
Equilibrium Asset
Pricing: With

Non-Gaussian Factors
and Exponential Utilities

Dilip Madan
Robert H. Smith School of Business

University of Maryland
Madan Birthday Conference

September 29 2006

1



Motivation
• Asset Pricing Theory is about explaining
differences in required returns across
assets in terms of risk compensation when
positive or insurance premia when negative.

• We recognize that expected returns are,
empirically, near impossible to estimate
and are nonetheless an important input into
decisions on asset allocation.

• A theoretical determination of these
magnitudes from the easier to estimate
risk structure is thereby an important
contribution to financial decision making.
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• The first successful theory in this regard
was the Capital Asset Pricing Model
(CAPM) of Sharpe (1964), Lintner (1965)
and Mossin (1966).

• This was followed by the factor structure
Arbitrage Pricing Theory of Ross (1976)
and the pure implications of no arbitrage
more generally of Kreps and Harrison
(1979), Harrison and Pliska (1981,1983)
and Delbaen and Schachermayer (1994).
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• These latter theories made fewer assump-
tions about economic structure and derived
less operational results on asset pricing.
– For example in the Ross structure it
is unclear how the factors are to be
constructed or identified.

– It is also unclear what are the required
risk premiums on the factor exposures.
∗ As a result practical implementations
rely on second pass cross sectional
average return regressions to infer
required returns.
· This use of average returns to infer
expected returns is theoretically
objectionable, as the former are
essentially a random input into the
decision process.

• In the more general results on no arbitrage,
apart from existence, the specification of
the pricing kernel is totally unspecified.
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• We shall here go in the other direction from
CAPM and assume a lot more economic
structure than that employed in CAPM.

• We shall use this additional structure to
implement the asset pricing theory that
derives required returns on assets without
using average returns in any way other than
to demean the data.

• The additional structure we employ has
been learned over the last ten years in
implementing solutions to derivative
pricing problems and we now bring this
material to bear on the more traditional
questions of asset pricing.
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• The important ideas in the structural
specification are
– Independent Components Analysis
(ICA) to identify factor structure.

– The use of self similarity and scaling to
represent risks over the longer term.
∗ In particular we mention the class of
selfdecomposable random variables
as possible non-Gaussian limit laws.

– The use of the law of Lévy processes at
unit time to describe risk characteristics
beyond the variance.
∗ In particular the Variance Gamma
(VG) model as synthesizing skewness
and kurtosis while possesing some
exponential moments.
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Outline
• The Economic Structure, Scaling and Self
Similarity.

• The Equilibrium Asset Pricing Equation.
• ICA and Factor Detection.
• The VG Factor Laws.
• Closed Form Equations for Factor Risk
Premia.

• Results on Required Returns.
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The Economic Structure
• We follow Ross (1976) and adopt a factor
structure for annual returns and write

R = µ +BX + ε

where R is a vector of asset returns,X is a
set of systematic zero mean, unit variance,
and orthogonal factors and ε is a noise or
idiosyncratic component.

• However we borrow from the literature
on signal processing and impose some
additional structural hypotheses.

• It is noted in this literature, that among
finite variance zero mean random variables
maximum uncertainty in the sense of
entropy is attained by the Gaussian density.

• This density is therefore a good candidate
for modeling noise.
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• Informative random variables are possibly
closer to delta functions with long necks
and fat tails displaying excess kurtosis.

• Our analysis, for example in Carr, Geman,
Madan and Yor (2002) finds significant
kurtosis both statistically and risk neutrally
in index returns.

• Independent Components Analysis seeks
to recover signal components of data by
performing a PCA (principal components
analysis) and then finding rotation matrices
to maximise a metric of non-Gaussianity
with the view that information and signals
are best characterized this way.
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• These considerations lead us to postulate
that X consists of independent random
variables with non-Gaussian kurtotic and
skewed densities.

• In implementation we shall use a kurtosis
cutoff and treat as noise the lower kurtosis
components.

• Additionally we model the noise compo-
nent as multivariate Gaussian.

• Our model may be compared with Simaan
(1993) who used a single, stable α, non-
Gaussian component and an elliptical
distribution for the noise component.
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Investment Horizons
• There is plenty of data on daily and
intraday returns, but investment horizons
run in years.

• Additionally we have the critique that
surely by central limit theorem arguments
long horizon returns are Gaussian and the
focus on skews and kurtosis is therefore
misplaced.
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• We make two responses to these views.
– First the Gaussian distribution is not the
only limit law and both Lévy (1937)
and Khintchine (1938) characterized all
the other limit laws resulting on more
general scaling than

√
n as the class L0

of self decomposable random variables,
a subclass of the infinitely divisible
laws, of which the Variance Gamma is
an example.
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– Second there is evidence that self
similarity or scaling is a reasonable
model for the longer horizon.
∗ Statistically we refer to Peters (1991),
Mandelbrot (1997), Shiryaev (1999),
Heyde (1999) and Cont (2001).

∗ Risk Neutrally we refer to Carr,
Geman, Madan and Yor (2006)
forthcoming.
· They show in particular that the
scaled V G process at unit time
synthesizes the option surface
remarkably well with just four
parameters, while the associated
Lévy process could never do this.
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• Under scaling, skewness and kurtosis
are independent of the time horizon and
remains an important risk concern.

• We take demeaned annual returns as
distributed like

√
252 times the daily

return.
• It remains to describe the law of the
systematic components. For this we
employ the centered law at unit time of the
Variance Gamma Lévy process.

14



• The process is defined as Brownian motion
(W (t), t > 0) with drift rate θ and variance
rate σ2 evaluated at a random time given
by a gamma process (g(t; ν), t > 0)
with mean rate unity and variance rate ν.
Hence we may write the centered VG Lévy
process (X(t), t > 0) as
X(t) = θ(g(t; ν)− t) + σW (g(t; ν))

• The cumulant is easily evaluated as
ψ(u) = −1

ν
ln

µ
1− uθν − σ

2ν

2
u2
¶
− uθ.

• In summary we model asset annual returns
as scaled daily returns that are linear
mixtures of the laws of Lévy processes
at unit time plus a multivariate correlated
Gaussian noise component.
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Investor Risk Preferences
• Investors in the economy are expected
utility maximizers with exponential utility
functions.

• Investors differ in just their coefficients of
absolute risk aversion.

• Hence the utility function of investor i,
with final cash flow Ci is

Ui(Ci) = 1− exp (−AiCi)
where Ai is the coefficient of absolute risk
aversion for investor i.
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• These are strong assumptions made for
reasons of getting tractable and operational
results.

• Nonetheless we mention that as a basic
completely monotone marginal utility func-
tion, we expect to see aversion to variance
and kurtosis and skewness preference.

• For exponential utility and our asset return
model the certainty equivalent of the
cash flow from financed investment at the
interest rate r

Ci = α
0
i(R− r)

• is
(CE)i (αi) = α0i (µ− r)−

Ai
2
α0iΣαi

− 1
Ai

KX
k=1

ψk (−α0iβkAi)

where βk is the kth column of the factor
loading matrix B, Σ is the covariance
matrix of ε and ψk is the cumulant function
of the kth independent factor.
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Investment Allocations
• The first order conditions for maximizing
certainty equivalents yield the dollar
investments by each investor as

αi =
1

Ai
Σ−1 (eµ− r)

eµ = µ +
KX
k=1

ψ0k (−α0iβkAi)βk
• We may now define the factor exposure of
investor i in factor j as

yij = α
0
iβj
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• Evaluating this exposure we see that
Aiyij = (µ− r)0Σ−1βj+

X
k

ψ0k(−yikAi)β0kΣ−1βj
• We now see that for each i if we define

ηj = yijAi

then the magnitudes ηj that may be
interpreted as the factor exposure desired
by unit risk aversion satisfy the equation
system independent of i and given by

ηj = (µ− r)0Σ−1βj +
X
k

ψ0k(−ηk)β0kΣ−1βj
• It follows that risk aversion scaled factor
exposures are independent of i, the more
risk averse holding a proportionately lower
exposure.
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Aggregate Factor Exposures
• The total exposure to factor j held in the
economy is thenX

i

yij = ηj
X
i

1

Ai

and we have unit risk aversion exposures
given by

ηj = A
X
i

yij

where A is the harmonic mean of investor
risk aversions.
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Pricing Factor Exposures
• We now interpret the terms ψ0k(−ηk) in the
adjustment to excess returns in definingeµ that appears in the final asset allocation
equation.

• Differentiating the moment generating
function we observe that
exp (ψk(u))ψ

0
k(u) = E [exp (uXk)Xk]

• and hence
ψ0k(−ηk) =

E [exp (−ηkXk)Xk]
E [exp (−ηkXk)]

• Defining by
πk(ηk) = −

E [exp (−ηkXk)Xk]
E [exp (−ηkXk)]

• We may write

αi =
1

Ai
Σ−1

Ã
µ− r −

KX
k=1

πk(ηk)βk

!
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• We have that
πk(ηk) = −

E [exp (−ηkXk)Xk]
E [exp (−ηkXk)]

• This is the expectation of Xk under an
exponentially tilted measure change where
the tilt is given by ηk that we know to be
aggregate factor exposure times average
risk aversion.

• This is the price of factor exposure in our
economy and it may be evaluated directly
from a knowledge of ηk and the probability
law of the factor.

• For the V G we may explicitly evaluate that
πV G(η) = θ +

σ2η − θ
1 + θνη − σ2ν

2 η
2
.
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• We now see the investor asset allocations as
those of a factor adjusted residual CAPM.

• Define returns net of factor exposure aseR = R−BX
• Let the mean returns on these residual
returns be set at

eµ = µ− KX
k=1

πk(ηk)βk

• Then asset allocations are as in Markowitz
and may be written as

αi = yiω

• where ω is the tangency portfolio of this
residual return economy with

ω =
Σ−1

³
µ− r −PK

k=1 πk(ηk)βk

´
10NΣ−1

³
µ− r −PK

k=1 πk(ηk)βk

´.
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The Market Equilibrium
• Given initial shares outstanding at n with
asset market prices S the aggregate dollar
factor exposure has to be

(diag(S)n)0βj
• Defining relative risk aversion by

ρ = A (10∆(S)n)
• We get that

ηj
ρ
= ω0Mβj

where ωM is the market portfolio based on
proportion of market values.

• We shall use this equation to find unit risk
aversion exposure vector η.
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• Standard arguments now yield the residual
Capital Asset Pricing Model where by

µ = r +
KX
k=1

πk(ηk)βk + βMλ

• where βM is covariance of eR with ω0M eR
and the price λ of the residual market beta
exposure is given by

λ = ρω0MΣωM
or risk aversion times the variance of the
returns net of factor exposure.

• We shall use this equation to find the
residual market beta risk premium.

• The prices of factor exposure come from
the closed forms for the V G, that we have
already displayed.
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Remarks on Asset Pricing
• The final asset pricing equation is a
synthesis of the Ross APT and the CAPM.

• Factor exposures are priced, except here
they are explicitly priced by exponential
tilting at level η given by risk aversion
times aggregate factor exposure in the
market portfolio.

• The resiudal risks of ε are also priced
but this is done by covariance of residual
returns to residual returns of the market
portfolio.

• The market price of this residual market
beta is risk aversion times residual variance.
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An Illustrative Implementation
• We took data on daily stock returns for
180 stocks that comprise 75% of the US
economy as at March 23 2006, for the
period January 3 2000 to March 23 2006.

• The first step was to identify the longtailed
factors.

• For this we ran the fast ICA algorithm to
extract the top 50 factors.

• This algorithm first performs a PCA
and then searches in the space of rotation
matrices with a view to maximizing the
non-Gaussian metric given by the expec-
tation of the logarithm of the hyperbolic
cosine.

• This has been found to be a robust criterion
for the implementation of ICA.

• We present a graph of the levels of kurtosis
and absolute skewness in the first fifty
factors.

27



• We obtain from an application of ICA the
times series of data on the first 50 factors.
This data is by design of zero mean, unit
variance and orthogonal.

• We see the kurtosis levels trailing off as we
extract more factors.

• We decided to take as real factors those
with a kurtosis level exceeding 50. There
were 26 such factors and we next ran a
regression of the top 100 asset returns on
these 26 factors to estimate the matrix B
that is 100 by 26 and the residual covariance
matrix Σ.
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2.Absolute Skewness Levels of the top 50
factors extracted by fast ICA

30



• To get a positive definite covariance matrix
with correlation we performed a factor
analysis on the residuals with 50 factors to
get a maximum likelihood decomposition
in the form

Σ = ΛΛ0 + J
where J is a 100 by 100 diagonal matrix
and Λ is the 100 by 50 factor loading
matrix.

• These operations give us the B matrix, the
residual covariance matrix Σ, and the times
series data on the 26 selected longtailed
factors.

• We present the graphs of kurtosis and
absolute skewness of the residuals.

• We observe that though there remains some
kurtosis and skewness in the residuals it is
substantially below the levels observed in
the extracted factors.
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The Probability Laws of the
Independent Components

• For each of the 26 factors we estimate the
parameters of the centered V G law by
maximum likelihood.

• To reduce computation times we first bin
the data on the factor time series into 100
bins and then we maximize the likelihood
of the binned data.

• The V G density is available in closed form
in terms of the modified Bessel function
(Madan, Carr and Chang (1998)) and we
use this representation in the maximum
likelihood estimations.

• We present a graph of the fitted V G
densities to six of the more long tailed
factors.
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33



0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5
Residual Absolute Skewness on Assets

Asset Number

R
es

id
ua

l A
bs

ol
ut

e 
Sk

ew
ne

ss

4.Absolute Skewness of Residual Returns
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Factor Pricing
• For factor pricing we first extract the factor
exposure in the market portfolio as

ω0Mβj
• Here ωM is the vector of relative capital-
izations of the first 100 stocks by market
cap and βj is the jth column of the re-
gression estimated B matrix annualized on
multiplication by

√
252.

• For the value of ηj we used a risk aversion
of 10 and defined

ηj = 10ω
0
Mβj.

• The prices of factor exposure are given by
the V G factor pricing closed form.

• We present a graph of the equilibrium
factor price against ηj the factor supply
adjusted by risk aversion.

• We observe that factor prices have to
increase to induce higher levels of factor
holdings.
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Required Returns and
Required Factor Exposure

Compensation
• We evaluate the variance of residual market
protfolio returns by

ω0MΣωM
• The market price of residual beta risk is

λ = 10ω0MΣωM
• The residual market betas are evaluated by

βM = ΣωM
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• We may then evaluate both the required
compensation for factor exposure

RCFE = r +
KX
k=1

πV G(ηk)βk

and the total required return as
RR = RCFE + βMλ

• We present a graph of RR against RCFE
and the regression line of RR on RCFE.

• We observe that the bulk of the asset pricing
variation is due to compensation for factor
exposure accounted for by exponential
tilting.
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Conclusion
• We model annual asset returns as scaled
daily returns.

• Daily returns are linear mixtures of inde-
pendent skewed and kurtotic informative
(in the sense of entropy) random variables
plus correlated multivariate Gaussian noise.

• Investors have exponential utility dis-
playing skewness preference and kurtosis
aversion.
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• In equilibrium exposures to the factors are
priced by exponential tilting.

• The degree of tilt depends on risk aversion
and the exposure of the market portfolio to
the factor.

• The residual noise risk is also priced.
• The residual noise risk is priced by
covariation of this risk with the noise risk
in the market portfolio.

• The market price of noise risk is depends
on its variance in the market portfolio and
risk aversion.
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• The results are illustrated on data for the
US economy.

• Factors are identified using fast ICA.
• Factor probability laws are estimated in
closed form as the law of the VG process at
unit time.

• Factor risk prices are given in closed form
for VG exponential tilting.
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