+nr = 2n−1/2nc since 4nc + 2nr = 2n− 2. Thus the number of distinct classes is smaller
than 2n−1 unless all zeros are real. When repetitions occur the number of distinct classes is
smaller.

4.2. The z-Transform. One consequence of Theorems 4.1 and 4.3 is that increasing re-
dundancy by increasing m does not solve the problem. Indeed, for any m ≥ 2n − 1 the
multiplicity of solutions does not change. However the inversion problem can be solved if a
redundancy is achieved by considering a different transform in addition to the FFT. Here
we present the case of the z-transform sampled at special points. Results of this section
appeared also in [BH13, Ba13b, 1]. Some of the techniques are borrowed from [Ja10].

Fix z ∈ C and define the frame vector

g(z) =


1
z̄
z̄2

...
z̄n−1

 .
For z = e−2πik/m we obtain the same vectors as in (4.41). Fix a > 0 and define the following
set of vectors

(4.48) G = {g(z) , z ∈ Λ} , Λ = Λ1 ∪ Λ2

where

(4.49) Λ1 =
{
e2πik/(2n−1) , 2 ≤ k ≤ 2n− 2

}
and

(4.50) Λ2 =

{
sin
(

π
2n−1

)
sin(a)

e2πi(k−1)/(2n−1) − eiπ/(2n−1)
sin
(

π
2n−1

− a
)

sin(a)
, 1 ≤ k ≤ 2n− 1

}
.



PHASE RETRIEVAL 15

The construction has the following geometric picture: Λ is the set of 2n − 1-roots of unity
except 1 and e2πi/(2n−1); Λ2 is a set of 2n − 1 equidistant points on the circle of center
γ = −eiπ/(2n−1)sin(π2n−1−a

)
/sin(a) and radius ρ = sin(π/(2n − 1))/sin(a). Note this circle

intersects the unit circle in exactly two points: 1 and e2πi/(2n−1), since it is the image of the

real line under the conformal map, and Linear Fractional Transform, t 7→ e1at−e2πi/(2n−1)

eiat−1
.

For any z ∈ C, we denote

β(x)z = |〈x, g(z)〉|2 = |X(z)|2.

For z = γ + ρe−iθ, a point on the circle containing Λ2, we obtain

X(z) =
n−1∑
k=0

xk+1(γ + ρe−iθ)k =
n−1∑
k=0

yk+1e
−ikθ = Y (e−iθ)

where (y1, y2, · · · , yn) is the linear transformation of (x1, x2, · · · , xn) given by

yp+1 =
n−1∑
k=p

(
k
p

)
γk−pρpxk+1 , 0 ≤ p ≤ n− 1

and Y (z) = y1 + y2z + · · ·+ ynz
n−1 is the z-transform of y. Let

r(y)
τ =

∑
1 ≤ t1, t2 ≤ n

t1 − t2 = τ

yt1yt2

denote the autocorrelation of y. Thus for z ∈ Λ2, (β(x))z = |Y (e−iθ)|2 =
∑n−1

τ=−(n−1) r
(y)
τ e−iτθ.

A similar computation as in the previous subsection shows

r(y)
τ =

1

2n− 1

∑
z=γ+ρe2πik/(2n−1)∈Λ2

e2πikτ/(2n−1)(β(x))z , −(n− 1) ≤ τ ≤ n− 1.

Thus we can compute the z-transform of r(y) and obtain

R(y)(z) :=
n−1∑

τ=−(n−1)

r(y)
τ zτ = Y (z)Ȳ (

1

z
)

A careful computation relates Y (z) to X(z):

Y (z) =
n−1∑
p=0

yp+1z
p =

n−1∑
p=0

n−1∑
k=p

(
k
p

)
γk−pρpxk+1z

p =
n−1∑
k=0

xk+1

k∑
p=0

(
k
p

)
γk−p(ρz)p = X(γ+ρz).

Similarly we obtain Ȳ (1
z
) = X̄(γ̄ + ρ

z
). Thus we get:

R(y)(z) = X(γ + ρz)X̄(γ̄ +
ρ

z
)
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In particular for z0 = (1 − γ)/ρ we obtain z0 = eiψ, for some real ψ, and thus R(y)(z0) =
|X(1)|2. Similarly there is a real ψ1 so that z1 = γ + ρe−iψ1 = e2πi/(2n−1). Thus R(y)(z1) =
|X(e2πi/(2n−1))|2. Together with (β(x))z for z ∈ Λ1 we obtain all values of |X(e2πik/(2n−1))|2.
By the computations of the previous section we get the Laurent polynomial R(x)(z) =
X(z)X̄(1

z
). Now we show that for special values of a the frame G is phase retrievable:

Theorem 4.4 ([BH13]). Assume a
π

is irrational in (0, 1
2
). Then the frame G = {g(z) , z ∈ Λ

introduced in (4.48) of 4n− 4 vectors is phase retrievable.

Proof The proof of this result comes from noticing the two sets of 2n − 2 zeros of
zn−1R(y)(z) and of zn−1R(x)(z) can be uniquely partitioned to satisfy the corresponding
symmetries. Specifically, we showed that from (β(x))z = |〈x, g(z)〉|2 with z ∈ Λ we com-
pute Laurent polynomials R(x)(z) and R(y)(z). Let W1 denote the set of 2n − 2 zeros of
Hx(z) = zn−1R(x)(z) and let W2 denote the set of 2n − 2 zeros of Hy(z) = R(y)(z). Set
Wx = ∅. Repeat the following steps n− 1 times until W1 becomes empty.

(1) Pick a w0 ∈ W1.
(2) If w0−γ

ρ
∈ W2 then update:

• W(x) =W(x) ∪ {w0};
• Remove one w0 and one 1

w̄0
from W1. Remove one w0−γ

ρ
and one ρ

w0−γ from W2.

Else update:
• W(x) =W(x) ∪ { 1

w0
}.

• Remove one w0 and one 1
w̄0

fromW1. Remove one 1
ρ
( 1
w0
− γ) and one ρ

1
w0
−γ̄ from

W2.

At the end of the algorithm we obtain a set W(x) of n − 1 numbers. Then the polynomial
X(z) is obtained as

X(z) = C
∏

w∈W(x)

(z − w)

where the normalization constant is as in Theorem 4.1, part 2. The only remaining item
to prove is to show that when w0 is a zero of X(z) so that 1

w0
is not a zero of X(z), then

w0−γ
ρ
∈ W2 but 1

ρ
( 1
w0
− γ) 6∈ W2. First claim is immediate:

Hy(
1

ρ
(w0 − γ)) = (zn−1X̄(γ̄ +

ρ

z
)|z=(w0−γ)/ρX(w0) = 0.

The second claim is proved by a special symmetry of zeros. See [BH13] for details.

5. Robustness of Reconstruction

In this section we analyze stability bounds for reconstruction. Specifically we analyze two
types of margins:

• Deterministic, worst-case type bounds: These bounds are given by lower Lipschitz
constant of the forward nonliner analysis map;
• Stochastic, average type bounds: Cramer-Rao Lower Bounds



PHASE RETRIEVAL 17

5.1. Bi-Lipschitzianity of the Nonlinear Analysis Maps. In section 2 we introduced
two metrics on Ĥ. As the following theorem shows, the nonlinear maps α and β are bi-
Lipschitz with respect to the corresponding metric:

Theorem 5.1. [Ba12, EM12, BCMN13, Ba13, BW13, BZ14, BZ15] Let F be a phase re-
trievable frame for V , a real linear space, subset of H = Cn. Then:

(1) The nonlinear map α : (V̂ , D2) → (Rm, ‖‖2) is bi-Lipschitz. Thus there are positive
constants 0 < A0 ≤ B0 <∞ so that

(5.51)
√
A0D2(x, y) ≤ ‖α(x)− α(y)‖2 ≤

√
B0D2(x, y) , ∀x, y ∈ V

(2) The nonlinear map β : (V̂ , d1) → (Rm, ‖‖2) is bi-Lipschitz. Thus there are positive
constants 0 < a0 ≤ b0 <∞ so that

(5.52)
√
a0d1(x, y) ≤ ‖β(x)− β(y)‖2 ≤

√
b0d1(x, y) , ∀x, y ∈ V

The converse is also true: If either (5.51) or (5.52) holds true for all x, y ∈ V then F is
phase retrievable for V .

The choice of distance D2 and d1 in the statement of this theorem is only for convenience
reasons. Any other distance Dp instead of D2, and dq instead of d1 would work. The Lipschitz
constants would be different, of course.

On the other hand, if α satisfies (5.51) or β satisfies (5.52) then F is phase retrievable for
V . Thus, in effect, we obtained a necessary and sufficient condition for phase retrievability.
We state this condition now:

Theorem 5.2. Let F ⊂ H = Cn and let V be a real vector space, subset of H. Denote by
V = (V ) ⊂ R2n the realification of V , and let Π denote the projection onto V. Then the
following are equivalent:

(1) F is phase retrievable for V ;
(2) There is a constant a0 > 0 so that

(5.53) ΠR(ξ)Π ≥ a0ΠP⊥JξΠ , ∀ ξ ∈ V , ‖ξ‖ = 1

where P⊥Jξ = I2n−PJξ = I2n−JξξTJT is the orthogonal projection onto the orthogonal
complement to Jξ;

(3) There is a0 > 0 so that for all ξ, η ∈ R2n,

(5.54)
m∑
k=1

|〈ΠΦkΠξ, η〉|2 ≥ a0

(
‖Πξ‖2‖Πη‖2 − |〈JΠξ,Πη〉|2

)
Note the same constant a0 can be chosen in (5.52) and (5.53) and (5.54).
The lower bounds computation is fairly subtle. In fact there is a distinction between local

bounds and global bounds. Specifically for every z ∈ V we define the following:
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The type I local lower Lipschitz bounds are defined as:

A(z) = lim
r→0

inf
x,y∈V,D2(x,z)<r,D2(y,z)<r

‖α(x)− α(y)‖2
2

D2(x, y)2
(5.55)

a(z) = lim
r→0

inf
x,y∈V,d1(x,z)<r,d1(y,z)<r

‖β(x)− β(y)‖2
2

d1(x, y)2
(5.56)

The type II local lower Lipschitz bounds are defined by:

Ã(z) = lim
r→0

inf
y∈V,D2(y,z)<r

‖α(z)− α(y)‖2
2

D2(z, y)2
(5.57)

ã(z) = lim
r→0

inf
y∈V,d1(y,z)<r

‖β(z)− β(y)‖2
2

d1(z, y)2
(5.58)

Similarly the type I local upper Lipschitz bounds are defined as:

B(z) = lim
r→0

sup
x,y∈V,D2(x,z)<r,D2(y,z)<r

‖α(x)− α(y)‖2
2

D2(x, y)2
(5.59)

b(z) = lim
r→0

sup
x,y∈V,d1(x,z)<r,d1(y,z)<r

‖β(x)− β(y)‖2
2

d1(x, y)2
(5.60)

and the type II local upper Lipschitz bounds are defined by:

B̃(z) = lim
r→0

sup
y∈V,D2(y,z)<r

‖α(z)− α(y)‖2
2

D2(z, y)2
(5.61)

b̃(z) = lim
r→0

sup
y∈V,d1(y,z)<r

‖β(z)− β(y)‖2
2

d1(z, y)2
(5.62)

The global lower bounds are defined by:

A0 = inf
x,y∈V,D2(x,y)>0

‖α(x)− α(y)‖2
2

D2(x, y)2
(5.63)

a0 = inf
x,y∈V,d1(x,y)>0

‖β(x)− β(y)‖2
2

d1(x, y)2
(5.64)

whereas the global upper bounds are defined by:

B0 = sup
x,y∈V,D2(x,y)>0

‖α(x)− α(y)‖2
2

D2(x, y)2
(5.65)

b0 = sup
x,y∈V,d1(x,y)>0

‖β(x)− β(y)‖2
2

d1(x, y)2
(5.66)

and represent the square of the corresponding Lipschitz constants.
Due to homogeneity A0 = A(0), B0 = B(0), a0 = a(0), b0 = b(0). On the other hand, for

z 6= 0, A(z) = A( z
‖z‖), B(z) = B( z

‖z‖), a(z) = a( z
‖z‖), b(z) = b( z

‖z‖).
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The exact expressions for these constants is summarized by the following results. For any
I ⊂ {1, 2, · · · ,m} let F [I] = {fk , k ∈ I} denote the frame subset indexed by I. Let also
σ2

1[I] and σ2
n[I] denote the upper and the lower frame bound of set F [I], respectively. Thus:

σ2
1[I] = λmax

(∑
k∈I

fkf
∗
k

)

σ2
n[I] = λmin

(∑
k∈I

fkf
∗
k

)
As usual, Ic denotes the complement of index set I, that is Ic = {1, · · · ,m} \ I.

Theorem 5.3 ([BW13]). (The real case) Assume F ⊂ Rn is a phase retrievable frame for
Rn. Let A and B denote its optimal lower and upper frame bound, respectively.Then:

(1) For every 0 6= x ∈ Rn, A(x) = σ2
n(supp(α(x)), where supp(α(x)) = {k , 〈x, fk〉 6= 0};

(2) For every x ∈ Rn, Ã(x) = A;
(3) A0 = A(0) = minI(σ

2
n[I] + σ2

n[Ic]);
(4) For every x ∈ Rn, B(x) = B̃(x) = B;
(5) B0 = B(0) = B̃(0) = B, the optimal upper frame bound;
(6) For every 0 6= x ∈ Rn, a(x) = ã(x) = λmin(R(x))/‖x‖2;
(7) a0 = a(0) = ã(0) = min‖x‖=1λmin(R(x));

(8) For every 0 6= x ∈ Rn, b(x) = b̃(x) = λmax(R(x))/‖x‖2;

(9) b0 = b(0) = b̃(0) = max‖x‖=1 λmax(R(x));
(10) a0 is the largest constant so that

R(x) ≥ a0‖x‖2In , ∀x ∈ Rn

or, equivalently,
m∑
k=1

|〈x, fk〉|2|〈y, fk〉|2 ≥ a0‖x‖2‖y‖2 , ∀x, y ∈ Rn

(11) b0 is the 4th power of the frame analysis operator norm T : (Rn, ‖ · ‖2)→ (Rm, ‖ · ‖4),

b0 = ‖T‖4
B(l2,l4) = max

‖x‖2=1

m∑
k=1

|〈x, fk〉|4

The complex case is more subtle. The following result presents some of the local and
global Lipschitz bounds.

Theorem 5.4 ([BZ15]). (The complex case) Assume F is phase retrievable for H = Cn and
A,B are its optimal frame bounds. Then:

(1) For every 0 6= z ∈ Cn, A(z) = λ2n−1 (S((z))) (the next to the smallest eigenvalue);
(2) A0 = A(0) > 0;
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(3) For every z ∈ Cn, Ã(z) = λ2n−1

(
S((z)) +

∑
k:〈z,fk〉=0 Φk

)
(the next to the smallest

eigenvalue);
(4) Ã(0) = A, the optimal lower frame bound;

(5) For every z ∈ Cn, B(z) = B̃(z) = λ1

(
S((z)) +

∑
k:〈z,fk〉=0 Φk

)
(the largest eigen-

value);
(6) B0 = B(0) = B̃(0) = B, the optimal upper frame bound;
(7) For every 0 6= z ∈ Cn, a(z) = ã(z) = λ2n−1(R((z)))/‖z‖2 (the next to the smallest

eigenvalue);

(8) For every 0 6= z ∈ Cn, b(z) = b̃(z) = λ1(R((z)))/‖z‖2 (the largest eigenvalue);
(9) a0 is the largest constant to that

R(ξ) ≥ a0(I − JξξTJT ) , ∀ ξ ∈ R2n, ‖ξ‖ = 1

or, equivalently

m∑
k=1

|〈Φkξ, η〉|2 ≥ a0

(
‖ξ‖2‖η‖2 − |〈Jξ, η〉|2

)
, ∀ ξ, η ∈ R2n

(10) b(0) = b̃(0) = b0 is the 4th power of the frame analysis operator norm T : (Cn, ‖ · ‖2)→
(Rm, ‖ · ‖4),

b0 = ‖T‖4
B(l2,l4) = max

‖x‖2=1

m∑
k=1

|〈x, fk〉|4

(11) ã(0) is given by

ã(0) = min
‖z‖=1

m∑
k=1

|〈z, fk〉|4

The results presented so far show that both α and β admit left inverses that are Lipschitz
continuous. One remaining problem is to know if these left inverses can be extended to
Lipschitz maps over the entire Rm. The following two results provide a positive answer (see
[BZ14, BZ15] for the construction):

Theorem 5.5 ([BZ15]). Assume F ⊂ H = Cn is a phase retrievable frame for Cn. Let√
A0 be the lower Lipschitz constant of the map α : (Ĥ,D2)→ (Rm, ‖ · ‖2). Then there is a

Lipschitz map ω : (Rm, ‖ · ‖2)→ (Ĥ,D2) so that: (i) ω(α(x)) = x for all x ∈ Ĥ, and (ii) its

Lipschitz constant is Lip(ω) ≤ 4+3
√

2√
A0

.

Theorem 5.6 ([BZ14]). Assume F ⊂ H = Cn is a phase retrievable frame for Cn. Let√
a0 be the lower Lipschitz constant of the map β : (Ĥ, d1) → (Rm, ‖ · ‖2). Then there is a

Lipschitz map ψ : (Rm, ‖ · ‖2)→ (Ĥ, d1) so that: (i) ψ(β(x)) = x for all x ∈ Ĥ, and (ii) its

Lipschitz constant is Lip(ψ) ≤ 4+3
√

2√
a0

.
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5.2. Cramer-Rao Lower Bounds. Consider the following measurement process:

(5.67) yk = |〈x, fk〉|2 + νk , 1 ≤ k ≤ m

where F = {f1, · · · , fm} ⊂ H = Cn is a phase retrievable frame for V , a real linear space,
subset of H, and x ∈ V . We further assume that ν = (ν1, · · · , νm) is a sample of a normal
random variable of zero mean and variance σ2Im. We would like to find a lower bound on
the variance of any unbiased estimator for x. To make the problem identifiable we make an
additional assumption. Let z0 ∈ V be a fixed vector. Define

(5.68) Vz0 = {x ∈ V , 〈x, z0〉 > 0}

where the scalar product is the one from H. Set Ez0 = spanR(Vz0) the real vector space
spanned by Vz0 .

To make (5.67) identifiable we assume x ∈ Vz0 .
Thus any unbiased estimator is a map ψ : Rm → Ez0 so that E[ψ(β(x) + ν)] = x for all

x ∈ Vz0 . Here the expectation is taken with respect to the noise random variable.
For the process (5.67) one can compute the Fisher information matrix I(x). Following

[BCMN13] and [Ba13] we obtain:

(5.69) I(x) =
4

σ2
R(ξ) =

4

σ2

m∑
k=1

Φkξξ
TΦk

where ξ = (x) ∈ R2n. In general I(x) has rank at most 2n − 1 because Jξ is always in
its kernel. A careful analysis of the estimation process shows that the CRLB (Cramer-Rao
Lower Bound) for the estimation problem (5.67) is given by (Πz0I(x)Πz0)

† where Πz0 is the
orthogonal projection onto Vz0 = (Ez0) in R2n and upper script † denotes the Moore-Penrose
pseudo-inverse. Thus, the covariance of any unbiased estimator ψ : Rm → Ez0 is bounded
as follows:

(5.70) Cov[ψ] ≥ σ2

4
(Πz0R(ξ)Πz0)

†

In the real case, F ⊂ V = Rn ⊂ Cn, and the Fisher information matrix takes the form

I(x) =
4

σ2

[
R(x) 0

0 0

]
Restricting to the real component of the estimator, the CRLB becomes:

Cov[ψ] ≥ σ2

4
R(x)−1

In the complex case F ⊂ V = H = Cn, Πz0 = I2n − Jψ0ψ
T
0 J

T with ψ0 = (z0) and the
CRLB becomes:

Cov[ψ] ≥ σ2

4
(Πz0R(ξ)Πz0)

†
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6. Reconstruction Algorithms

We present two types of reconstruction algorithms:

• Rank 1 matrix recovery: PhaseLift;
• Iterative algorithm: Least-Square Optimization

Throughout this section we assume F is a phase retrievable frame for H = Cn.

6.1. Rank 1 Matrix Recovery. Consider the noiseless case y = β(x). The main idea is
embodied in the following feasibility problem:

findsubject to:A(X)=y,X=X∗≥0,rank(X)=1X

Except for rank(X) = 1 the optimization problem is convex. However the rank constraint
destroys the convexity property. Once a solution X is found, the vector x can be easily
obtained from the factorization: X = xx∗.

The feasibility problem admits at most a unique solution and so does the following opti-
mization problem:

(6.71) min
A(X)=y,X=X∗≥0

rank(X)

which is still non-convex. The insight provided by the matrix completion theory and ex-
ploited in [CSV12, CESV12] is to replace rank(X) by trace(X) which is convex. Thus one
obtains:

(6.72) (PhaseLift) min
A(X)=y,X=X∗≥0

trace(X)

which is a convex optimization problem (a semi-definite program: SDP). In [CL12] the
authors proved that for random frames, with high probability the problem (6.72) has the
same solution as the problem (6.71):

Theorem 6.1. Assume each vector fk is drawn independently from N (0, In/2)+iN (0, In/2),
or each vector is drawn independently from the uniform distribution on the complex sphere
of radius

√
n. Then there are universal constants c0, c1, γ > 0 so that for m ≥ c0n, for every

x ∈ Cn the problem (6.72) has the same solution as (6.71) with probability at least 1−c1e
−γn.

The PhaseLift algorithm is also robust to noise. Consider the measurement

y = β(x) + ν

for some ν ∈ Rm noise vector. Consider the following modified optimization problem:

(6.73) min
X=X∗≥0

‖A(X)− y‖1

In [CL12] the following result has been shown:

Theorem 6.2. Consider the same stochastic process for the random frame F . There is a
universal constant C0 > 0 so that for all x ∈ Cn the solution to (6.73) obeys

‖X − xx∗‖2 ≤ C0
‖ν‖1

m
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For the Gaussian model this holds with the same probability as in the noiseless case, whereas
the probability of failure is exponentially small in n in the uniform model. The principal
eigenvector x0 of X (normalized by the square root of the principal eigenvalue) obeys

D2(x0, x) ≤ C0 min(‖x‖2,
‖ν‖1

m‖x‖2

).

6.2. An Iterative Algorithm. Consider the measurement process

yk = |〈x, fk〉|2 + νk , 1 ≤ k ≤ m

The Least-Squares criterion:

min
x∈Cn

m∑
k=1

||〈x, fk〉|2 − yk|

can be understood as the Maximum Likelihood Estimator (MLE) when the noise vector
ν ∈ Rm is normal distributed with zero mean and covariance σ2Im. However the optimization
problem is not convex and has many local minima.

The iterative algorithm described next tries to find the global minimum using a regular-
ization term. Consider the following optimization criterion:
(6.74)

J(u, v;λ, µ) =
m∑
k=1

∣∣∣∣12(〈u, fk〉〈fk, v〉+ 〈v, fk〉〈fk, u〉)− yk
∣∣∣∣2 + λ‖u‖2

2 + µ‖u− v‖2
2 + λ‖v‖2

2

The Iterative Regularized Least-Squares (IRLS) algorithm presented in [Ba13] works as
follows.

Fix a stopping criterion, such as a tolerance ε, a desired level of signal-to-noise-ratio snr,
or/and a maximum number of steps T . Fix an initialization parameter ρ ∈ (0, 1), a learning
rate γ ∈ (0, 1) and a saturation parameter µmin > 0.

Step 1. Initialization. Compute the principal eigenvector of Ry =
∑m

k=1 ykfkf
∗
k using

e.g. the power method. Let (e1, a1) be the eigen-pair with e1 ∈ Cn and a1 ∈ R. If a1 ≤ 0
then set x = 0 and exit. Otherwise initialize:

x0 =

√
(1− ρ)a1∑m
k=1 |〈e1, fk〉|4

e1(6.75)

λ0 = ρa1(6.76)

µ0 = ρa1(6.77)

t = 0(6.78)

Step 2. Iteration. Perform:
2.1 Solve the least-square problem:

xt+1 = argminuJ(u, xt;λt, µt)

using the conjugate gradient method.
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2.2 Update:

λt+1 = γλt , µt = max(γµt, µmin) , t = t+ 1

Step 3. Stopping. Repeat Step 2 until:

• The error criterion is achieved: J(xt, xt; 0, 0) < ε; or

• The desired signal-to-noise-ratio is reached: ‖xt‖2

J(xt,xt;0,0)
> snr; or

• The maximum number of iterations is reached: t > T .

The final estimate can be xT , or the best estimate obtained in the iteration path: xest = xt0

where t0 = argmintJ(xt, xt; 0, 0).
The initialization is performed as in (6.75) for the following reason. Consider the modified

criterion:

H(x;λ) = J(x, x;λ, 0) = ‖β(x)− y‖2
2 + λ‖x‖2

2 =
m∑
k=1

|〈x, fk〉|4 + 〈(λIn −Ry)x, x〉+ ‖y‖2
2

In general this function is not convex in x, except for large values of λ. Specifically for λ > a1,
the largest eigenvalue of Ry, x 7→ H(x;λ) is convex and has a unique global minimum at
x = 0. For a1 − ε < λ < a1 the criterion is no longer convex, but the global minimum
stays in a neighborhood of the origin. Neglecting the 4th order terms, the critical points are
given by the eigenvectors of Ry. Choosing λ = ρa1 and x = se1, the optimal value of s for
s 7→ H(se1; ρa1) is given in (6.75).

The path of iterates (xt)t≥0 can be thought of as trying to approximate the measured
vector y with a linear transformation of a rank 2, A(Jxt−1, xtK). The parameter µ penalizes
the negative eigenvalue of Jxt−1, xtK; the larger the value of µt the smaller the iteration
step ‖xt+1 − xt‖ and the smaller the deviation from a rank 1 of outpxt+1xt; the smaller
the parameter µt the larger in magnitude the negative eigenvalue of Jxt+1, xtK. This fact
explains why in the noisy case the iterates first decrease the matching error J(xt, xt; 0, 0) up
to some t0 and then they start to increase the matching error: the rank 2 self-adjoint operator
T = Jxt+1, xtK decreases the matching error ‖A(T )− y‖2 instead of the rank-1 self-adjoint
operator Jxt, xtK.

At any point on the path, if the value of criterion J is smaller than the value reached
at the true value x, then we can offer convergence guarantees. Specifically in [Ba13] the
following result has been proved:

Theorem 6.3 ([Ba13]Theorem 5.6). Fix 0 6= z0 ∈ Cn. Assume the frame F is so that
kerA ∩ S2,1 = {0}. Then there is a constant A3 > 0 that depends of F so that for every
x ∈ Ωz0 and ν ∈ Cn that produce y = β(x) + ν if there are u, v ∈ Cn so that J(u, v;λ, µ) <
J(x, x;λ, µ) then

(6.79) ‖Ju, vK− xx∗‖1 ≤
4λ

A3

+
2‖ν‖2√
A3



PHASE RETRIEVAL 25

Moreover, let Ju, vK = a+e+e
∗
+ + a−e−e−e

∗
− be its spectral factorization with a+ ≥ 0 ≥ a−

and ‖e+‖ = ‖e−‖ = 1. Set x̃ =
√
a+e+. Then

(6.80) D2(x, x̃)2 ≤ 4λ

A3

+
2‖ν‖2√
A3

+
‖ν‖2

2

4µ
+
λ‖x‖2

2

2µ

The kernel requirement on A is satisfied for generic frames when m ≥ 6n. In particular it
implies the frame is phase retrievable for Cn.
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