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Theorem 3. Suppose tha.“. ® is RIP(2,6k,dg:) with-@@s¢ §g. < 1. Then there is an
algorithm A such that for every = € Xy, = can be reconstructed erpctly from measurements
®z. The algorithm A is the convex relazation of the following (Hon-convex) optimization
problem

& =argmin|z|p st $z= oz

. P wWell uoe 4 )
in particular, the algorithm is a linear program and bas‘uic 8‘“‘ <_—4 _
Z=argmin|z]|; st &z=®z. (111) .

Signals or vectors in Xy are rather special; they have ezactly k non-zero components. We
typically encounter signals that are compressible rather than exactly sparse. They have a
few, say k, predominant coordinates and a large number of considerably smaller ones. It
makes more sense to strive to recover this type of signal and to do so with an error that is
commensurate with the best k-term compression of the original signal. The idea being that
we are going to compress the signal anyway, why not reconstruct it up to the error that we
would achieve from a compressed version?

Theorem 4. For every z € RV, the optimizer # of (1.1.1) satisfies C 2
'-\'L.“ z

= C
lz = ]2 < ﬁ”z —zlls &
where xy is the best k-term approzimation to = and C is a constant.
Proof. Let us define y = # — z and observe that ®y = 0. Our goal is to show that
cC
llvllz < ﬁ‘lf — Tk1-

We assume, without loss of generality, that the entries of z are sorted in decreasing order.
Let us also assume that the “tail” elements of y are also sorted in decreasing order |yx+1| >

lykaz| = ... > lyw|. We divide the indices of y into blocks of size k with So = S being

" the first block, S; the next block of k indices, and so forth. Informally, we refer to ys as .
" the “head” of the vector y, yse as the “tail” (and similarly for z). See Figure 1.1 for an \ ~\ .

* illustration. To \-et-\f.‘@k, ¢ QOAQ.\s—ko'Loou-{uﬂ.,_mmo{-%Mdvﬂ- 3 . _




We will prove our main result in tlitee steps, only the last one uses the RIP property of
®. The first two lemmas control the £; and #; norms of portions of y. First, we control the
£; norm of the tail of y in terms of the £; norms of its head and the tail of z. Then we pass
from the #; norm to the #> norm. The last lemma uses the RIP property of @ to control the
£3 norm of the head of y. The final step of the proof is to put together all of the bounds on
the pieces of y.

Before we begin, there are two important facts to recall. The first is the relationship
between the £3 and #; norms of any k-dimensional vector v,

ol = 3" o < (3 ) (351)” = VAol (112)
=1 =1

=1

~ “The second fact uses the sorted-ness of the entries in the tail of y. Observe that for any
£ € 8%, (£ —k)|ye| is the area of the shaded region in Figure . Because the entries of ys- are
sorted in decreasing order (£ — k)|ye| < |lys|l» and hence,

1 :
lyel < = llysell- (1.1.3)

(!-QN&L\ = S
Myeell | =

ILemma 5. (4 concentmt:‘anj1 -

llyselly < Jlys]ly + O(lfz — Ik”l}vT

g;:::);fo}f;: optimality of £, we have |z; > |||, Additionally, ||z]|, = [zs]l; + llzge]]1-
llzlly > [1£]
=lz+yl:
= lles + sl + ||zse + yse |,
2 llzslls = llyslls = [lzs[l1 + [lys-|1,
where we use the triangle inequality in the last step. Thus,

lvsellx < lyslls + llzlls = lzslly + llse|)s

= Igslls + 2flzs]:.
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LEzTuRE®* 2.

s of indices, , This lemma bounds the “far )
Let So1 = SolJS1 denote the first two blocks of. in yo t
tail of y in terms of its entire tail which we express in terrrT of the head of y and the tail of

st M= 4k

Juseli p—
Juss I < L o lyslla + b =il

Proof. The quantity we are trying to bound is

2
lys, 3= lvel*

£€55,

‘We will use Equation 1.1.2 for each term in the sum and obtain

2
lyss, 13 = Z yel

i ok - i =l ux@ %gzl

1 PR el
n Us } 1 % ; 5;5 5!
:fnm . o ”ySEHE Z (g L k)g
~Can dso arﬁu.l. (&E) I=M+k+1
llys-1I3
Mun: il < M &— 'n ordtt dolave M \me,mzl
Thus, using Lemma 5, we have Yo sk & Mtk

but \ust wad
llyss, ll2 < lys-1l 3\“}/— (llys i @ —zkll1)- Jﬂ sck.

With Equation 1.1.3, we can cha.nge to the #; norm of ys and complete the proof

j S
lyss, llz < Ollysll=+ “ﬁh-’ﬂ ~ zi[|1)-

The last lemma is the only piece of this proof that uses the RIP property of ®.
li’..em:na 7. (Bound on the head)

lysos Iz < O(Vi,guz — zx]l).
Proof. Using the RIP property of @ and the definition of y, we find
0= [yl =AM > |1Bys;. [l — 3 [[Bys, |2 (1.1.4)
=2
2 (1= 0)lysollz = (1+8) Y llys, llo- (1.1.5)

22

s

Let us look at [jys,||3 =3 ces; |ye|®. Because the entries in blocks S. 1,53,... are sorted in
decreasing order, we argue in a similar fashion to Equation 1.1.3, that for £ 8;,7=22,

" M| l.\
MERITENN " 0
b 7T 4‘!.‘
and hence, | 5 ,;,’,...:,:,
D s o < Wosl d’-i'& Rl
cw sl g B
™

Mgl < M [l < g,

v Modhs menalit 1 acolee



‘Therefore, the second term in Equation 1.1.6 is bounded above by . . . . . . . . . . . .

Z“ij”Z Z“-"’S ll1 \ BN SELE BUGHET RUE SWE B

=2 J)l .....................

= \/—-Ilvs <llx \\

{\/—=(||ys||1+ou|x 2ill)  (by Lemma 5)

\/7||‘ys||2 + O(le zxl1) (by Equation 1.1.2) [
: s .\ S . o= o
2 \\ 55“_‘_ ¥ m“% %"“l

M%m 6
S o "3“0*'\?3““ vﬁmx«m\-\em_

s :5.-3*%\\55\\'1' ' -—llr\ T



Putting the three lemmas together, we have

lvllz =llysoll2 + llysg, Il _ o )
< Ol ) + Bl — 2l) +O sl N @
<&(Zofie — 2ull) 4Qlysa )
<G fo—mil);

and the proof of the theorem is complete. O

LLEC\_URE*Q_‘(

‘We proved that
&~ alle < = [l — il
—z St | [N .
Pt 7 kll1

Observe that £ is a vector of length N, it need not be k-sparse. In practice, it is frequently
not important that # be compressed so reconstructing a vector of length N is perfectly
acceptable (e.g., image processing applications in which one needs to render an image). If,
however, we want to reconstruct a compressed version of our original vector, then a simple
(repeated) application of the triangle inequality shows that by setting #; equal to the k
largest (in magnitude) entries in %, 7, is a good k-sparse approximation to the original
vector r. In which case, we have

Corollary 8. The k-sparse approzimation &y satisfies the reconstruction guarantee

Vo ==hy < o= zils 4 %Ifz — 2kl
Proof.

£k — zll2 < |z — £z + ||& — 2|2 (23]
Sz =22 + |12 — z«2 D
Sl =2l + ||z — 2|2 + ||z — zxl2
<20z~ &2 + Iz — 22

C

E”&’?‘—Eknl-

< |le =zl +

In the second inequality, we used the fact that # is the optimal k-term approximation for
& while zy is a sub-optimal one so ||Z — |z < || — T ||2- O
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