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Chapter 1

Introduction

In this thesis we consider two problems. First we study the frequency content

of the round off error generated by the quantization step in an analog to digital

(A/D) conversion. Not only do we consider the case of a uniform quantizer, that

is a quantizer with equal spaced thresholds, but we also consider the case of a

more sophisticated and popular quantizer called Σ∆ modulation. Further, we

extend Σ∆ modulation from a quantization scheme for one dimensional signals

to a scheme for two or d dimensional signals.

Next we study algebraic and analytic properties of finite frames. Algebraically

we consider the orbit of a point under the action of a group on a finite dimensional

vector space. In communication theory, orbits have been called geometrically

uniform sets and are seen to have useful properties. Analytically we consider

frames which are minimally correlated, called Grassmannian frames.

These two seemingly different themes of quantization in (A/D) and finite

frames are in fact related. The relation is studied in the paper [BPY]. For

perspective, we give a rough idea of this work in Section 1.4.
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1.1 Analog to digital (A/D) conversion

There are many advantages to digital signal processing, yet many signals are

inherently analog. Therefore it is often necessary to perform an A/D conversion.

Mathematically, an analog signal can be thought of as a function f : R → R,

whereas a quantized digital signal is a function q : Z → {a0, . . . , aM}. An A/D

conversion can be roughly modeled by replacing f : R → R with q : Z →

{a0, . . . , aM} so that ‖f − q‖ is small for a given norm ‖·‖. It is natural to

break an A/D conversion into two separate steps. First, discretize the domain

of f , that is, replace the continuum of values {f(t) : t ∈ R} with the samples

{f(nT ) : n ∈ Z}. This is called the sampling step. Second, discretize the range

of f , that is, replace each f(nT ) with one of a finite number of predetermined

quantization values, say Q(f(nT )) := ak ∈ {a0, . . . , aN}. This second step is

called the quantization step. We shall consider the case of uniform quantization,

that is, the case in which the quantization values, ak, are equally spaced. See

Figure 1.1 for an example where we use two different predetermined sets, one

with only two values, the other with 6 values. It appears that more information

is retained when we use more quantization values.

The sampling step is well understood. We have the following standard result

[BF01, Ben97, DD03, OS99].

Classical Sampling Theorem. Let T, Ω > 0 and assume 0 < 2ΩT ≤ 1. Let

g ∈ PW1/2T satisfy ĝ = 1 on [−Ω, Ω] and ĝ ∈ L∞(R̂). Then

∀f ∈ PWΩ, f(t) = T
∑

n

f(nT )g(t− nT ), (1.1)

where convergence is in L2(R) and uniformly in R.
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Figure 1.1: The two steps in an A/D conversion of the continuous

time signal (A). First sample the time domain (B); second quantize

the range values with only two values {±5} (C), and with six values

{±1.5,±4.5,±7.5}. It appears that less information is lost when we use

more quantization values.
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Figure 1.2: Two examples of quantizing before the sampling step. Note,

in both figures, (C) is the quantization error which is highly correlated

with the signal when we use 2 levels (left) but less correlated when we

use 6 levels (right) .

T is the sampling period, Ω is the sampling frequency, and functions in the Paley-

Wiener class, PWΩ, are called Ω-bandlimited, where

PWΩ =
{
g ∈ L2(R) : supp {ĝ} ⊆ [−Ω, Ω]

}
.

From the Classical Sampling Theorem we know that if we sample with a small

enough period, then, for Ω-bandlimited functions, no information is lost by the

sampling step when measuring with either the L2 norm or the L∞ norm. This is

not the case with the quantization step.

In Chapter 2, we shall study the frequency content of the error introduced

during this quantization step. This error, f(nT )−Q(f(nT )), is called the quan-

tization error, where Q is a quantization rule, see Figure 1.2 for an example of

the quantization error when we quantize without sampling. It is common in the

engineering community to assume the quantization error is not correlated with

the signal, [EFKM03, OS99, ASVDS96, Gra90]. This assumption simplifies the

4



analysis of the quantization effects. In Chapter 2, we describe a more accurate

model of the quantization error.

1.2 Oversampled quantizers

In Figures 1.1 and 1.2 we see that increasing the number of quantization levels

results in the quantized output retaining more of the information from the orig-

inal signal, which therefore results in a quantization error retaining less of the

information in the signal. Thus increasing the number of levels is one method of

controlling the quantization error. Specifically, we consider the binary expansion

of the signal samples

f(nT ) =
∞∑

k=1

bk2
−k,

where bk ∈ {0, 1} and where we have scaled f(nT ) to lie in the interval [0, 1].

Now if we fix K ∈ N, then the quantization rule

Q(f(nT )) = Q

( ∞∑

k=1

bk2
−k

)
=

K∑

k=1

bk2
−k, (1.2)

corresponds to quantization with 2K equal spaced levels. So increasing the num-

ber of levels, and hence the accuracy of the quantization, corresponds to increas-

ing K and hence retaining more terms of the binary expansion.

Interestingly, increasing K is not the solution of choice in some practical

situations [DD03, ASVDS96]. Instead we fix K = 1, so that we keep only one

term of the expansion (1.2). Specifically, if {f(nT )} is now scaled to lie in [−1, 1],

then the quantization rule becomes

Q(f(nT )) = sign (f(nT )) .
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Thus to control the information lost in quantization, we increase the number of

samples we take for a given interval, i.e., we decrease the sampling period T .

We then use the redundancy built into the samples to control the quantization

error. A practical method of exploiting this redundancy is called Σ∆ modulation,

[DD03, ASVDS96, OS99, Gra90], Σ∆ quantization, or error diffusion [EFKM03].

Specifically, to quantize f(nT ) we construct bits, qT
n , and an auxiliary sequence,

un, which satisfy the recursion





un = un−1 + f(nT )− qT
n

qT
n = Q(un−1 + f(nT )) = sign (un−1 + f(nT )) ,

where we set u0 = c ∈ (−1, 1). Note, un is sometimes called the internal state

of the Σ∆ quantizer, [DD03]; and un can also be referred to as the quantization

error since un =
(
un−1 + f(nT )

)
−Q

(
un−1 + f(nT )

)
.

Now to quantize f(nT ) we replace each f(nT ) with the corresponding qT
n .

Thus a second type of error is introduced, namely f(nT ) − qT
n , the difference

between the input to and the output from the entire Σ∆ scheme, not just the

quantizer Q. The recursive nature of the Σ∆ scheme results in

N∑

n=1

(
f(nT )− qT

n

)
= uN − u0 ≤ ‖u‖∞ . (1.3)

If ‖u‖∞ < ∞, then dividing (1.3) by N shows that the average of the samples

1
N

∑N
n=1 f(nT ) approaches the average of the bits 1

N

∑N
n=1 qT

n . Furthermore, if we

reconstruct f(t) using fq(t) = T
∑

n qT
n g(t− nT ), then (1.1) and the first line of

6



the Σ∆ recursion imply,

|f(t)− fq(t)| = T

∣∣∣∣∣
∑

n

(f(nT )− qT
n )g(t− nT )

∣∣∣∣∣

= T

∣∣∣∣∣
∑

n

(un − un−1)g(t− nT )

∣∣∣∣∣

= T

∣∣∣∣∣
∑

n

un (g(t− nT )− g(t− (n + 1)T ))

∣∣∣∣∣

≤ T ‖u‖∞
∑

n

|g(t− nT )− g(t− (n + 1)T )|

= T ‖u‖∞
∑

n

∣∣∣∣
∫ t−nT

t−(n+1)T

g′(y)dy

∣∣∣∣ ≤ T ‖u‖∞ ‖g′‖L1 .

(1.4)

Again we see that it is crucial to have ‖u‖∞ < ∞, for in this case, (1.4) implies

that the sampling period controls the size of the pointwise reconstruction error.

In Chapter 2, we shall show how an analysis of the quantization error in a

uniform quantizer also applies to a Σ∆ quantizer. Finally in Chapter 3, we extend

the Σ∆ scheme to higher dimensions.

1.3 Frames for Hilbert space

Consider the expansion in the conclusion of the Classical Sampling Theorem,

namely

∀f ∈ PWΩ, f(t) = T
∑

n

f(nT )g(t− nT ),

in the case 2TΩ = 1 and

g(t) = d2πΩ(t) =
sin(2πΩt)

πt
= (1)∧[−Ω,Ω] (γ).

Then {g(t− nT )}n∈Z
is a basis for PWΩ, whereas if 2TΩ < 1, then {g(t− nT )}

is an over complete spanning set in PWΩ. In either case, we still have a decom-

position for f . In the over complete case, {g(t− nT )}n∈Z
is called a frame. So

7



we see that frames are a natural language in which to study the sampling step in

an A/D conversion.

We now introduce the basic definitions of frame theory [DS52, BF03, BF94,

Dau92, Chr02]. Let H be a separable Hilbert space, and let X = {xn : n ∈ I} ⊂

H where I is a countable indexing set. Consider the following map associated

with the set X:

L : H → `2(I)

y 7→ {〈y, xn〉}n∈I .

If L is a well-defined linear map, i.e., if
∑

n∈I |〈y, xn〉|2 <∞ for any y ∈ H, then

we call L a Bessel map and X a Bessel sequence. The adjoint of L is the map

L∗ : `2(I)→ H

{c[n]}n∈I 7→
∑

n∈I
c[n]xn.

Intuitively, L can be considered an analysis operator, and L∗ a synthesis operator.

The frame operator is the map S : H → H defined as L∗L. So, for any y ∈ H,

S(y) = L∗ (L(y)) = L∗ ({〈y, xn〉}n∈I
)

=
∑

n∈I
〈y, xn〉xn.

Finally, the Grammian operator is the map G : `2(I) → `2(I) defined by G =

LL∗. Note that both S and G are self adjoint.

A Bessel sequence X is a frame for H if there exist constants A,B with

0 < A ≤ B <∞ such that for any y ∈ H

A ‖y‖2 ≤
∑

n∈I
|〈y, xn〉|2 ≤ B ‖y‖2 .

Thus, given any frame, we have four natural maps: L, L∗, S, and G. If the

indexing set I is finite then X is called a finite frame. Also, if A = B then X is

called a tight frame, or, if we wish to emphasize the bound, an A-tight frame.

8



The lower frame bound implies that S is invertible. Thus, we have the two

frame reconstruction formulas,

y = SS−1y =
∑

n∈I

〈
S−1(y), xn

〉
xn =

∑

n∈I

〈
y, S−1(xn)

〉
xn

and

y = S−1Sy = S−1

(∑

n∈I
〈y, xn〉xn

)
=
∑

n∈I
〈y, xn〉S−1(xn).

The set {S−1(xn)} is also a frame, and it called the dual frame. In general, it is

difficult to invert the frame operator and compute the dual frame.

1.4 A/D conversion and finite frames

At the beginning of Section 1.1 we saw that frames are linked with the sam-

pling step of an A/D conversion. Also,in the third paragraph of this thesis, we

mentioned that finite frames have a nontrivial intersection with A/D conversion.

We now give a brief description of the main idea in the paper [BPY] which

studies this intersection. View each vector in Rd as a distinct signal and consider

only signals in a bounded region, say R =
{
v ∈ Rd : ‖v‖ ≤ 2

}
. Then, given a

finite frame {xk}Nk=1 for Rd, we can expand each vector in R in terms of the frame,

i.e., v =
∑N

k=1 〈v, xk〉S−1xk. The coefficients, 〈v, xk〉, of this frame expansion

correspond to the sampling step in an A/D conversion. Notice that since v is

bounded by two, the coefficients are also bounded by two. Next we consider

the discrete set D =
{∑N

k=1 εkxk : εk ∈ {±1}
}

. D consists of all possible 2-bit

quantizations of vectors in R, see Figure 1.3 for the complexity of patterns for

different choices of D. Now given a v ∈ R, we want to study methods for choosing

a q ∈ D which is close to v. We can translate the quantization schemes used in

9



−2 0 2
−2

−1

0

1

2
3

−2 0 2
−2

−1

0

1

2
4

−2 0 2
−2

−1

0

1

2
5

−2 0 2
−2

−1

0

1

2
6

−2 0 2
−2

−1

0

1

2
7

−2 0 2
−2

−1

0

1

2
8

−2 0 2
−2

−1

0

1

2
9

−2 0 2
−2

−1

0

1

2
10

−2 0 2
−2

−1

0

1

2
11

Figure 1.3: All possible quantizations in R2 for N = 3, . . . , 11, using

the quantization levels {±1}, and the harmonic frames xk = 2
N

e2πik/N

where k = 1, . . . , N .
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A/D conversion to this setting and study which points of D are chosen by the

schemes. This is an active field of research.

1.5 Geometrically uniform frames

Let XN be the Nth roots of unity considered in Section 1.4. We note that XN

has a high degree of symmetry, i.e., if we rotate the frame by the angle 2π
N

, we

obtain the same frame again. In fact, if we let x = (1, 0)T and consider rotating

x by 0, 2π
N

, . . . , 2π(N−1)
N

we obtain the frame XN . Note, these N rotations form a

group isomorphic to Z/NZ.

In attempting to construct finite frames with a high degree of symmetry, we

can generalize the example of the Nth roots of unity to an arbitrary finite sub-

group of Od(R), the d× d orthogonal matrices. Let us introduce some definitions

from group theory. Let G be a group and X be a set. G acts on X if there is a

function G×X → X, denoted by (g, x) 7→ gx, such that

(i) (gh)x = g(hx), for all g, h ∈ G and x ∈ X,

(ii) 1x = x, for all x ∈ X, where 1 is the identity of G.

For any x ∈ X, the orbit of x by G is the set

OrbG(x) = {gx ∈ X : g ∈ G} .

Let G be a finite subgroup of Od(R). Then G acts on the set Rd. For any

x ∈ Rd, the set, OrbG(x), is called a geometrically uniform (GU) set. These sets

arise in coding theory and have a high degree of symmetry. In Chapter 3, we

construct examples of GU sets. It would seem that such sets could play a role in

the quantization sets in Figure 1.3.
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1.6 Grassmannian frames

As suggested in [SH03], one way to construct frames which are similar to or-

thonormal bases is to consider the properties that define orthonormal bases and

relax them slightly. For example, assume that for n = 1, . . . , d, ‖xn‖Rd = 1 and

that span {xn : n = 1, . . . , d} = Rd. Consider the following properties:

∀y ∈ Rd, y =
d∑

n=1

〈y, xn〉xn, (1.5)

∀m 6= n, 〈xn, xm〉 = 0. (1.6)

If we assume that {xn} satisfies either (1.5) or (1.6), we can conclude that {xn}

is an orthonormal basis. Now, if we relax (1.5) so that

∀y ∈ Rd, y =
d

N

N∑

n=1

〈y, xn〉xn,

where N > d, then {xn} is no longer an orthonormal basis, but

‖y‖2 =

〈
y,

d

N

N∑

n=1

〈y, xn〉xn

〉
=

d

N

N∑

n=1

|〈y, xn〉|2 ,

i.e., {xn} is an N
d
-tight frame.

Relaxing condition (1.6) gives a different type of frame, called a Grassmannian

frame, which is also a generalization of an orthonormal basis. In Chapter 5, we

study these frames in detail.

1.7 Results

We now list the results in this thesis.

In Chapter 5, we prove that Grassmannian frames exist for every N ≥ d. We

completely characterize all two dimensional Grassmannian frames up to rotations
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and sign changes. We also expand a theorem in [SH03], which provides a lower

bound for the maximum correlation depending only on the number of frame

elements N and the dimension of the space d. Furthermore we give a complete

and detailed proof of this theorem which is not present in [SH03]. Next we take

on the task of constructing 3 dimensional Grassmannian frames. We develop

new theory for explicitly reducing the maximum correlation of a four element

frame in R3. We then use this theory to provide another proof that the (4, 3)

-Grassmannian bound is 1/3.

Since the results used in the (4, 3) case do not immediately apply to N > 4,

we need to use some notions from convex analysis when N > 4. Using these

notions, we extend the algorithm of explicitly reducing the maximum correlation

of a frame, to any N and d. We then use these ideas to give an explicit proof of

the (5, 3)-Grassmannian bound. Finally we prove the (6, 3) bound.

Also, in Chapter 5, we apply the method of reducing the maximum correlation

in a given frame to the case N > 3 and d ≤ 2. We observe that cyclically applying

the algorithm to N elements results in an arrangement which is a subset of a

Grassmannian frame with greater than N elements.

The apparently ad hoc methods and proofs in Chapter 5 are state of the art

in the subject. In fact, we must first answer these basic combinatorial questions

before proceeding to more advanced analytic questions. The results in Chapter

5 are in some sense parallel to the research program begun by J. Conway, R.

Hardin, and N. Sloane, see [CHS96].

In Chapter 4, we construct specific examples of GU frames. We consider both

Abelian and non-Abelian groups. In R3, we use the classification of all subgroups

of SO3 and O3 to construct three dimensional GU frames. We also show that any
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finite frame can be orthogonally transformed into a frame with a diagonal frame

operator. This generalizes the situation for A-tight frames where S = AId.

In Chapter 3, we provide an alternate proof of a two dimensional generaliza-

tion of the one dimensional Σ∆ modulator. A similar generalization has been

also studied independently in [Yıl02]. We then use the ideas in this proof to

construct different quantization schemes. Also, we prove that a specific class of

signals will make the original generalization unstable.

We begin the thesis in Chapter 2 by giving detailed calculations for power

spectra of quantization error in the case of sinusoidal inputs. We then show how

this is applied to Σ∆ modulation.

1.8 Notation

In this section we list the notation and standard theorems used through this

thesis.

The Fourier transform of f on R is

f̂(γ) =

∫ ∞

−∞
f(t)e−2πitγdt,

with corresponding inversion formula

f(t) =

∫ ∞

−∞
f̂(γ)e2πitγdγ.

The torus is T2Ω = R̂/(2ΩZ). We take any fixed interval of length 2Ω to be the

representatives of T2Ω. Functions on T2Ω are 2Ω-periodic functions on R. The

Fourier transform of f on Z is

F (γ) =
∞∑

n=−∞
f [n]e−2πinγ/(2Ω),
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with corresponding inversion formula

f [n] =
1

2Ω

∫ Ω

−Ω

F (γ)e2πinγ/(2Ω)dγ.

The representation, F , is called a Fourier series with Fourier coefficients,

{f [n]}n∈Z
.

The deterministic autocorrelation of a function f : Z→ R is

rf [k] = lim
N→∞

1

2N + 1

N∑

n=−N

f [n + k]f [n],

If f is p-periodic on Z, then the autocorrelation is defined as

rf [k] =
1

p

p∑

n=1

f [n + k]f [n],

for k = 1, 2, . . . , p.

The power spectrum of f is the Fourier transform of the autocorrelation func-

tion,

Sf (γ) =
∞∑

k=−∞
rf [k]e−2πinγ/(2Ω)

In some physical situations, the function f cannot be measured, yet the autocor-

relation rf can be measured. In these cases, the power spectrum of f contains

information about the magnitude, but not phase, of the frequency components

found in f . A common interpretation of the integral
∫ b

a
Sf (γ)dγ is the average

power contained in the frequency band [a, b].

For this thesis, a function f is said to be uniformly distributed white noise if

the power spectrum of f is a Dirac delta measure at 0.

The z-transform of a function x : Z→ C is X : C→ C, defined by

X(z) =
∞∑

n=−∞
x[n]z−n.

Note that X(e2πiγ) is the Fourier transform of x, i.e., X(e2πiγ) = x̂(γ).
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A Bessel function of order m is denoted Jm(z), and is defined as the coeffi-

cients of the Fourier series of the 2π-periodic function eiz sin(x), i.e.,

eiz sin(x) =
∞∑

m=−∞
Jm(z)eimx.

A function f(m) = O(g(m)) as m→∞ means, there exist a constant B > 0

such that limm→∞

∣∣∣f(m)
g(m)

∣∣∣ = B.

The floor of a number x, is denoted bxc, and is defined as the greatest integer

less than or equal to x. The fraction part of x is 〈x〉 = x− bxc.

The unit sphere in Rd is Sd−1 =
{
x ∈ Rd : ‖x‖ = 1

}
.

The Dirac vector basis, or canonical basis for Rd is D = {δk}dk=1, where δk[n]

equals one if k = n, and 0 otherwise.

A d × d matrix U is orthogonal if the columns of U are orthonormal, i.e.,

UT U = Id, where UT is the transpose of U and Id is the d× d identity matrix. If

U is orthogonal, then for any x, y ∈ Rd, ‖Ux‖ = ‖x‖ and 〈Ux, Uy〉 = 〈x, y〉.

The set of all d× d orthogonal matrices forms the orthogonal group,

Od =
{
U ∈ GL(d, R) : UT U = 1

}
,

where GL(d, R) is the group of d× d invertible matrices. Because

1 = det(I) = det(UT U) = det(U)2,

we note det : Od → {+1,−1}, and is a group homomorphism with kernel equal to

the special orthogonal group SOd = {U ∈ Od : det(U) = +1}, which is therefore

a subgroup of index 2 in Od. We think of SOd as rotations and Od \ SOd as

reflections.

A d×d matrix A is symmetric if AT = A. The spectral theorem for symmetric

matrices is
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Theorem 1.1 (Spectral Theorem). A d × d symmetric matrix A has the

following properties:

(a.) A has n real eigenvalues counting multiplicities.

(b.) The dimension of the eigenspace for each eigenvalue λ equals the mul-

tiplicity of λ as a root of the characteristic equation det(A− λI) = 0.

(c.) The eigenspaces are mutually orthogonal, in the sense that eigenvectors

corresponding to different eigenvalues are orthogonal.

(d.) A is orthogonally diagonalizable, i.e., there is an orthonormal basis of

eigenvectors for A.

We also use the following classical result from ergodic theory,

Theorem 1.2 (Weyl). If γ is irrational, and h : R → C is 1-periodic and

Riemann integrable, then

lim
N→∞

1

2N + 1

N∑

k=−N

h(〈kγ〉) =

∫ 1

0

h(x)dx.

Intuitively the sequence {〈kγ〉} fills the unit interval so the sums converge to

the integral.

Finally, we briefly define the groups that appear in this thesis. A group is

Abelian if for every x, y ∈ G, xy = yx.

Z/nZ denotes the additive group of integers modulo n and is defined as the

set {0, 1, . . . , n− 1} with the group law being defined as addition mod n, i.e.,

a + b = r where r is the remainder after dividing a + b by n.

D2n denotes the dihedral group of order 2n and is defined as the set of sym-

metries of a regular n-gon. More precisely, if R is rotation by 2π
n

, S is reflection

through the x-axis, and the group law is symmetry composition, then Rn is the

identity, SR = Rn−1S, and D2n = {1, R,R2, . . . , Rn−1, S, SR, SR2, . . . , SRn−1}.
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Sn denotes the symmetric group of degree n and is defined as the set of all

bijections or permutations of {1, . . . , n} with the group law being defined as

function composition.

An denotes the alternating group of degree n. An is a subgroup of Sn and is

defined as the set of all even permutations in Sn. A permutation is even if it can

be written as a composition of an even number of 2-cycles. A permutation σ is a

2-cycle if σ fixes all but two of the elements in its domain {1, . . . , n}.

Z/nZ is Abelian, D2n and Sn are non-Abelian for n ≥ 3, and An is non-

Abelian for n ≥ 4. Finally A4, S4, and A5 are isomorphic to the rotational

symmetries of a tetrahedron, cube/octahedron, and icosahedron/dodecahedron,

respectively.
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Chapter 2

Quantization and Power Spectra

It is important to understand, in detail, the information loss at the quantization

step of an A/D conversion. We begin by recalling the first order Σ∆ quantization,




en = en−1 + f(nT )− qT
n

qT
n = Q(en−1 + f(nT )),

(2.1)

where Q, called the quantizer, is some thresholding function such as sign(·), f(nT )

is a sample from a bandlimited function, qT
n is the associated output bit from the

quantizer, and en is the quantization error which is also called the internal state

in [DD03] and is labeled un there. To motivate this change in notation (from

un to en), introduce the sequence wn = f(nT ) + en−1, called the modified input.

Then we can rewrite (2.1) as




wn = f(nT ) + en−1

qT
n = Q(wn)

en = wn − qT
n .

(2.2)

Studying the recursion (2.2) we see how the Σ∆ scheme can be split into the

following three steps:
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1. modify the input by adding previous quantization errors,

2. apply the quantization rule to the modified input,

3. compute the current quantization error.

The recursion (2.2) is the one dimensional analog of a common way to write

error diffusion schemes which are used to halftone images. Also, en in (2.2) is

consistent with the notation in [Gra90].

The first line of (2.1),

en = en−1 + f(nT )− qT
n , (2.3)

displays a relationship between the two types of error found in Σ∆ schemes. The

first kind of error, f(nT ) − qT
n , is the difference between the input and output

of the entire scheme. The second type of error, en, is the error which we have

referred to as the quantization error. It is the difference between the input and

output of Q. In order to understand the relationship between these two types of

errors, following the development in [EFKM03], we take the z-transform of (2.3).

Thus we obtain,

E(z) = E(z)z1 + X(z)−B(z), (2.4)

where

E(z) =
∞∑

n=−∞
enz

−n,

X(z) =
∞∑

n=−∞
f(nT )z−n,

and

B(z) =
∞∑

n=−∞
qT
n z−n.
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We can rewrite (2.4) as

X(z)−B(z) = H(z)E(z), where H(z) = 1− z. (2.5)

Thus, if we know E(z), the frequency content of en, then we can derive X(z) −

B(z), the frequency content of f(nT ) − qT
n . Since H(z) = 0 at z = 1, this

frequency domain representation of (2.3) shows that the Σ∆ scheme is trying to

minimize X(1)−B(1) =
∑∞

n=−∞ f(nT )−
∑∞

n=−∞ qT
n .

Also notice that if we solve for E(z) in (2.5) we obtain

E(z) = K(z)(X(z)−B(z)), where K(z) =
1

1− z
;

and we see that K(z) has a pole at z = 1, which suggests that Σ∆ can be roughly

viewed as an error minimization that gives higher priority to the DC component.

2.1 A quantization error calculation

For Σ∆ modulation, we seek to understand the frequency components found in

en. We shall do this by first isolating the quantizer, that is, considering the second

line of (2.2) separate from the rest of the recursion. This is the approach taken

in [Gra90]. To this end, let M be a positive even integer and let ∆ be a positive

real number. Consider the function Q : R→ {a1, a2, . . . , aM} given by

Q(w) =
M∑

j=1

aj1Aj
(w),
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Figure 2.1: Graph of Q (left) and e (right), with M = 6 and ∆ = 1/3.

where

aj = (−M + 2j − 1)
∆

2
if j = 1, . . . ,M

Aj =

[
aj −

∆

2
, aj +

∆

2

)
if j = 2, . . . ,M − 1,

A1 =

(
−∞, a1 +

∆

2

)
,

AM =

[
aM −

∆

2
,∞
)

.

We call Q a uniform quantizer with M levels and ∆ spacing. If M = 2 and

∆ = 1, then Q = sign(·). For other choices of M and ∆, the graph of Q is a

staircase with M levels, rising at an angle of π
4
, see Figure 2.1. We can also write

Q in terms of the floor function b·c,

Q(w) =





∆
(

1
2

+
⌊

w
∆

⌋)
, if w ∈

[
−M∆/2,M∆/2

)

sign(w) (M−1)∆
2

, otherwise.

(2.6)

Now, consider the quantization error function e(w) = w−Q(w). By inspecting

the graph of e in Figure 2.1, we notice that e is a ∆-periodic function in the
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interval
[
−M

2
∆, M

2
∆
)
. This interval is called the no-overload interval for Q and

e. We have

Proposition 2.1. Let Q(w) =
∑M

j=1 aj1Aj
(w) be a uniform quantizer with M

levels and ∆ spacing, and let e(w) = w − Q(w). For any w in the no-overload

interval, i.e., w ∈ [−M∆/2,M∆/2), we have

e(w) = −∆

(
1

2
−
〈w

∆

〉)
, (2.7)

and

e(w) =
∑

l 6=0

−∆

2πil
e2πilw/∆. (2.8)

Proof. To prove (2.7), use (2.6). Hence for w in the no-overload interval,

e(w) = w −Q(w) = ∆
(w

∆

)
−
(

∆

2
+ ∆

⌊w

∆

⌋)

= −∆

(
1

2
− w

∆
+
⌊w

∆

⌋)
= −∆

(
1

2
−
〈w

∆

〉)

To prove (2.8), since w is assumed in the no-overload interval, e is a ∆-periodic

function of w, hence e has the Fourier series representation

e(w) =
∑

l 6=0

−∆

2πil
e2πilw/∆, for w ∈

[
−M

2
∆,

M

2
∆

)
.

where w is the value of the input.

In view of this proposition, our goal is to choose the input sequence, wn, so

that equation (2.8) simplifies and makes computation of the power spectrum of

e(wn) relatively easy.

2.2 Constant input

For the remainder of Chapter 2, let M and ∆ be fixed and let Q be an M level ∆

spaced uniform quantizer. Then, given an input wn, let en := e(wn) = wn−Q(wn)
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be the quantization error sequence associated with wn. With the goal that was

stated at the end of the previous section in mind, first consider wn = c, where c

is a constant.

Proposition 2.2. Let wn = c for all n ∈ Z, and let en be the associated quantizer

error sequence. Then the autocorrelation of en is

re(k) = |c−Q(c)|2 ,

and the power spectrum of en is

Se(γ) = |c−Q(c)|2 δ0(γ)

Proof. Since wn = c, where c is a constant, we have that

en := e(wn) = e(c) = c−Q(c).

Hence the autocorrelation is

re(k) = lim
N→∞

1

2N + 1

N∑

n=−N

en+ken = lim
N→∞

|c−Q(c)|2 .

Thus, the power spectrum is

Se = (re)
∧ = |c−Q(c)|2 (e2πi0n)∧ = |c−Q(c)|2 δ0.

Therefore, as we would expect, all the power in the quantization error is

concentrated in the DC component, i.e., 0 frequency.

2.3 Sinusoidal input

Next, consider the input wn = A sin(nω0 + θ) where ω0 = 2πγ0, γ0 > 0, θ ∈ R,

and 0 < A < M
2

∆. For this choice of A, wn lies in the no-overload interval, hence
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the Fourier representation (2.8) is valid for each term in the sequence {wn}. Using

this representation, we show

Proposition 2.3. Let γ0 > 0, ω0 = 2πγ0, θ ∈ R, and 0 < A < M
2

∆. Let

wn = A sin(nω0 + θ) and let en be the associated quantization error sequence.

Then

en =
∞∑

m=−∞
bmei(ω0m)n

where

b2m+1 =
−∆ei(2m+1)θ

πi(2m + 1)


1 + 2

bA/∆c∑

k=1

cos
(
(2m + 1) sin−1(∆k/A)

)

 (2.9)

and b2m = 0.

Proof. Substituting this sinusoidal input into the Fourier expansion of the quan-

tization error (2.8), we have

∀n, en := e(wn) =
∑

l 6=0

−∆

2πil
e2πilA sin(nω0+θ)/∆. (2.10)

Now, we can generate the Bessel functions of order m by considering the Fourier

transform of the 2π-periodic function eiz sin x. Then the synthesis equation gives

eiz sin x =
∞∑

m=−∞
Jm(z)eimx. (2.11)

Next, letting z = 2πlA/∆ and x = nω0 + θ in (2.11), we can simplify (2.10) as

follows:

en =
∑

l 6=0

−∆

2πil

[ ∞∑

m=−∞
Jm(2πlA/∆)eim(nω0+θ)

]

=
∞∑

m=−∞

[∑

l 6=0

−∆

2πil
Jm(2πlA/∆)eimθ

]
eimnω0

=
∞∑

m=−∞
bmei(ω0m)n, (2.12)
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where bm =
∑

l 6=0
−∆
2πil

Jm(2πlA/∆)eimθ. Now,

bm =
−∆eimθ

2πi

( ∞∑

l=1

Jm(2πlA/∆)

l
+

∞∑

l=1

Jm(2π(−l)A/∆)

−l

)

=
−∆eimθ

2πi

( ∞∑

l=1

Jm(2πlA/∆)

l
+ (−1)m+1

∞∑

l=1

Jm(2π(+l)A/∆)

+l

)
(2.13)

=





0, if m is even

−∆eimθ

πi

(∑∞
l=1

Jm(2πlA/∆)
l

)
, if m is odd,

(2.14)

where (2.13) follows since Bessel functions satisfy the symmetry

Jm(−z) = (−1)mJm(z) = J−m(z).

We have to verify (2.14). The first claim for m even, is clear. For odd indices,

we shall show in Lemma 2.4 that

b2m+1 =
−∆ei(2m+1)θ

πi(2m + 1)


1 + 2

bA/∆c∑

k=1

cos
(
(2m + 1) sin−1(∆k/A)

)

 ;

and this formula shows that bm ∼ O(1/m), as m→∞.

Lemma 2.4. Let Jm(z) be the Bessel function of order m defined in (2.11). For

m = −1, 0, 1 . . ., let S(m) =
∑∞

l=1
J2m+1(2πlA/∆)

l
. Then

S(m) =
Aπ

2∆
(δ−1[m]− δ0[m])

+
1

2m + 1


1 + 2

bA/∆c∑

k=1

cos
(
(2m + 1) sin−1 (k∆/A)

)



Proof. We first consider the analysis equation for the Fourier representation

(2.11) and obtain the integral formula

Jm(z) =
1

2π

∫ π

−π

eiz sin xe−imxdx

=
1

2π

∫ π

−π

cos(z sin x−mx)dx +
i

2π

∫ π

−π

sin(z sin x−mx)dx (2.15)

=
1

π

∫ π

0

cos(z sin x−mx)dx (2.16)

26



where (2.16) follows since if Θ(x) = z sin x−mx, then

Θ(−x) = z sin(−x) + mx = −(z sin x−mx) = −Θ(x)

and therefore cos(Θ(x)) is even and sin(Θ(x)) is odd. So, if we split
∫ π

−π
into

∫ 0

−π
+
∫ π

0
in (2.15), then the cos integrals combine and the sin integrals cancel.

Next, we can further simplify (2.16) using the sum formulas for cos and sin. We

obtain

Jm(z) =
1

π

∫ π

0

cos(z sin x) cos(mx) + sin(z sin x) sin(mx)dx

=
1

π

∫ π/2

0

cos(z sin x) cos(mx) + sin(z sin x) sin(mx)dx

+
1

π

∫ π

π/2

cos(z sin x) cos(mx) + sin(z sin x) sin(mx)dx

=
1

π

∫ π/2

0

cos(z sin x) cos(mx) + sin(z sin x) sin(mx)dx

+
1

π

∫ π/2

0

(−1)m cos(z sin x) cos(mx) + (−1)m+1 sin(z sin x) sin(mx)dx

=





2
π

∫ π/2

0
cos(z sin x) cos(mx)dx, if m is even

2
π

∫ π/2

0
sin(z sin x) sin(mx)dx, if m is odd.

Using this to simplify S(m), which was defined as the infinite sum in the formula

for b2m+1 (equation (2.12)), we have

S(m) =
∞∑

l=1

1

l

2

π

∫ π/2

0

sin

(
2πA

∆
l sin x

)
sin((2m + 1)x)dx

=
2

π

∫ π/2

0

sin((2m + 1)x)

( ∞∑

l=1

sin
(
2π
〈

A
∆

sin x
〉
l
)

l

)
dx (2.17)

From a standard calculation in Fourier analysis, the sum on the right side of

equation (2.17) has the closed formula,

∞∑

l=1

sin(lθ)

l
=

π

2
− θ

2
, for 0 < θ < 2π;
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and so (2.17) becomes

S(m) =
2

π

∫ π/2

0

sin((2m + 1)x)

(
π

2
− 2π

〈
A
∆

sin x
〉

2

)
dx

=

∫ π/2

0

sin((2m + 1)x)dx

︸ ︷︷ ︸
I1(m)

−2

∫ π/2

0

sin((2m + 1)x)

〈
A

∆
sin x

〉
dx.

︸ ︷︷ ︸
I2(m)

Now, I1(m) = 1
2m+1

. In order to compute I2(m) we first need a formula for
〈

A
∆

sin x
〉

for x ∈ [0, π/2]. Observe, for x ∈ [0, π/2], that

〈
A

∆
sin x

〉
=

A

∆
sin x− k, when k ≤ A

∆
sin x < k + 1,

i.e., when sin−1
(

k∆
A

)
≤ x < sin−1

(
(k+1)∆

A

)
. Therefore, set K = bA/∆c, assume

bA/∆c 6= A/∆, and set

α0 = 0,

αk = sin−1

(
∆

A
k

)
, for k = 1, 2, . . . , K,

αK+1 = π/2,

see Figure 2.2. Then we have

〈
A

∆
sin x

〉
=

K∑

k=0

(
A

∆
sin x− k

)
1[αk,αk+1)(x). (2.18)

Using (2.18), we can compute I2(m),

I2(m) =

∫ π/2

0

sin((2m + 1)x)
K∑

k=0

(
A

∆
sin x− k

)
1[αk,αk+1)(x)dx

=
K∑

k=0

∫ αk+1

αk

sin((2m + 1)x)
A

∆
sin xdx

︸ ︷︷ ︸
I3(m)

−
K∑

k=0

∫ αk+1

αk

k sin((2m + 1)x)dx

︸ ︷︷ ︸
S4(m)

,
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Figure 2.2: Computing
〈

A
∆

sin(x)
〉

with A = 5 and ∆ = 1. The curve

is y = 5 sin(x), α0 = 0, and α5 = π/2.

and we can compute I3(m) using standard trigonometric formulas. In fact,

I3(m) =





−A
2∆

π
2
, if m = −1

A
2∆

π
2
, if m = 0

0, otherwise

.
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Furthermore, S4(m) has a telescoping property,

S4(m) =
K∑

k=0

−k cos((2m + 1)x)

2m + 1

∣∣∣∣
αk+1

αk

=
K∑

k=0

−k

2m + 1
cos((2m + 1)αk+1) +

K∑

k=0

k

2m + 1
cos((2m + 1)αk)

=
−K

2m + 1
cos
(
(2m + 1)

π

2

)
+

0

2m + 1
cos((2m + 1)0)

+
K∑

k=1

k − (k − 1)

2m + 1
cos((2m + 1)αk)

=
1

2m + 1

K∑

k=1

cos((2m + 1)αk).

Thus,

S(m) = I1(m) + I2(m)

= I1(m) + I3(m) + S4(m)

=
1

2m + 1
+

Aπ

2∆
[δ−1 − δ0] +

2

2m + 1

bA/∆c∑

k=1

cos
(
(2m + 1) sin−1 (k∆/A)

)

Now using this result, since b2m+1 = −∆ei(2m+1)x

πi(2m+1)
S(m), we obtain the formula

(2.9) in Proposition 2.3.
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2.4 Growth of bm

With formula (2.9), we see that {bm} ∈ `2(Z),

∞∑

m=−∞
|bm|2

= 2

(
πA

2∆

)2

+
1

π2

∞∑

m=−∞

(
1

2m + 1

)2

1 + 2

bA/∆c∑

k=1

cos
(
(2m + 1) sin−1 (k∆/A)

)



≤ 2

(
πA

2∆

)2

+
1

π2

∞∑

m=−∞

(
1

2m + 1

)2

(1 + 2 bA/∆c)

< 2

(
πA

2∆

)2

+
1

π2
2

(
π2

6

)
(1 + 2 bA/∆c)

=
π2A2

2∆2
+

1

3
(1 + 2 bA/∆c)

<∞

We can also see that (for m 6= 0, 1) the size of |b2m+1|2 is ultimately controlled

by the size of
(

1
2m+1

)2
:

|b2m+1|2 ≤
1

π2

∣∣∣∣
1

2m + 1

∣∣∣∣
2

|1 + 2 bA/∆c|2 = O

((
1

2m + 1

)2
)

, m→∞.

2.5 Power spectrum of en

Next, we compute the power spectrum of the quantization error en associated

with a sinusoidal input wn = A sin(nω0 + θ). We have two cases, ω0 ∈ 2πQ and

ω0 /∈ 2πQ.

Proposition 2.5. Let en =
∑∞

m=−∞ bmei(ω0m)n be the quantization error associ-

ated with a sinusoidal input wn = A sin(nω0 + θ) computed in Proposition 2.3,

and let ω0 = 2πα/β, where α < β. Assume for every p ∈ {0, 1, . . . , β − 1}, we

31



have ∣∣∣∣∣
∑

m′∈Z

bm′β+p

∣∣∣∣∣ <∞.

Then the power spectrum of en is

Se = (re)
∧ =

β−1∑

p=0

|cp|2δ〈αp

β 〉,

where cp =
∑

m′∈Z
bm′β+p.

Proof. Let γ0 = α/β, so ω0 = 2πα/β. Let m = m′β + p where m′ ∈ Z and

p = 0, 1, . . . , β − 1. Then (2.12) becomes

en =

β−1∑

p=0

∑

m′∈Z

bm′β+pe
2πi α

β
(m′β+p)n. (2.19)

Clearly, e2πi α
β

(m′β+p)n = e2πi α
β

pn; so that if we let cp =
∑

m′∈Z
bm′β+p, then (2.19)

becomes

en =

β−1∑

p=0

cpe
2πi α

β
pn =

β−1∑

p=0

cpe
iω0pn. (2.20)

Since by assumption |cp| < ∞ for all p, we have that en is well defined and

therefore β-periodic in n.

Now, for a β-periodic function, the deterministic autocorrelation is

re(k) =
1

β

β−1∑

n=0

ek+nen. (2.21)
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Thus, substituting (2.20) into (2.21), we obtain

re(k) =
1

β

β−1∑

n=0

(
β−1∑

p=0

cpe
iω0p(k+n)

)(
β−1∑

q=0

cqe
−iω0qn

)

=
1

β

β−1∑

p=0

β−1∑

q=0

cpcq

(
β−1∑

n=0

eiω0[p(k+n)−qn]

)

=
1

β

∑

p=q

|cp|2eiω0pk

(
β−1∑

n=0

1

)

+
1

β

∑

p6=q

cpcqe
iω0pk

(
β−1∑

n=0

(
eiω0(p−q)

)n
)

(2.22)

=
∑

p=q

|cp|2eiω0pk + 0, (2.23)

where (2.23) follows since the sum in parentheses in (2.22) is zero by the geometric

series formula, i.e.,

β−1∑

n=0

(
eiω0(p−q)

)n
=

1−
(
e2πi α

β
(p−q)

)n

1− e2πi α
β

(p−q)
=

1− 1

1− e2πi α
β

(p−q)
= 0.

From equation (2.23) we can compute the power spectrum of en. First

(δλ0)
∨ (k) = e+2πikλ0 , so setting λ0 = αp

β
, we have

re(k) =

β−1∑

p=0

|cp|2
(
δαp

β

)∨
(k) =

(
β−1∑

p=0

|cp|2δαp

β

)∨

(k).

Hence if ω0 = 2πα/β, then the power spectrum of en is

Se = (re)
∧ =

β−1∑

p=0

|cp|2δαp

β
,

Thus, if ω0 = 2π α
β
, where α < β and the greatest common divisor of α and β

is 1, then the quantization error en associated with the input wn = A sin(nω0 +

θ) has power concentrated at β evenly spaced deltas of height |cp|2 where p =
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0, 1, . . . , β − 1. The assumption |cp| < ∞ is necessary since (2.9) shows that

bm ∼ O(1/m), as m→∞, and therefore, cp ∼
∑

m′ 6=0 1/m′.

If ω0 /∈ 2πQ, then a different type of simplification occurs.

Proposition 2.6. Let en =
∑∞

m=−∞ bmei(ω0m)n be the quantization error associ-

ated with a sinusoidal input wn = A sin(nω0 + θ) computed in Proposition 2.3,

and let ω0 /∈ 2πQ. Then the power spectrum of en is

=
∞∑

p=−∞
|bp|2δ〈(2p+1)γ0〉

where ω0 = 2πγ0.

Proof. The deterministic autocorrelation of en is

re(k) = lim
N→∞

1

2N + 1

N∑

n=−N

en+ken.

Hence, we compute

re(k) = lim
N→∞

1

2N + 1

N∑

n=−N

en+ken

= lim
N→∞

1

2N + 1

N∑

n=−N

( ∞∑

p=−∞
bpe

iλp(n+k)

)( ∞∑

q=−∞
bqe

−iλpn

)
(2.24)

=
∞∑

p=−∞

∞∑

q=−∞
bpbqe

iλpk

(
lim

N→∞

1

2N + 1

N∑

n=−N

ein(λp−λq)

)

=
∑

p=q

|bp|2eiλpk

(
lim

N→∞

1

2N + 1

N∑

n=−N

1

)
(2.25)

+
∑

p6=q

bpbqe
iλpk

(
lim

N→∞

1

2N + 1

N∑

n=−N

ei〈n(λp−λq)〉

)
(2.26)

where the switching of lim and
∑∞

−∞
∑∞

−∞ in (2.24) is formal. Now, if we set

h(x) = e2πix and

γp,q =
λp − λq

2π
= 〈(2p + 1)γ0〉 − 〈(2q + 1)γ0〉 ,

34



then since λp − λq /∈ 2πQ, we have that γp,q /∈ Q and therefore Weyl’s uniform

distribution theorem applies, see Section 1.8. Hence the limit in parentheses in

(2.26) becomes

lim
N→∞

1

2N + 1

N∑

n=−N

e2πi〈nγp,q〉 = lim
N→∞

1

2N + 1

N∑

n=−N

h
(
〈nγp,q〉

)

=

∫ 1

0

h(x)d(x) = 0.

Therefore, we have

re(k) =
∞∑

p=−∞
|bp|2eiλpk, (2.27)

where bp =
∑∞

l=1
−∆
πil

J2p+1(2πlA/∆)ei(2p+1)θ and λp = 2π 〈(2p + 1)γ0〉.

We can now compute the power spectrum of e. Since (δ λp

2π

)∨ = eiλp(·), we have

Se = (re)
∧ =

( ∞∑

p=−∞
|bp|2eiλp(·)

)∧

=

( ∞∑

p=−∞
|bp|2

(
δλp

2π

)∨
)∧

=

( ∞∑

p=−∞
|bp|2δλp

2π

)∨∧

=
∞∑

p=−∞
|bp|2δλp

2π

,

and λp

2π
= 2π〈(2p+1)γ0〉

2π
= 2π 〈(2p + 1)γ0〉.

Thus, for ω0 /∈ Q, the quantization error associated with the input wn =

A sin(nω0 +θ) has frequency components whose magnitude squared is |bp|2 at the

points of the uniformly distributed sequence 〈(2p + 1)γ0〉, where ω0 = 2πγ0.
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2.6 Power spectra and Σ∆ modulation error

Next, we demonstrate how the above analysis can be applied to the Σ∆ modulator

(2.1). Rewrite the Σ∆ modulator (2.1) and (2.2) as





wn = xn + en−1

en = wn −Q(wn).

(2.28)

where we have replaced f(nT ) by xn, and where Q is an M level, ∆ space uniform

quantizer. We first seek to show that for bounded inputs xn, the modified input

wn remains in the no-overload interval for Q.

Proposition 2.7. Let B > 0, and let {xn} be a sequence bounded by B, i.e.,

|xn| ≤ B. Let M ∈ N, let ∆ ≤ 2B
M−1

, and let Q be the associated M level, ∆

spaced uniform quantizer. Let |e0| ≤ ∆
2
, and for n ≥ 1, let wn and en be defined

by the Σ∆ recursion (2.28). Then |en| ≤ ∆
2
, hence we can deduce wn lies in the

no-overload region for Q, i.e., |wn| ≤ M∆
2

.

Proof. First note that ∆ ≤ 2B
M−1

implies that B ≤ (M−1)∆
2

, hence |en−1| ≤ ∆
2

implies

|wn| = |xn + en−1| ≤ |xn|+ |en−1| ≤ B +
∆

2
≤ (M − 1)∆

2
+

∆

2
=

M∆

2
.

Thus, if the quantization error is bounded by ∆
2
, then the modified input wn is

in the no-overload interval. Proceeding by induction, we first note that the base

case, n = 0, is satisfied by assumption, i.e., |e0| ≤ ∆
2
.

For the induction step, let n > 0 and assume |en−1| ≤ ∆
2
. By the above

observation, wn lies in the no-overload interval, hence (2.7) is valid, i.e.,

e(wn) = −∆

(
1

2
−
〈wn

∆

〉)
.

36



Hence,

|en| = |e(wn)| = ∆
∣∣∣
〈wn

∆

〉

︸ ︷︷ ︸
∈[0,1]

−1

2

︸ ︷︷ ︸
∈[−1/2,1/2]

∣∣∣,

so by induction, |en| ≤ ∆
2

for all n ∈ N.

By virtue of Proposition 2.7, we can use Equations (2.7) and (2.8) to derive

a formula for the quantizer error in a Σ∆ for a given bounded input xn.

Proposition 2.8. Under the same assumptions as Proposition 2.7, if e0 = ∆
2
,

then

en = −∆

(
1

2
−
〈 −n

2
+
∑n

k=0 xk

∆

〉)
.

Proof. By Proposition 2.7, since wn is in the no-overload interval, we have that

en = −∆

(
1

2
−
〈wn

∆

〉)
=
−∆

2
+ ∆

〈
xn + en−1

∆

〉
, (2.29)

where the second equality follows from (2.28). Now, let yn = en + ∆
2
. Then (2.29)

implies

yn = ∆

〈
xn

∆
+

yn−1

∆
− 1

2

〉
.

Now by induction, we have yn = ∆
〈

1
∆

∑n
k=1 xk − n

2

〉
, since for n = 0, y0 =

e0 −∆/2 = 0 and for n > 0, if yn−1 = ∆
〈

1
∆

∑n−1
k=1 xk − n−1

2

〉
, then

yn = ∆

〈
xn

∆
+

yn−1

∆
− 1

2

〉
= ∆

〈
xn

∆
+
〈 1

∆

n−1∑

k=1

xk −
n− 1

2

〉
− 1

2

〉

= ∆

〈
xn

∆
+

1

∆

n−1∑

k=1

xk −
n− 1

2
− 1

2

〉
= ∆

〈
1

∆

n∑

k=1

xk −
n

2

〉
.

Substituting this into en = yn − ∆
2

we have,

en = −∆

(
1

2
−
〈 −n

2
+
∑n

k=0 xk

∆

〉)
.
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Now, since (2.7) is equivalent to (2.8), we have

en =
∑

l 6=0

−∆

2πil
e2πil(−n

2
+

Pn
k=1 xk)/∆

=
∑

l 6=0

−∆

2πil
e−πinl/∆e2πilx0/∆ · · · e2πilxn/∆.

So, to compute the power spectrum of the quantization error arising from a Σ∆

modulator with a bounded input, we must simplfy the above expression. This is

a possible direction of future research.
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Chapter 3

Quantization in Higher Dimensions

Next we consider the problem of quantizing two dimensional functions. Thus

we could consider either x : Z2 → R, x : Z → R2, or x : Z2 → R2. We shall

only study the first case here. We would like to develop schemes which behave

similar to the Σ∆ scheme in one dimension. For example, given a two dimensional

sequence of samples xm,n on {0, 1, . . . ,M} × {0, 1, . . . , N}, we wish to construct

a binary sequence, qm,n, satisfying the stability condition that if the input xm,n

is bounded, then the sum of the differences xm,n − qm,n, is bounded. That is, for

any B, there is a CB such that |xm,n| ≤ B implies
∑

m

∑
n(xm,n − qm,n) ≤ CB.

See (1.4) for a brief explanation as to why this bound is important.

3.1 Standard scheme

We first generalize the one dimensional Σ∆ recursion which quantizes a function

x : Z → [−1, 1] by producing a function q : Z → {±1} such that
∑

n(xn −

qn) ≤ 2 = m[−1, 1]. Thus, we first consider a function x : {0, 1, . . . ,M} ×
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{0, 1, . . . , N} → [−1, 1] as an (M + 1)× (N + 1) matrix




x0,0 . . . x0,N

...
. . .

...

xM,0 . . . xM,N




.

We construct (M + 1)× (N + 1) matrices u, q as follows. Given u0,0 = c, where

c is a constant, construct the 0th column and 0th row of u and q using a one

dimensional Σ∆ scheme. That is, for column 0 and for m > 0, define um,0 and

qm,0 recursively by,





um,0 = um−1,0 + xm,0 − qm,0

qm,0 = Q(um−1,0 + xm,0)

(3.1)

where Q(y) = sign(y). Likewise, for row 0 and for n > 0, define u0,n and q0,n

satisfying




u0,n = u0,n−1 + x0,n − q0,n

q0,n = Q(u0,n−1 + x0,n).

(3.2)

Thus we have the leftmost row and topmost column of both u and q defined, i.e.,




u0,0 . . . u0,N

... ? ?

uM,0 ? ?




,




q0,0 . . . q0,N

... ? ?

qM,0 ? ?




.

Next, to define the inside of u and q, for n,m ≥ 1, use the initial data on the

edges of u and q and recursively construct um,n and qm,n to satisfy





um,n = um−1,n − um−1,n−1 + um,n−1 + xm,n − qm,n

qm,n = Q(um−1,n − um−1,n−1 + um,n−1 + xm,n),

(3.3)
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Figure 3.1: Graphical representation of the 2 dimensional Σ∆ recursion.

Different schemes can be constructed by considering more nonzero entries

when recursively defining um,n.

see Figure 3.1. Note, we have some freedom in what order we will construct the

um,n and qm,n. We can work down rows, across columns or along consecutive

reverse subdiagonals (similar to a common rule used to enumerate the rational

numbers). Also note that because we are using (3.3), we have the following

constraint. When we are constructing the (m,n)-entry, we must have already

constructed the (m− 1, n), (m,n− 1) and (m− 1, n− 1)-entries. (Note that the

diagonal scheme does generalize to an infinite dimensional input function xm,n

easily.)

Using the above recursions, we have

Proposition 3.1. Let x : {0, . . . ,M} × {0, . . . , N} → [−1, 1], and let um,n and

qm,n be defined by recursions (3.1), (3.2), and (3.3). For any 1 ≤ m ≤ M and
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1 ≤ n ≤ N ,

m∑

j=1

n∑

k=1

(xj,k − qj,k) = u0,0 − um,0 − u0,n + um,n. (3.4)

Furthermore,

m∑

j=1

n∑

k=1

(j,k)6=(0,0)

(xj,k − qj,k) = um,n − u0,0. (3.5)

Proof. Now at any point (m,n) ∈ {0, 1, . . . ,M} × {0, 1, . . . , N}, (3.3) implies

m∑

j=1

(
n∑

k=1

xj,k − qj,k

)

=
m∑

j=1

n∑

k=1

[uj,k − uj−1,k + uj−1,k−1 − uj,k−1]

=
m∑

j=1

n∑

k=1

[uj,k + (−uj,k + uj,k)− uj−1,k + uj−1,k−1 − uj,k−1]

=
m∑

j=1

n∑

k=1

(uj,k − uj−1,k)

︸ ︷︷ ︸
d1

+
m∑

j=1

n∑

k=1

(uj−1,k−1 − uj,k)

︸ ︷︷ ︸
d2

+
m∑

j=1

n∑

k=1

(uj,k − uj,k−1)

︸ ︷︷ ︸
d3

,

and if we closely inspect these sums, we see cancellation due to telescoping,

d1 =
n∑

k=1

m∑

j=1

(uj,k − uj−1,k) =
n∑

k=1

(um,k − u0,k),

d3 =
m∑

j=1

n∑

k=1

(uj,k − uj,k−1) =
m∑

j=1

(uj,n − uj,0),
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and

d2 =
m∑

j=1

n∑

k=1

(uj−1,k−1 − uj,k)

=
m∑

j=1

n∑

k=1

(uj−1,k−1 − uj−1,k + uj−1,k − uj,k)

=
m∑

j=1

n∑

k=1

(uj−1,k−1 − uj−1,k) +
n∑

k=1

m∑

j=1

(uj−1,k − uj,k)

=
m∑

j=1

(uj−1,0 − uj−1,n) +
n∑

k=1

(u0,k − um,k).

So when we add d1, d2, d3, we have

m∑

j=1

n∑

k=1

(xj,k − qj.k)

= d1 + d2 + d3

=
m∑

j=1

(uj,n − uj,0 + uj−1,0 − uj−1,n) +
n∑

k=1

(um,k − u0,k + u0,k − um,k)

=
m∑

j=1

(uj−1,0 − uj,0) +
m∑

j=1

(uj,n − uj−1,n) + 0

= u0,0 − um,0 − u0,n + um,n,

and we have shown (3.4). Furthermore, since the 0th row and column satisfy the

one dimensional Σ∆ recursion, by induction,

u0,0 − um,0 − u0,n + um,n = (u0,0 − um,0) + (u0,0 − u0,n) + (um,n − u0,0)

=

(
m∑

j=1

(xj,0 − qj,0)

)
+

(
n∑

k=1

(x0,k − q0,k)

)
+ (um,n − u0,0).

Thus, if we bring the sums to the other side of the equation in (3.4), we have

proven (3.5).

If we let ∆j(uj,k) = uj,k−uj−1,k, and ∆k(uj,k) = uj,k−uj,k−1, then we see that

the first line of recursion (3.3) becomes xj,k − qj,k = ∆j∆k(uj,k), [Yıl02]. Since
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∑m
j=1

∑n
k=1 and ∆j∆k are inverses of each other, we see a heuristic reason why

recursion(3.3) implies Proposition 3.1. By this reasoning, it is intuitively clear

how we would generalize to quantizing functions whose domain is a subset of Zd,

i.e., d-dimensional Σ∆.

Since we now have the sum of the quantization errors bounded by the internal

state sequence, um,n, we seek to have control over the size of um,n, given that our

input x(m,n) is bounded by 1, i.e., xm,n < 1. Interestingly, there is no such

control as Proposition 3.2 shows.

Proposition 3.2. For any B > 0, there exists K = KB ∈ N and a bounded signal

x : {0, . . . , K} × {0, . . . , K} → [−1, 1], such that if um,n and qm,n are defined by

the two dimensional Σ∆ recursion (3.1), (3.2), (3.3), then

max
m,n∈{0,...,K}

|um,n| > B.

Proof. Let B > 0 be given, choose K ∈ N such that K > 1 + B
2
. For (m,n) ∈

{0, 1, . . . , K} × {0, 1, . . . , K}, set

xm,n =





1− 1
K

, if n = 0 and m = 0, . . . , K,

1− 1
K

, if m = 0 and n = 0, . . . , K,

−1, if m,n ≥ 1 and m + n ≤ K,

1, if m,n ≥ 1 and m + n ≥ K,

(3.6)

see figure Figure 3.2 with K = 10. Let u0,0 = 0, and m,n = 0, . . . , K, let um,n

and qm,n be defined by the two dimensional Σ∆ recursion (3.1), (3.2), (3.3). Then

by induction we prove that

um,n =





−m+n
K

, if m + n ≤ K,

{
2− 1

K

}
(m + n)− 2K, if m + n > K.

(3.7)
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Figure 3.2: An example of the two dimensional signal xm,n defined

in (3.6). Note K = 10 so xm,n = 0.9 along the 0th row and column,

xm,n = −1 in the shaded upper left, and xm,n = 1 in the unshaded lower

right.

For the base case of our induction we notice that if m = 0 = n then u0,0 = 0 = 0+0
K

.

Next, we induct along the 0th column. Let n = 0 and for m = 1, 2, . . . , K,

assume

um−1,0 = −m− 1 + 0

K
. (3.8)

then by (3.1), (3.6), and the induction hypothesis (3.8),

um,0 = um−1,0 + xm,0 − qm,0 =
(
1− m

K

)
− sign (1− m

K
) = −m

K

and induction give the result along the 0th column. Since the 0th row is defined

by (3.2) which is the same recursion as (3.1) except it runs along the row instead
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of the column, we have

u0,n = −0 + n

K
, for n = 0, . . . , K (3.9)

um,0 = −m + 0

K
, for m = 0, . . . , K. (3.10)

Now, let P (n) be the statement

um,n = −m + n

K
, for m = 1, . . . , K − n,

and let Q(m,n) be the statement

um,n = −m + n

K
.

Equation (3.10) shows P (n) for n = 0. Now, for any n = 1, 2, . . . , K assume

P (n − 1). For this fixed n, we next induct on m. Equation (3.9) shows Q(0, n)

and the base case m = 0 holds. Now, for m = 1, . . . , K−n, assume the induction

hypothesis Q(m− 1, n). Then P (n), Q(m− 1, n), and recursion (3.3) imply

um,n = um−1,n − um−1,n−1 + um,n−1 + xm,n − qm,n

= −m− 1 + n

K
− m + n− 1

K
+

m− 1 + n− 1

K
+ 1− qm,n

=

(
1− m + n

K

)
− sign

(
1− m + n

K

)

= −m + n

K
,

where 1 − m+n
K

> 0, since m ≤ K − n. So, by induction on m, we see that for

this fixed n, Q(m,n) for m = 1, . . . , K − n, i.e., for this fixed n, P (n). Thus by

induction on n we have proven

um,n = −m + n

K
, for m + n ≤ K, (3.11)

which is the first line of (3.7). Thus in the region above the reverse diagonal, the

internal state |um,n| is bounded by 1, see Figure 3.3.
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Figure 3.3: The internal state um,n which satisfies (3.1), (3.2), (3.3)

where xm,n is defined in (3.6) with K = 10, and so B ≤ 17. Note

−1 ≤ um,n ≤ 18.
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Next we show that as we cross the reverse diagonal the internal state um,n

grows larger than the given B.

For j = 0, . . . , K, let m + n = K + j. Proceeding by induction on j, we show

that the second line of (3.7) notice for j = 0, (3.11) implies

um,n = −m + n

K
= −1 =

(
2− 1

K

)
(m− n)− 2K.

For any j = 1, . . . , K, assume

(
2− 1

K

)
(m + n)− 2K, for m + n ≤ K − j + 1 (3.12)

then for m + n = j, (3.3) and the induction hypothesis (3.12) imply

um,n = um−1,n − um−1,n−1 + um,n−1 + xm,n − qm,n

= 2(m + n−K)− m + n

K
+ 1− sign

{
2(m + n−K)− m + n

K
+ 1

}

= 2(m + n−K)− m + n

K
(3.13)

where (3.13) follows since

2(m + n−K)− m + n

K
+ 1 = 2(K + j −K)− K + j

K
+ 1

=

{
2− 1

K

}
j

> 0.

Therefore we have shown (3.7). Finally, (3.7) implies uK,K = 2(K − 1) > B, see

Figure 3.3.

Reflecting on the proof of this proposition, we note that the constructed signal

xm,n equals 1 when um,n grows large, and 1 is the absolute value of the bit qm,n.

Thus, we next check that requiring xm,n to be bounded away from |qm,n| will
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reduce the size of the bound on the internal state um,n in this specific example.

That is, let

xm,n(α, β, γ) =





α, if n = 0 and m = 0, . . . , K,

α, if m = 0 and n = 0, . . . , K,

β, if m,n ≥ 1 and m + n ≤ K,

γ, if m,n ≥ 1 and m + n ≥ K,

(3.14)

and compare the result in Proposition 3.2 with the size of the bound on u when

we input the sequence xm,n(α, β, γ), with α = 1 − 1/K, β = .9, and γ = .9,

into the two dimensional Σ∆ scheme (3.1), (3.2), (3.3). For this example, when

K = 10, the largest value of u decreases from 18 to 3.

3.2 Constant input

We observed in the last section that a signal x which is constant above and below

the reverse diagonal repectively, and has a large jump across the reverse diagonal

results in large bound for the internal state u. We also observed that if the input

signal x is bounded away from |q|, then, in a specific example, the bound on u

is significantly smaller. Hence, it is plausible that if |xm,n| ≤ a < 1 and um,n is

defined by the two dimensional Σ∆ recursion (3.3), then |um,n| < Ba.

In order to obtain some inutition on the relationship between a and Ba, we

now reduce to the special case of a constant input signal, xm,n = a. As Figure 3.4

shows, the bound on u decreases as the distance from a to 1 = |qm,n| increases.

Figure 3.4 also shows that the relationship between a and max (um,n) is quite

intricate.
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Figure 3.4: We let xm,n = a for m,n = 0, . . . 50 and construct um,n using

(3.3). The top curve is a versus the maximum of u while the bottom is

a versus the minimum of u.
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3.3 A different quantization rule

The two dimensional Σ∆ recursion in (3.3) is not the only possible generalization

of a one dimensional Σ∆ modulator.

The following is a scheme inspired by [DD03]. Let |xm,n| ≤ a < 1, u0,0 =

0 = v0,0, and use (3.1) and (3.2) to construct the 0th row and 0th column of the

matrices um,n and vm,n. For m,n > 0, construct um,n and vm,n using the recursion




vm,n = vm−1,n + xm,n − qm,n

um,n = um,n−1 + vm,n

qm,n = sign (vm−1,n + xm,n + C sign(um,n−1))

(3.15)

where C ≥ 1 + 2a. Note the more complicated quantization rule, and that vm,n

is like a derivative with respect to m. Now

m∑

j=1

n∑

k=1

(xj,k − qj,k) =
m∑

j=1

n∑

k=1

(vm,n − vm−1,n)

=
m∑

j=1

n∑

k=1

(
(um,n − um,n−1)− (um−1,n − um−1,n−1)

)

= u0,0 − um,0 − u0,n + um,n,

where the last equality follws by (3.4). Hence, we want to show that ‖um,n‖∞ <

∞. Using the same ideas from [DD03], we show

Lemma 3.3. For any n > 0, if |vm−1,n| ≤ C + 1 then |vm,n| ≤ C + 1.

Proof. By the first line of (3.15),

vm,n = vm−1,n + xm,n − qm,n

= vm−1,n︸ ︷︷ ︸
∈[−C−1,C+1]

+ xm,n︸︷︷︸
∈[−a,a]︸ ︷︷ ︸

∈[−C−1−a,C+1+a]

− sign
(
vm−1,n + xm,n + C sign(um,n−1)︸ ︷︷ ︸

wm,n

)
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where we have set wm,n = vm−1,n + xm,n + C sign(um,n−1). We have three cases,

Case 1. vm,n−1 + xm,n ∈ (C,C + 1 + a]

Then to compute qm,n = sign(wm,n) we note that regardless of the sign of

um,n−1, we have that wm,n ∈ (C,C +1+ a]±C ⊂ (0, 2C +1+ a]. Hence qm,n = 1

and

vm,n = vm,n−1 + xm,n− 1 ∈ (C,C + 1 + a]− 1 = (C − 1, C + a] ⊂ [−C − 1, C + 1].

Case 2. vm,n−1 + xm,n ∈ [−C − 1− a,−C)

Again to compute qm,n = sign(wm,n) we note that regardless of the sign of

um,n−1, we have that wm,n ∈ [−C − 1 − a,−C) ± C ⊂ [−2C − 1 − a, 0). Hence

qm,n = −1 and

vm,n = vm,n−1+xm,n+1 ∈ [−C−1−a,−C)+1 = (−C−a,−C+1] ⊂ [−C−1, C+1].

Case 3. vm,n−1 + xm,n ∈ [−C,C] In this case we do not need to inspect wm,n, we

simply note that

vm,n = vm,n−1 + xm,n ± 1 ∈ [−C,C]± 1 = [−C − 1, C + 1].

Unlike the one dimensional case in [DD03], Lemma 3.3 does not translate into

a bound on um,n. This is because the bound in Lemma 3.3 is a bound for column

n of vm,n, but the second line of (3.15) shows that vm,n = um,n − um,n−1 which is
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a row relationship. So, the rows of u are well behaved, but we have no control

over the growth of the columns. in fact the signal in Proposition 3.2 grows large

for (3.15) just as it did for (3.3).

3.4 Halftoning

The quantization rule considered in Section 3.3 is just one of many possible

choices. In fact, there is a research field in image processing which studies the

effect of different quantization rules, namely digital halftoning by error diffusion.

Digital halftoning, refers to any process by which a continuous gray-scale image

is converted to a binary image by the judicious arrangement of binary picture ele-

ments, see Figure 3.5, [Uli87, EFKM03, Kit98]. One method of digital halftoning

is called error diffusion. Error difusion uses feedback to pick the binary pic-

ture elements. It is error diffusion which is seen to be a generalization of one

dimensional Σ∆ modulation.

The first example of an error diffusion quantization rule is due to Floyd and

Steinberg [FS76]. The rule is





um,n = 7
16

um−1,n + 1
16

um−1,n−1 + 5
16

um,n−1 + 3
16

um+1,n−1 − xm,n + qm,n

qm,n = sign
(
xm,n − ( 7

16
um−1,n + 1

16
um−1,n−1 + 5

16
um,n−1 + 3

16
um+1,n−1)

)

(3.16)

see Figure 3.6. We note that in (3.16), the sum of the weights is 7
16

+ 1
16

+ 5
16

+ 3
16

= 1

and in (3.3) the sum of the wieghts is 1 − 1 + 1 = 1. The fact that these

weights sum to one means that in both schemes the error in the surronding

pixels um−1,n, um−1,n−1, . . . is not amplified when it is used to construct um,n.
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Figure 3.5: An example of halftoning a continuous gray-scale image.

The top figure is a 256 × 256 continuous gray scale image, the middle

figure is a halftone of the top using (3.16), the bottom figure is a halftone

of the top using (3.3).
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Figure 3.6: Graphical representation of the Floyd Steinberg error dif-

fusion halftoning scheme, compare with Figure 3.1.

3.5 Σ∆ and space filling curves

Assume |f(x1, x2)| ≤ 1 and that f is bandlimited to (−Ω1, Ω1)× (−Ω2, Ω2), i.e.,

f̂(γ1, γ2) = 0 for |γk| > Ωk, k = 1, 2. Choose T1, T2 such that 2TkΩk ≤ 1 for

k = 1, 2. Let H be the image of Z2 under the matrix




T1 0

0 T2


, That is

H :=








T1 0

0 T2







m

n


 : m,n ∈ Z




⊆ R2,

So a reciprocal lattice is

Λ :=








1
T1

0

0 1
T2







a

b


 : a, b ∈ Z




⊆ R̂2.

Notice 


T1 0

0 T2




−1

=
1

T1T2




T2 0

0 T1


 =




1
T1

0

0 1
T2


 .
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k = 1 2 3 4 5 6 7 8 9

σ(k) = (0,0) (0,1) (1,1) (1,0) (1,-1) (0,-1) (-1,-1) (-1,0) (-1,1)

Table 3.1: The first nine points of the bijection σ in Figure 3.7.

Consider the unit cell, E ⊆ R̂2 given by

E =

(
− 1

2T1

,
1

2T1

)
×
(
− 1

2T2

,
1

2T2

)
.

Now consider the sampling kernel associated with E, defined on R2 by

sE(x1, x2) =
1

|E|

∫

E

e2πi(x1γ1+x2γ2)d(γ1 × γ2).

We could instead define sE ∈ C∞(R2) such that

ŝE = 1 on (−Ω1, Ω1)× (−Ω2, Ω2), and supp(ŝE) ⊆ E.

Then we have a two dimensional sampling theorem [BF01]. Namely, if f is

continuous on R2, then

lim
r→∞

∥∥∥∥∥∥
f(x1, x2)−

∑∑

|m|,|n|≤r

f(mT1, nT2)sE(x1 −mT1, x2 − nT2)

∥∥∥∥∥∥

where the norm is either L2 or L∞.

A spiral Σ∆ Now, given the samples f(mT1, nT2) construct qTT ,T2
m,n = qm,n,

using a spiral which fills out the lattice Z2. That is, let σ = (σ1, σ2) : Z→ Z2 be

an ordering of the integer points on the spiral in Figure 3.7, see Table 3.1. If Sr =

{(m,n) ∈ Z2 : |m| , |n| ≤ r} and if ∂Sr = {(m,n) ∈ Z2 : |m| = r or |n| = r}, then

we see ∂Sr has 4 · 2r points for r ≥ 1 so Sr has 4(2 + 4 + . . . + 2r) + 1 points and

|Sr| = (2r−1)2. So for any r ∈ N, σ is a bijection between {1, 2, . . . , (2r − 1)2} ⊂

Z and the square {(m,n) ∈ Z2 : |m| , |n| ≤ r}.
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Figure 3.7: The bijection σ : Z → Z2 gives a natural ordering to the

points on the spiral.

Now let xm,n = f(mT1, nT2) and construct qm,n using the initial value uσ(0) = c

and the recursion




uσ(k) = uσ(k−1) + xσ(k) − qσ(k)

qσ(k) = sign
(
uσ(k−1) + xσ(k)

)

The using the one dimensional theory we have

∑∑

|m|,|n|≤r

(
f(mT1, nT2)− qTT ,T2

m,n

)
=

(2r−1)2∑

k=1

(
xσ(k) − qσ(k)

)

=

(2r−1)2∑

k=1

(
uσ(k) − uσ(k−1)

)

= uσ((2r−1)2) − c.

So, within the square with vertices (±r,±r), the sum of the qm,ns is close to the

sum of the samples.
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Next we reconstruct f using the qm,ns, i.e.,

∑∑

|m|,|n|≤r

qm,nsE(x1 −mT1, x2 − nT2).

Let sk = sE(x1 − σ1(k)T1, x2 − σ2(k)T2) and compute for any r ≥ 1,

∑∑

|m|,|n|≤r

(f(mT1, nT2)− qm,n) sE(x1 −mT1, x2 − nT2)

=

(2r−1)2∑

k=1

(f(mT1, nT2)− qm,n) sk

=

(2r−1)2∑

k=1

(
uσ(k) − uσ(k−1)

)
sk

=

(2r−1)2∑

k=1

uσ(k)sk +

(2r−1)2∑

k=1

uσ(k−1)sk

=

(2r−1)2∑

k=1

uσ(k)sk +

(2r−1)2−1∑

k=0

uσ(k)sk+1

=

(2r−1)2−1∑

k=1

uσ(k) (sk − sk+1)

︸ ︷︷ ︸
S

+ uσ((2r−1)2)s(2r−1)2 + uσ(0)s1︸ ︷︷ ︸
∂S

.

It is not clear if S and ∂S are bounded, this is a possible direction for further

research.
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Chapter 4

Finite Frames and Groups

As we stated in the introduction, frames for an infinite dimensional Hilbert space

are a natural language to study the sampling step of an A/D conversion. Now,

we study frames for a finite dimensional Hilbert space. We then specialize to two

classes of finite frames, viz., geometrically uniform (GU) frames and Grassman-

nian frames.

4.1 Preliminaries for finite frames

Let X = {x1, . . . , xN} be a frame for Rd and let L, L∗, S, and G be the Bessel

map, its adjoint, the frame operator, and the Grammian, repectively, see Section

1.3. Let E = {e1, . . . ed} be an orthonormal basis for Rd, and D = {δ1, . . . , δN}

be the canonical basis of Dirac vectors, i.e., δm has a one in the mth position and

zero elsewhere. We now derive the matrix representation of the maps L, L∗, S,

and G with repect to the bases D and E . First, consider the Bessel map

L = LX : Rd → RN
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given by

L(y) = (〈y, xk〉)N
k=1 .

The adjoint, L∗ : RN → Rd, of L is defined by 〈Ly, v〉 = 〈y, L∗v〉 for y ∈ Rd

and v ∈ RN . Since we can expand any v ∈ RN in the canonical basis {δn}Nn=1 as

v =
∑N

n=1 〈v, δn〉 δn, we have, for any y ∈ Rd,

〈y, L∗v〉 =

〈
Ly,

N∑

n=1

〈v, δn〉 δn

〉

=

〈
N∑

k=1

〈y, xk〉 δk,
N∑

n=1

〈v, δn〉 δn

〉

=
N∑

k=1

N∑

n=1

〈y, xk〉 〈v, δn〉 〈δk, δn〉

=
N∑

k=1

〈y, xk〉 〈v, δk〉

=

〈
y,

N∑

k=1

〈v, δk〉xk

〉
.

Thus, L∗v =
∑N

k=1 〈v, δk〉xk.

Now, since

L∗δn =
N∑

k=1

〈δn, δk〉xk = xn =
d∑

j=1

〈xn, ej〉 ej,

L∗ can be represented as a matrix whose columns are the coordinates of the frame

vectors with respect to the orthonormal basis E , i.e.,

L∗ =




〈x1, e1〉 . . . 〈xN , e1〉
...

. . .
...

〈x1, ed〉 . . . 〈xN , ed〉




,

a d×N matrix. Therefore, the matrix representation of the Bessel map L is just
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the adjoint of L∗, i.e.,

L =




〈x1, e1〉 . . . 〈x1, ed〉
...

. . .
...

〈xN , e1〉 . . . 〈xN , ed〉




=




〈e1, x1〉 . . . 〈ed, x1〉
...

. . .
...

〈e1, xN〉 . . . 〈ed, xN〉




,

an N × d matrix. The frame operator for the frame X is

S = SX : Rd → Rd

given by

S(y) =
N∑

k=1

〈y, xk〉xk,

and it has the matrix representation S = L∗L. We note that

S∗ = (L∗L)∗ = L∗L∗∗ = S,

and therefore S is symmetric.

As an aside, we mentioned in the introduction that one problem with frame

reconstruction is the computation of S−1. Now if S is a diagonal matrix, this

inversion is easily accomplished. We have the following fact.

Proposition 4.1. Any finite frame in Rd can be orthogonally transformed into

a frame with a diagonal frame operator.

Proof. Let X = {xn : n = 1, . . . , N} be a frame in Rd with frame operator S

and Bessel map L. By the spectral theorem [Str88, Lay03, GVL83] there is an

orthogonal matrix P and a diagonal matrix D such that S = P ∗DP Thus we

have

D = PSP ∗ = (PL∗)(LP ∗) = (LP ∗)∗(LP ∗),
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Figure 4.1: An example diagonalizing the frame operator. On the

left is a unit norm frame with five elements; the eigenvectors of S are

also plotted with ◦. On the right we apply the orthogonal matrix P to

the frame X to get SPX diagonal. Note the rotation/reflection of the

eigenvectors.

where the kth column of (LP ∗)∗ is Pxk. If we apply the orthogonal matrix P

to the frame X we get the frame PX = {Px1, . . . , PxN}, which has a frame

operator SPX = D which is diagonal, see Figure 4.1.

The fact that SPX = diag(λ1, . . . , λd) means that S−1
PX = diag(λ−1

1 , . . . , λ−1
d ), and

hence the dual frame and the frame reconstruction formula can be computed

efficiently.

We now prove a fact that will be use implicitly in the remainder of the thesis.

Namely, any finite set of vectors forms a frame for its span with the frame bounds

being the largest and smallest eigenvalues of the frame operator.

Proposition 4.2. The following three statements are equivalent:

(a.) {xn}Nn=1 is a frame for Rd

(b.) ∃A > 0 such that ∀y ∈ Rd, A ‖y‖2 ≤∑N
n=1 | 〈y, xn〉 |2
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(c.) span{xn}Nn=1 = Rd.

Proof: (a⇒ b). This is the first inequality in the definition of a frame.

Proof: (b⇒ a). We use finiteness and the Cauchy-Schwarz inequality, |〈y, z〉| ≤

‖y‖ · ‖z‖. So if we let B =
∑N

k=1 ‖xk‖2, then

N∑

k=1

|〈y, xn〉|2 ≤
N∑

k=1

(
‖y‖2 ‖xk‖2

)
= B ‖y‖2 .

Proof: (b⇒ c). Suppose V := span{xn}Nn=1 6= Rd. Take y /∈ V , and let {ej}j0j=1

be an orthonormal basis for V . Let projV (y) =
∑j0

j=1 〈y, ej〉 ej be the projection

of y onto V , and set ỹ = y−projV . Then ỹ 6= 0 otherwise y ∈ V . By construction,

〈ỹ, xk〉 = 0 for k = 1, . . . , N , so

∀A > 0, A ‖ỹ‖2 > 0 =
N∑

k=1

| 〈y, xn〉 |2.

so by contraposition we have shown the forward direction of the second equiva-

lence.

Proof: (c⇒ b). Consider the frame operator S : Rd → Rd given by S(y) =

∑N
k=1 〈y, xk〉xk, and notice

〈Sy, y〉 =
N∑

k=1

〈〈y, xk〉xk, y〉 =
N∑

k=1

| 〈y, xn〉 |2.

Since S = L∗L, S is symmetric, and therefore has a full set of orthonormal eigen-

vectors say {vk}dk=1. Given y, there are coefficients ck such that y =
∑d

k=1 ckvk,

thus

〈Sy, y〉 = yT Sy =
d∑

k=1

c2
kλk ≥ ( min

k=1,...,d
λk)

d∑

k=1

c2
k = ( min

k=1,...,d
λk) ‖y‖2 .
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So it is enough to show the eigenvalues of S are all positive. If S is positive

definite, i.e., 〈Sy, y〉 > 0, for y 6= 0, then letting y be a unit eigenvector, we see

that λy = 〈Sy, y〉 > 0, so it is enough to show that S is positive definite, i.e.,

N∑

k=1

|〈y, xk〉|2 = 〈Sy, y〉 > 0, for y 6= 0.

This is a sum of positive numbers, so it is enough to show at least one term is

positive, i.e., show

∀y 6= 0, ∃k such that |〈y, xk〉|2 > 0. (4.1)

Now, to show (c⇒ b), we will show that if (4.1) is false we have a contradic-

tion. Assume that span {xk}Nn=1 = Rd and that

∀k = 1, . . . , N , ∃y 6= 0 such that |〈y, xk〉|2 = 0.

Let {ek}dk=1 be an orthonormal basis for Rd. Since the xks span, let ei =

∑N
k=1 c

(i)
k xk. Then

∀i, |〈y, ei〉| =
∣∣∣∣∣

N∑

k=1

〈
y, c

(i)
k xk

〉∣∣∣∣∣ = 0,

and so y = 0, a contradiction.

The following alternate proof is from [Chr02].

Alternate Proof: (c⇒ b). Consider the map

φ : Rd → R

y 7→
N∑

n=1

|〈y, xn〉|2 .
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It can be shown that φ is continuous. Then since the Sd−1 is compact in Rd,

there is a z ∈ Sd−1 such that φ(z) = inf
{
φ(y) : y ∈ Sd−1

}
, i.e.,

A :=
N∑

n=1

|〈z, xn〉|2 = inf

{
N∑

n=1

|〈y, xn〉|2 : y ∈ Sd−1

}
.

Now A > 0 by (4.1). Thus for any y ∈ Rd

N∑

n=1

|〈y, xn〉|2 =
N∑

n=1

∣∣∣∣
〈

y

‖y‖ , xn

〉∣∣∣∣
2

‖y‖2 ≥
N∑

n=1

|〈z, xn〉|2 ‖y‖2 = A ‖y‖2 .

4.2 Geometrically uniform (GU) frames

Next we consider a class of finite frames similar to Gabor and wavelet frames in

that they are generated by a group acting on a vector. We shall see that these

frames have subtle symmetry properties. [Sle68, For91, EB03, VW]

Definition 4.3. A set X = {x1, . . . , xN} ⊂ Rd is a geometrically uniform (GU)

set if there is group of orthogonal matrices G = {U1, . . . , UN} and a generating

vector x ∈ Rd such that xn = Unx for n = 1, . . . , N . In the case that G is

(non)abelian we call X a GU (non)abelian set.

As noted in the introduction, in the language of group actions, a GU set X is

simply the orbit of and element x ∈ X by the group G, i.e., X = Orb(x). As we

shall see, a GU set is a special case of a Slepian-type group code, [Sle68, For91].

Definition 4.4. A set X = {x1, . . . , xN} ⊂ Rd is a Slepian-type group code if

given any two vectors xi, xj ∈ X ⊂ Rd, there is an isometry Zij : Rd → Rd such

that

Zij(xi) = xj, and Zij(X) = X.
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We have,

Proposition 4.5. If X is a GU set, then X is a Slepian-type group code.

Proof. Let xi, xj ∈ X ⊂ Rd. By assumption, xi = Uix, and xj = Ujx. Thus

consider the map

Z : Rd → Rd

v 7→ UjU
T
i v.

Then U = UjU
T
i is orthogonal, hence ‖Z(v)‖ = ‖Uv‖ = ‖v‖, hence, Z is an

isometry. Also, Z(xi) = Uxi = UjU
T
i xi = Ujx = xj. Finally, since G is a group,

U ∈ G and for any xk ∈ X, UT xk = UT Ukx and UT Uk ∈ G, hence UT xk ∈ X

and Z
(
UT xk

)
= UUT xk = xk.

First consider GU sets in R2. Now, any element of O2 has the form




cos θ − sin θ

sin θ cos θ


 ∈ SO2, or




cos θ sin θ

sin θ − cos θ


 /∈ SO2. (4.2)

Furthermore, if G is a subgroup of O2, then G is isomorphic to Z/nZ the cyclic

group of order n, or D2n the dihedral group of order 2n which contains Z/nZ as

a subgroup of index 2, [GB85]. Therefore we can classify all the GU sets in R2.

Theorem 4.6 (2d GU sets). Let X be a GU set in R2, i.e., let X = OrbG(x),

where G is a subgroup of O(2, R), and x ∈ R2 \ {0}. Then X is either

(a.) the vertices of a regular n-gon,

(b.) the union of the vertices of two regular n-gons, where the angle between

n-gons is twice the angle between x and the closest line of reflection.

66



−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

Figure 4.2: Four examples of GU frames Gx where, from left to right,

G isomorphic to the dihedral groups of order 2,4,6, and 8, and x = (1, 0)T

is on a line of reflection of each of these groups.

Proof. If G ∼= Z/nZ, then G is precisely the cyclic group generated by

Rn =




cos
(

2π
n

)
− sin

(
2π
n

)

sin
(

2π
n

)
cos
(

2π
n

)


 ,

and OrbG(x) is the set of vertices of a regular n-gon with one of the vertices being

x.

If G ∼= D2n, then G = 〈Rn, T 〉, where there are orthogonal vectors x1, x2 such

that Tx1 = x1 and Tx2 = −x2, and where 〈Rn, T 〉 is the group generated by the

matrices Rn and T . Consider the set {TRm
n : m = 0, 1, . . . n− 1} ⊂ G, which

has n elements with determinant −1 corresponding to n reflections across the

lines λRm
n x1for m = 0, 1, . . . , n − 1. If x lies on a reflection line then OrbG(x)

is simply the vertices of a regular n-gon, see Figure 4.2. If x does not lie on a

reflection line, then Gx is the union of 2 regular n-gons where the angle between

the n-gons is twice the angle between x and the closest line of reflection, see

Figure 4.3.

We note for future comparison with Grassmannian frames, the set of any two

vectors in R2 of equal length is a GU set, since this set is the union of the vertices

of 2 regular 1-gons.
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Figure 4.3: Four GU frames using G with the same isomorphism classes

as in Figure 4.2 but with x = (1, 0)T not on any line of reflection of any

of these groups. Notice there are twice as many elements in these frames

as in the corresponding frames in Figure 4.2.

The GU frames in R3 are not as easy to classify. First, the finite subgroups

of SO3 are isomorphic to either Z/nZ, Dn, A4, S4, A5, where

Z/nZ = cyclic group of order n,

D2n = dihedral group of order 2n,

A4 = symmetry group of a tetrahedron; order 12,

S4 = symmetry group of cube and octahedron; order 24,

A5 = symmetry group icosahedron and dodecahedron; order 60.

Furthermore, if two finite subgroups of SO3 are isomorphic, then they are conju-

gate, [Wol84]. Thus, to classify GU frames with G ∈ SO3, we may use a standard

representation of G and conjugate by any matrix in SO3.

The finite subgroups G of O3 can be built from these rotation groups. If G is

not equal to one of the above groups, then either G ∼= H × 〈J〉 where H is one

of the above groups and J is reflection through the origin, i.e., J = −I3, or G is

a mixed group [GB85, Wol84], i.e.,

G = {A ∈ O3 : A ∈ H, or A = JT where T ∈ K \H} ,
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Figure 4.4: Four GU frames in R3 using G with the same isomorphism

classes as in Figure 4.2 and with x = (1, 0, 0)T .
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Figure 4.5: GU frames using the generating vector x = (0, 0, 1)T and

the groups G isomorphic to the rotational symmetries of the icosahe-

dron/dodecahedron, cube/octahedron, and tetrahedron, respectively.

where both H and K are finite subgroups of SO3 with H ≤ K and with [K :

H] = 2.

We conclude with some examples of GU frames where G is a finite subgroup

of SO3. If G is isomorphic to a dihedral group of order n = 2, 4, 6, and 8,

and x = (1, 0, 0)T , then the corresponding GU frames have symmetries related

to a regular n-gon, see Figure 4.4. Also G is isomorphic to A4, S4, and A5, then

the corresponding GU frames have symmetries related to the platonic solids, see

Figure 4.5 and Figure 4.6.
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Figure 4.6: GU frames using the same isomorphism classes as in Figure

4.5 but conjugating G with the matrix (1 + ε)I3, where I3 is the 3 by 3

identity matrix, and ε = 0.1.
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Chapter 5

Grassmannian Frames

Given a finite frame for Rd with N elements, we would like to measure the

correlation between frame elements, and in particular decide when the correlation

is small. We consider the following metric which is like an `∞ norm [SH03].

Definition 5.1. Let N, d ∈ N with N ≥ d. Let XN
d = {xk}Nk=1 be a subset of Rd

with ‖xk‖ = 1. The maximum correlation of XN
d ,M∞

(
XN

d

)
, is defined as

M∞
(
XN

d

)
= max

k 6=l
|〈xk, xl〉| .

Notice that because we consider the absolute value of the inner product rather

than just the inner product, if the angle between a pair of vectors is closer to 90◦,

then the pair is less correlated, while if the angle is closer to 0◦ or 180◦ then the

pair is more correlated. We could instead consider an `1,`2, or `p-type norm to

measure correlation i.e.,

Mp

(
XN

d

)
=

(∑

k 6=l

|〈xk, xl〉|p
)1/p

.

We next fix d and N with N ≥ d and we seek to find N element unit norm frames,

XN
d , with smallest ∞-correlation M∞

(
XN

d

)
, i.e., maximally spread apart. This
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relaxes condition (1.6) as discussed in Section 1.6. We make the following defini-

tion.

Definition 5.2. Let N ≥ d. A sequence of unit norm vectors UN
d = {uk}Nk=1 in

Rd is called an (N, d)-Grassmannian frame if

M∞
(
UN

d

)
= inf

{
M∞

(
XN

d

)}
(5.1)

where the infimum is taken over all unit norm, N -element frames for Rd.

First, we define the function

f : Sd−1 × . . .× Sd−1

︸ ︷︷ ︸
N times

→ [0, 1]

f(x1, . . . , xN) =M∞
(
{xk}Nk=1

)
.

Next we check that f is continuous on X := Rd × . . .× Rd (N times). Consider

a norm on X given by

∥∥∥{xk}Nk=1

∥∥∥
X

=
N∑

k=1

‖xk‖Rd ,

let {xk}Nk=1 ∈ X be fixed, set R − 1 = maxk {‖xk‖Rd} an let ε > 0 be given. So

R ≥ 1. Now choose δ such that 0 < δ <
√

1+ε−1
R

, i.e., R2δ2 + 2Rδ < ε. Then

whenever
∥∥∥{yk}Nk=1 − {xk}Nk=1

∥∥∥
X

< δ, we have that for every j ∈ {1, . . . , N},

‖yj − xj‖Rd ≤
N∑

k=1

‖yk − xk‖Rd =
∥∥∥{yk}Nk=1 − {xk}Nk=1

∥∥∥
X

< δ

and therefore for each j, there is and αj ∈ Rd with ‖αj‖ < δ such that yj = xj+αj.
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So,

|f(y1, . . . , yN)− f(x1, . . . , xN )|

=
∣∣∣M∞

(
{yk}Nk=1

)
−M∞

(
{xk}Nk=1

)∣∣∣

=

∣∣∣∣max
k 6=l
{|〈xk + αk, xl + αl〉|} −max

k 6=l
{|〈xk, xl〉|}

∣∣∣∣

=

∣∣∣∣max
k 6=l
{|〈xk, xl〉|+ |〈xk, αl〉|+ |〈αk, xl〉|+ |〈αk, αl〉|} −max

k 6=l
{|〈xk, xl〉|}

∣∣∣∣

≤
∣∣∣∣max

k 6=l
{|〈xk, xl〉|+ ‖xk‖ ‖αl‖+ ‖αk‖ ‖xl‖+ ‖αk‖ ‖αl‖} −max

k 6=l
{|〈xk, xl〉|}

∣∣∣∣

<

∣∣∣∣max
k 6=l
{|〈xk, xl〉|}+ 2Rδ + Rδ2 −max

k 6=l
{|〈xk, xl〉|}

∣∣∣∣

= 2Rδ + Rδ2 < ε.

Therefore f is continuous on the compact set Sd−1 × . . .× Sd−1 (N times), thus

f achieves its absolute maximum and absolute minimum on this set. Thus we

know that (N, d)-Grassmannian frames exist for any N ≥ d. Next we must

check that if UN
d solves (5.1), then UN

d is a unit norm frame for Rd, but this

a tautology since, by compactness, UN
d is one of the frames over which we are

taking the infimum.

5.1 Two dimensional Grassmannian frames

We now classify all (N, 2)-Grassmannian frames for any N ≥ 2.

Theorem 5.3 (2 dimensional Grassmanian). Let X = XN
2 = {xk}Nk=1 be a

collection of N unit vectors in R2. Then we have the lower bound

cos(π/N) ≤M∞
(
XN

2

)
.
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Furthermore, XN
2 is an (N, 2)-Grassmannian frame if and only if there is an

orthogonal matrix P , see (4.2), and a sequence {εk}Nk=1 ⊂ {±1}N such that

PεXN
2 :=

{
P (εkxk) : xk ∈ XN

2

}
=








cos(πk/N)

sin(πk/N)


 : k = 1, . . . , N





.

Proof. First, since |〈x, y〉| = |〈x,−y〉|, we note that changing the sign of any

xk ∈ X does not effect the value of M∞(X). So by changing the sign on xk

when necessary, we may assume xk ∈ {v ∈ S1 : 〈v, δ2〉 ≥ 0}. Also, since rotations

preserve inner products, applying a rotation to all the vectors in X does not

effect M∞(X). Thus rotating by −φ where φ = mink=1,...,N cos−1(〈xk, δ1〉), and

reordering if necessary, we may assume x1 = δ1 = (1, 0)T , and

1 ≥ 〈x2, x1〉 ≥ 〈x3, x1〉 ≥ . . . ≥ 〈xN , x1〉 ≥ −1. (5.2)

For k = 1, . . . , N − 1, let θk be the angle between xk and xk+1, and let θN be

the angle between xN and the negative x-axis, i.e., θk = cos−1 (〈xk+1, xk〉) and

θN = cos−1 (〈−δ1, xN〉), see Figure 5.1 for an example when N = 6. Then because

of the above reordering, θk ≥ 0 for k = 1, . . . , N , and
∑N

k=1 θk = π. Thus for

1 ≤ l < k ≤ N ,

|〈xk, xl〉| =
∣∣∣∣∣cos

(
k−1∑

j=l

θj

)∣∣∣∣∣ , where min
k=1,...,N−1

θk ≤
k−1∑

j=l

θj ≤ π − θN .

Furthermore, | cos(θ)| has a maximum on [0, π], at θ = 0, and θ = π, and |cos(θ)|
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Figure 5.1: An example of the reordering induced by the inequalities

on the inner products in (5.2). Note N = 6.

is monotone decreasing on [0, π/2] and monotone increasing on [π/2, π]. Hence

M∞(X) = max
k 6=l
|〈xk, xl〉|

= max
k 6=l

∣∣∣∣∣cos

(
k−1∑

j=l

θj

)∣∣∣∣∣

= max

{
|cos (π − θN)| ,

∣∣∣∣cos

(
min

k=1,...,N−1
θk

)∣∣∣∣
}

=

∣∣∣∣cos

(
min

k=1,...,N
θk

)∣∣∣∣ .

Thus, in order to minimize M∞(X) we must choose N positive numbers

α1, . . . , αN which sum to π and which minimize |cos(mink=1,...,N αk)|, hence, which

maximize the expression

min
k=1,...,N

αk. (5.3)

Now we claim that if α1, . . . , αN maximize (5.3) then α1 = . . . = αN . We

prove this impliction by contraposition, i.e., assume it is not the case that α1 =
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. . . = αN . Then there is an m ∈ {1, 2, . . . , N − 1} so that if we list α1 ≤ . . . ≤ αN

by size, then only the first m are equal, and the (m + 1)st is strictly larger than

the mth, i.e.,

αk1 = αk2 = . . . = αkm
< αkm+1 ≤ . . . ≤ αkN

.

Let ε = αkm+1 − αkm
and for j = 1, . . . , N , define the sequence βkj

as

βkj
=





αkj
+ ε

2m
for j = 1, . . . ,m,

αkj
− ε

2
for j = m + 1,

αkj
for j = m + 2, . . . , N ,

Now the new set

βk1 = βk2 = . . . = βkm
≤ βkm+1 ≤ . . . ≤ βkN

,

has a strictly larger minimum angle than the original since for j = 1, . . . N ,

min
k=1,...,N

αk = αk1 < αk1 +
ε

m
≤ βk1 ≤ βj.

We see that the original αs do not maximize (5.3). So by contraposition we

have that if αs maximize (5.3), then they must all equal. Finally, if α is the

common value, then
∑N

k=1 αk = Nα = π, and therefore α = π/N . Thus π/N ≥

mink=1,...,N θK , so

cos(π/N) ≤ cos

(
min

k=1,...,N
θK

)
=M∞

(
XN

2

)
.

Next we prove the equivalent characterization of (N, 2)-Grassmannian frames.

If XN
2 is an (N, 2)-Grassmannian frame, then using the above argument, we see

that we can choose {εk} ⊂ {±1}N and P ∈ SO2 so that the frame PεXN
2 =
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{
P (εkxk) : xk ∈ XN

2

}
is in the closed upper halfplane with one of the vectors

being (1, 0)T , and

M∞
(
XN

2

)
=M∞

(
PεXN

2

)
= cos

(
min

k=1,...,N
θk

)
.

where θk is the angle between the kth and (k + 1)st adjacent vectors in PεXN
2

(reindexing may be necessary). Since an (N, 2)-Grassmannian frame minimizes

the ∞-correlation M∞
(
XN

2

)
, the above argument also shows that θ1 = . . . =

θN = π/N . Therefore, the angle between adjacent vectors in PεXN
2 is π/N , and

we have shown the forward direction of the equivalence.

To show the reverse implication we note if

PεXN
2 =








cos(πk/N)

sin(πk/N)


 : k = 1, . . . , N





then

M∞
(
XN

2

)
=M∞

(
PεXN

2

)
= cos

(
min

k=1,...,N
θk

)
= cos(π/N)

So XN
2 is (N, 2)-Grassmannian since it achieves the lower bound.

Notice that for N odd, if we change the sign on the the Nth roots of unity

below the real axis, then we obtain the frame described in the above claim with

εk = 1, i.e., with all vectors in the upper half plane, and a common angle of

π/N between adjacent vectors. Hence for N odd, the Nth roots of unity are

(N, 2)-Grassmannian. Furthermore, for N even, the Nth roots of unity do not

form an (N, 2)-Grassmannian frame because ζ and −ζ are both Nth roots. If we

identify ζ and −ζ then we obtain an (N/2, 2)-Grassmannian frame.
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5.2 A lower bound for M∞

It is much harder to construct a Grassmannian frame in R3 for N > 3. Thus we

first derive a lower bound for the maximum correlation between frame elements

of an N -element frame for Rd, [SH03, Ros97].

Theorem 5.4. Let N ≥ d and let XN
d be an N-element subset Sd−1, and let

d0 = dim
(
span

(
XN

d

))
. Then

M∞
(
XN

d

)
≥
√

N − d0

d0(N − 1)
, (5.4)

where equality holds in (5.4) if and only if

1.) XN
d is equiangular, and

2.) XN
d is a tight frame for its span with frame bounds A = B = N

d0
.

Furthermore, if N > d(d+1)
2

, then XN
d is not equiangular, hence equality cannot

hold in (5.4).

Proof. First we show the inequality (5.4). Since the N × N Grammian matrix

G is hermitian, the spectral theorem applies, so G has N eigenvalues counted

with multiplicity and ordered by size, λ1 ≥ λ2 ≥ . . . ≥ λN . Furthermore, since

rank(G) = d0, only the first d0 of these eigenvalues are nonzero. So

d0∑

k=1

λk = Trace G =
N∑

k=1

|〈xk, xk〉| =
N∑

k=1

1 = N

Now set ek = λk − N
d0

, then

d0∑

k=1

ek =

d0∑

k=1

(
λk −

N

d0

)
= N − d0

N

d0

= 0,
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so

d0∑

k=1

λ2
k =

d0∑

k=1

(
N

d0

+ ek

)2

=

d0∑

k=1

N2

d2
0

+
2N

d0

d0∑

k=1

ek +

d0∑

k=1

e2
k

=
N2

d0

+

d0∑

k=1

e2
k

≥ N2

d0

,

with equality if and only if ek = 0 for k = 1, . . . d0, i.e., λk = N
d0

for k = 1, . . . d0.

Now the eigenvalues of G2 are λ2
1 ≥ λ2

2 ≥ . . . ≥ λ2
N , so if gk is the kth column of

G, then by matrix multiplication we have

N2

d0

≤
d0∑

k=1

λ2
k = Trace(G2) =

N∑

k=1

g∗
kgk =

N∑

k=1

N∑

l=1

|〈xk, xl〉|2. (5.5)

And since G is hermitian, |〈xk, xl〉| = |〈xl, xk〉|, so using the previous inequality

we derive

N2

d0

≤
N∑

k=1

N∑

l=1

|〈xk, xl〉|2

=
∑

k=l

|〈xk, xl〉|2 +
∑

k<l

|〈xk, xl〉|2 +
∑

k>l

|〈xk, xl〉|2

= N + 2
∑

k<l

|〈xk, xl〉|2

≤ N + 2
N(N − 1)

2
max
k 6=l
{|〈xk, xl〉|2}

(5.6)

therefore, solving for the max in the above inequality, we have

N − d0

d0(N − 1)
≤M∞

(
XN

d

)2
. (5.7)

For future reference we note that d ≥ d0 implies N−d
d(N−1)

≤ N−d0

d0(N−1)
hence we have

(5.4) with the d0s replaces with ds.
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Next we show that equality holds in (5.4) if and only if, XN
d is equiangular

and a tight frame for its span.

Proof =⇒. SayM∞(XN
d ) =

√
N−d0

d0(N−1)
. The (5.6) becomes

N∑

k=1

N∑

l=1

|〈xk, xl〉|2 =
N2

d0

,

which implies that (5.5) becomes

d0∑

k=1

λ2
k =

N2

d0

,

and as we saw above, equality in this sum implies that λk = N
d0

for k = 1, . . . , d0.

But the frame bounds for XN
d are the largest and smallest nonzero eigenvalues

hence A = N/d0 = B and XN
d is a tight frame for its span.

To see that XN
d is also equiangular, we notice that (5.6) also implies that

N = 2
∑

k<l

|〈xk, xl〉|2 =
N2

d0

,

hence,

∑

k<l

|〈xk, xl〉|2 =
N(N − d0)

2d0

. (5.8)

Now maxk 6=l |〈xk, xl〉|2 = N−d0

d0(N−1)
implies that for any k 6= l,

|〈xk, xl〉|2 =
N − d0

d0(N − 1)
− εk,l,

where εk,l ≥ 0. Thus (5.8) implies

N(N − d0)

2d0

=
∑

k<l

(
N − d0

d0(N − 1)
− εk,l

)

=

(
N(N − 1)

2

)(
N − d0

d0(N − 1)

)
−
∑

k<l

εk,l

=
N(N − d0)

2d0

−
∑

k<l

εk,l
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hence
∑

k<l εk,l = 0, and since εk.l are positive, εk,l = 0 for k < l. Also since G

is symmetric, εk,l = 0 for all k 6= l, hence XN
d is equiangular with |〈xk, xl〉|2 =

N−d0

d0(N−1)
.

Proof ⇐=. Now assume XN
d is equiangular and tight with A = B = N

d0
. Then

there is an α ∈ [0, 1], such that |〈xk, xl〉|2 = α for k 6= l. Now since XN
d is tight,

λk = N
d0

for k = 1, . . . , d0, and zero otherwise. Hence (5.5) and (5.6) imply

N

d0

=

d0∑

k=1

λ2
k =

N∑

k=1

N∑

l=1

|〈xk, xl〉|2 = N + N(N − 1)α,

hence, solving for α we see that equality holds in (5.4).

Finally to prove N > d(d+1)
2

implies XN
d is not equiangular, we need the

following lemma

Lemma 5.5. Let Hn be the n × n matrix with 1 on the main diagonal and β

elsewhere, and let Cn be the n× n matrix defined by

[Cn]i,j =





β, if (i, j) = (1, 1)

[Hn]i,j , otherwise.

Then

det(Hn) = (1 + (n− 1)β)(1− β)n−1 (5.9)

det(Cn) = β(1− β)n−1. (5.10)

Proof of Lemma 5.5. We proceed by induction. Let P (n) be the statement

det(Hn) = (1 + (n− 1)β)(1− β)n−1 and det(Cn) = β(1− β)n−1.

Now for n = 1, H1 = 1 and C1 = β, so det(H1) = 1 and det(C1) = β, hence

P (1).
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Next assume P (n). Now using the cofactor expansion of the determinant, we

first note that the (1, 1)-cofactor of Hn+1 and Cn+1 is det(Hn). Also note that

for j = 2, . . . , n + 1, the (1, j)-cofactor of both Hn+1 and Cn+1 is

(−1)1+j det
(
B(j)

n

)

where B
(j)
n can be defined recursively as

B(1)
n = Cn

B(j)
n = B̃(j−1)

n for j = 2, . . . , n + 1.

where B̃
(j−1)
n is B

(j−1)
n with the jth and (j − 1)st rows interchanged. Now since

det is multilinear, interchanging a row changes the sign of the determinant, hence

(−1)1+j det(B(j)
n ) = − det(Cn) for j = 2, . . . n + 1.

Therefore we compute using the induction hypothesis and the cofactor expansion,

det(Hn+1) = 1 · det(Hn) +
n+1∑

j=2

(
β · (−1)1+j det(B(j)

n )
)

= det(Hn)− nβ det(Cn)

= (1 + (n− 1)β)(1− β)n−1 − nβ2(1− β)n−1

= (1 + nβ)(1− β)(1− β)n−1

and,

det(Cn+1) = β det(Hn)− nβ det(Cn)

= β(1 + (n− 1)β)(1− β)n−1 − nβ2(1− β)n−1

= (β − β2)(1− β)n−1,

hence by induction, P (n) for all n ∈ N.
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Thus to prove N > d(d+1)
2

implies XN
d is not equiangular, we prove the contra-

positive using the above lemma and the following argument, [LS73]. Assume XN
d

is equiangular. Let Pk : Rd → Rd be the projection of x onto the line spanned by

xk i.e., Pkx = 〈xk, x〉xk. Let V be the vector space of symmetric linear mappings

from Rd → Rd. Then dim(V ) = d(d+1)
2

, and the map 〈·, ·〉 : V × V → R given by

〈A,B〉 = Trace(AB) is an inner product on V . Now, since XN
d is equiangular,

there is an α ∈ [0, 1] such that 〈xk, xl〉 = ±α for k 6= l. Furthermore, α = 1

implies N = 2, since the elements of XN
d are assumed to be distinct and of unit

norm. Thus, for d ≥ 2, N = 2 < 3 ≤ d(d+1)
2

. So we may assume α ∈ [0, 1). Now,

〈Pk, Pl〉 = 〈xk, xl〉2 =





1, if k = l

α2, if k 6= l.

so the Grammian of the set {P1, . . . PN} ⊂ V is

[G]k,l = [〈Pk, Pl〉]k,l =





1, if k = l

α2, if k 6= l.

Thus Lemma 5.5 applies with G = HN and β = α2, thus, if α ∈ [0, 1), then

det G =
(
1 + (N − 1)α2

)
(1− α2)N−1 6= 0.

Hence G is invertible and therfore has full rank. Finally, since rank(G) =

rank(S) = N , so,

N = rank(G) = dim (span {P1, . . . , PN}) ≤ dim(V ) =
d(d + 1)

2
.

So, XN
d equiangular implies N ≤ d(d + 1)/2, hence by contraposition we have

proven the result.
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Remark Theorem 5.3 shows that M∞
(
XN

2

)
= cos (π/N), while Theorem 5.4

shows M∞
(
XN

2

)
≥
√

N−2
2(N−1)

. Using standard calculus techinques, we can show

that the bound in Theorem 5.3 is an improvement over the bound in Theorem

5.4 for all N > 3. Let

f(x) = cos2(π/x)− x− 2

2(x− 1)
,

then

f ′(x) =
π

x2
sin

(
2π

x

)
− 1

2(x− 1)2

and

f ′′(x) = −2π

x3

(
π

x
cos

(
2π

x

)
+ sin

(
2π

x

))
+

1

(x− 1)3
.

So, f ′(x) > 0 ⇐⇒ sin(2π/x) > 1
2π

(
x

x−1

)2
. But for x ∈ [3, 6],

sin

(
2π

x

)
≥
√

3

2
≥ 9

8π
≥ 1

2π

(
x

x− 1

)2

,

so f(x) is increasing for x ∈ [3, 6], and since f(3) = 0, we have that f(x) ≥ 0

for x ∈ [3, 6]. Furthermore, for x ∈ [6,∞), 36
50π
≥ 1

2π

(
x

x−1

)2
, and sin

(
2π
x

)
≥ 36

50π
if

and only if

x ≤ 2π

sin−1
(

36
50π

) ≈ 27.1719.

So f(x) is increasing for x ∈ [3, 27], hence greater that zero on that same interval

We also note that

sin (2πx) ≥ 1

2π
<

1

2π

(
x

x− 1

)2

and sin (2πx) ≥ 1
2π

when

x ≥ 2π

sin−1
(

1
2π

) ≈ 39.3105.

Hence f is decreasing on the interval [40,∞), and since limx→∞ f(x) = 1
2
, we

have that f(x) > 1
2

for x ∈ [40,∞). Finally, we check that f ′′ < 0 on the interval
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N Optimal bound Bound from Theorem 5.3

=
√

N−2
2(N−1)

cos(π/N)

3 0.5000 0.5000

4 0.5774 0.7071

5 0.6124 0.8090

6 0.6325 0.8660

7 0.6455 0.9010

8 0.6547 0.9239

9 0.6614 0.9397

10 0.6667 0.9511

Table 5.1: Improvment of the optimal bound derived in Theorem 5.4

for the case of (N, 2)-Grassmannian frames.

[27, 40] and f(27), f(40) > 1
2
, so f(x) > 1

2
on [27, 40]. In summary we have shown

that f(x) > 0 on (3,∞) and that f(x) > 1
2

on [27,∞). Therefore

cos
( π

N

)
>

√
N − 2

2(N − 1)
for N > 3.

In light of Theorem 5.4, we make the following definition,

Definition 5.6. Let N, d ∈ N with d ≤ N ≤ d(d+1)
2

. Let XN
d = {xk}Nk=1 be a

frame for Rd with ‖xk‖ = 1. We call XN
d an optimal Grassmannian frame if XN

d

satisfies (5.4) with equality, i.e

M∞
(
XN

d

)
=

√
N − d

d(N − 1)
.
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N Optimal bound Grassmannian bound

=
√

N−3
3(N−1)

= minM∞
(
XN

3

)

3 0 0

4 0.3333 0.3333

5 0.4082 0.4472

6 0.4472 0.4472

Table 5.2: Bounds for N -element frames in R3 with potential of being

optimal Grassmannian.

In R2, since d = 2 and d(d+1)
2

= 3, only frames with N = 2 and N = 3 ele-

ments can be optimal Grassmannian. Since cos(π/2) = 0 =
√

(2− 2)/(2(2− 1),

and cos(π/3) = 1/2 =
√

(3− 2)/(2(3− 1), both (2, 2)- and (3, 2)-Grassmannian

frames are optimal. The same phenomenon does not happen in three dimen-

sions. Table 5.2 lists the Grassmannian bound which will be proven below and

the optimal bound for N = 3, 4, 5, 6, (the only Ns with the possibility of being

optimal). By inspecting Table 5.2, we notice that (5, 3)-Grassmannian frames

are not optimal, while (3, 3), (4, 3) and (6, 3)-Grassmanians are optimal.

5.3 (4, 3)-Grassmannian frames

In this section and the next we will derive the bounds for three dimensional

Grassmannian frames with N = 3, 4, 5 and 6. First note that if N = 3, and if X

is any orthonormal basis for R3, then 0 ≤M∞(X) = 0. Hence any orthonormal

basis is Grassmannian, in fact, X is trivially optimal Grassmannian.

Next consider N = 4. We need the following lemma,
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Lemma 5.7. Let a ∈ Rd, and let {v1, v2, . . . , vd} ⊂ Rd. Set

Q =

{
a +

d∑

j=1

sjvj : sj ∈ [0, 1]

}

C =

{
a +

d∑

j=1

εjvj : εj ∈ {0, 1}
}

,

and choose c ∈ C such that ‖c‖ = max {‖cl‖ : cl ∈ C} where l = 1, . . . , 2d. Then

for any v ∈ Q \ C, ‖v‖ < ‖c‖.

Proof. Let v ∈ Q \ C, so v = a +
∑d

j=1 sjvj. Since v /∈ C, there is an m ≥ 1,

such that sj1 , . . . , sjm
∈ (0, 1) and sjm+1 , . . . , sjd

∈ {0, 1}. For i ≤ m set ti = sji
,

and for i > m set εi = sji
, so ti ∈ (0, 1) and εi ∈ {0, 1}. Now, let w0 = v, and for

each i = 1, . . . ,m, recursively let wi = wi−1 + (ε̃i − ti)vji
, where

ε̃i =





1, if 〈vji
, wi−1〉 > 0

0, if 〈vji
, wi−1〉 ≤ 0.

By inducting on i, we show that ‖v‖ = ‖w0‖ < ‖w1‖ < . . . < ‖wm‖. Note that

by construction of ε̃i, we have that wm ∈ C hence ‖wm‖ ≤ ‖c‖. Also note for

i = 1, . . . ,m,

‖wi‖2 = ‖wi−1‖2 + 2 (ε̃i − ti) 〈wi−1, vji
〉+ (ε̃i − ti)

2 ‖vji
‖2 (5.11)

We begin the induction with the base case i = 1. Inspecting (5.11) with i = 1,

we have 3 cases:

Case 1. 〈w0, vj1〉 > 0.

Then ε̃1 = 1, so ε̃1 − t1 > 1 − t1 > 0, and 2 (ε̃1 − t1) 〈w0, vj1〉 > 0. Hence by

(5.11), ‖w1‖2 > ‖w0‖2.
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Case 2. 〈w0, vj1〉 < 0.

Then ε̃1 = 0, so ε̃1 − t1 < −t1 < 0, and therfore 2 (ε̃1 − t1) 〈w0, vj1〉 > 0. Hence

by (5.11), ‖w1‖2 > ‖w0‖2.

Case 3. 〈w0, vj1〉 = 0.

Then ε̃1 = 0, and w0 + (−t1vj1) = y2, where for k = 2, . . . m,

yk = a +
d∑

i=k

sji
vji

.

So by the Pythagorean theorem, ‖w0‖2 + ‖−t1vj1‖2 = ‖y2‖2, hence

‖w0‖2 = ‖y2‖2 − t1 ‖vj1‖2 . (5.12)

So, ε̃1 = 0 and −t21 < 0 imply −t21 ‖vj1‖ < −ε̃ 2
1 ‖vj1‖ and by equation (5.12),

‖w0‖2 < ‖y2‖2 + 0 = ‖w0 + (ε̃1 − t1)vj1‖2 = ‖w1‖2

So in every case, ‖w0‖ < ‖w1‖.

Now for the induction step, if 1 < i ≤ m, and if we have that

‖w0‖ < ‖w1‖ < . . . < ‖w1−1‖ ,

then repeating the above with w0, w1, y2 replaced with wi−1, wi, yi+1 respectively,

we have that ‖wi−1‖ < ‖wi‖. Finally, since wm ∈ C, we have ‖v‖ < ‖wm‖ ≤

‖c‖.

With this lemma we can prove the following.

Theorem 5.8 ((4,3)-Grassmanian). Let U = {u1, u2, u3, u4} ⊂ S2 ⊂ R3. If

U is (4, 3)-Grassmanian, then U is equiangular, i.e., |〈uk, ul〉| = c for k 6= l.
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Proof. We show the contrapositive of the above implication. Namely, if U is not

equiangular, then there is a 4 element set X ⊂ S2 such that

M∞(X) <M∞(U),

hence U does not have minimal ∞-correlation and is therefore not

(4, 3)-Grassmannian. We need the following lemma

Lemma 5.9. Let {b, y1, y2, y3} ⊂ S2. If |〈b, y1〉|, |〈b, y2〉|, and |〈b, y3〉| are not all

equal, then there is a constructible c ∈ R3 such that

max {|〈b, yk〉| : k = 1, 2, 3} > max

{∣∣∣∣
〈

c

‖c‖ , yk

〉∣∣∣∣ : k = 1, 2, 3

}
.

Furthermore,
∣∣∣
〈

c
‖c‖ , y1

〉∣∣∣ =
∣∣∣
〈

c
‖c‖ , y2

〉∣∣∣ =
∣∣∣
〈

c
‖c‖ , y3

〉∣∣∣.

Proof of Lemma 5.9: Case 1. y1, y2, y3 ⊂ S2 are linearly dependent.

Then there is a1, a2, a3 ∈ R3 with at least one (actually two) ak 6= 0 such that

a1y1 + a2y2 + a3y3 = 0.

So dim (ker Y ) ≥ 1, where Y is a 3× 3 matrix with columns yj. Hence,

dim (span Y ) = rank Y ≤ 2. So take c ∈ (span y)⊥, then

|〈b, yk〉| > 0 =

∣∣∣∣
〈

c

‖c‖ , yk

〉∣∣∣∣ , ∀k,

since by assumption we know that |〈b, yk〉| cannot all be equal, hence cannot all

equal zero.

Proof of Lemma 5.9: Case 2. y1, y2, y3 ⊂ S2 are linearly independent.

Let Y be the 3 × 3 matrix whose columns are yj. Then Y T is invertible. Let

89



−2−1012

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y

x

y
1
 

y
3
 

c
1
 

c
3

c
2
 

c
4

y
2
 

−c
1
 

−c
2
 

−c
4
 

−c
3
 

Figure 5.2: An example showing the points ±ck, k = 1, . . . , 4, and

their relationship to the vectors y1, y2, y3. Note, y2 lies on the plane with

vertices {c1, c2,−c3, c4}.

c1, . . . , c4 be the columns of the following matrix product

[
|
c1
|

|
c2
|

|
c3
|

|
c4
|

]
=
(
Y T
)−1




1 −1 1 1

1 1 −1 1

1 1 1 −1




, (5.13)

see Figure 5.2. Notice that

c1 =
(
Y T
)−1




1

1

1




=
(
Y T
)−1







−1

1

1




+




1

−1

1




+




1

1

−1







= c2 + c3 + c4
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Let c ∈ {c1, . . . , c4} such that ‖c‖ = max {‖c1‖ , . . . , ‖c4‖}, and for j = 1, 2, 3, let

vj = cj+1 − c1. Now set

Q =

{
c1 +

3∑

j=1

sjvj : sj ∈ [0, 1]

}
, and C =

{
c1 +

3∑

j=1

εjvj : εj ∈ {0, 1}
}

Next, identify a point in C with a vector (ε1, ε2, ε3). So, for example if

(ε1, ε2, ε3) = (1, 0, 1), then v = c1 + v1 + v3. Then, observe that since c1 =

c2 + c3 + c4, we have the following bijection between C and {±c1,±c2,±c3,±c4},

(0, 0, 0) ←→ c1

(1, 0, 0) ←→ c2

(0, 1, 0) ←→ c3

(0, 0, 1) ←→ c4

(1, 1, 0) ←→ −c4

(1, 0, 1) ←→ −c3

(0, 1, 1) ←→ −c2

(1, 1, 1) ←→ −c1

So ‖c‖ = max {‖c̃‖ : c̃ ∈ C}.

Now, if

H =
{
v ∈ R3 : |〈v, yk〉| ≤ 1 for k = 1, 2, 3

}

then Q = H. To see this, check both containments. First we note that (5.13)

with j = 2 implies

Y T c2 =




−1

1

1




=⇒




yT
1 c2

yT
2 c2

yT
3 c2




=




−1

1

1




,

i.e., 〈y1, c2〉 = −1, 〈y2, c2〉 = 1, and 〈y3, c2〉 = 1. And similarly for the other cj.
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Q ⊂ H. Let v ∈ Q, then

|〈v, yk〉| =
∣∣∣∣∣〈c1, yk〉+

3∑

j=1

sj 〈vj, yk〉
∣∣∣∣∣ =

∣∣∣∣∣1 +
3∑

j=1

sj 〈vj, yk〉
∣∣∣∣∣ ,

but

〈vj, yk〉 = 〈cj+1 − c1, yk〉 =





1− 1, if k = j,

−1− 1, if k 6= j,

so |〈vj, yk〉| = |1− 2sk|, and sk ∈ [0, 1] implies 1−2sk ∈ [−1, 0], so |〈vj, yk〉| ≤ 1

H ⊂ Q. Or equivalently, we show QC ⊂ HC . Let v /∈ Q. Now v1, v2, v3 are the

image of (−2, 0, 0)T , (0,−2, 0)T , (0, 0,−2)T respectively under the transformation
(
Y T
)−1

, so {v1, v2, v3} is a basis for R3. Thus, there are unique s1, s2, s3 ∈ R3

such that

v − c1 = s1v1 + s2v2 + s3v3.

So v = c1 + s1v1 + s2v2 + s3v3. Now because of the uniqueness of sjs, v /∈ Q

implies there is a j0 ∈ {1, 2, 3} such that sj0 /∈ [0, 1]. Now |〈v, yj0〉| = |1− 2sj0|,

and

sj0 /∈ [0, 1] =⇒ sj0 ∈ (−∞, 0) ∪ (1,∞)

=⇒ −2sj0 ∈ (−∞,−2) ∪ (0,∞)

=⇒ 1− 2sj0 ∈ (−∞,−1) ∪ (1,∞),

so |〈vj0〉| > 1, so v /∈ H, and we have shown both containments.

Now to finish the proof of Lemma 5.9, let

|〈b, ykb
〉| = max {|〈b, y1〉| , |〈b, y2〉| , |〈b, y3〉|} ,
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and set λb = 〈b, ykb
〉. Then for any k = 1, 2, 3,

∣∣∣∣
〈

b

λb

, yk

〉∣∣∣∣ =
|〈b, yk〉|
|〈b, ykb

〉| ≤
|〈b, ykb

〉|
|〈b, ykb

〉| = 1,

so b
λb
∈ Q. Now v ∈ C implies {|〈v, yk〉| : k = 1, 2, 3} are all equal, so by the con-

trapositive of this implication, we see that the assumption, {|〈b, yk〉| : k = 1, 2, 3}

are not all equal, implies b
λb

/∈ C. Thus we have shown b
λb
∈ Q\C. So by Lemma

5.7,
∥∥∥ b

λb

∥∥∥ < ‖c‖, hence b ∈ S2 implies

1

|λb|
=

1

|λb|
‖b‖ =

∥∥∥∥
b

λb

∥∥∥∥ < ‖c‖

and therefore

max {|〈b, yk〉| : k = 1, 2, 3} = |λb| >
1

‖c‖ = max

{∣∣∣∣
〈

c

‖c‖ , yk

〉∣∣∣∣ : k = 1, 2, 3

}

Thus we have proven Lemma 5.9

Thus to complete that proof of Theorem 5.8, we suppose U = {u1, u2, u3, u4}

is not equiangular. Because U is not equiangular, there is an m1 ∈ {1, 2, 3, 4}

such that if k1, k2, k3 are the remaining indicies, then

1.) max {|〈um1 , uk1〉| , |〈um1 , uk2〉| , |〈um1 , uk3〉|} =M∞(U)

2.) |〈um1 , uk1〉| , |〈um1 , uk2〉| , |〈um1 , uk3〉| are not all equal.

Then applying Lemma 5.9 with b = um1 , and {y1, y2, y3} = {uk1 , uk2 , uk3}, there

is a c ∈ R3 such that

max {|〈um1 , uki
〉| : i = 1, 2, 3, } > max

{∣∣∣∣
〈

c

‖c‖ , uki

〉∣∣∣∣ : i = 1, 2, 3,

}
.

Let xm1 = c
‖c‖ , see step 2 in Figure 5.3. Now since we have only moved the point

um1 to xm1 , the remaining correlations are uneffected since they do not involve
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Figure 5.3: An example of the four steps in proving Theorem 5.8. A

number next to an edge represents the inner product of the two boundary

points of the edge.
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um1 , thus

M∞ (U) = max {|〈um1 , uki
〉| : i = 1, 2, 3, }

> max {|〈xm1 , uki
〉| : i = 1, 2, 3, } (5.14)

=: α

Now eitherM∞ ({xm1 , uk1 , uk2 , uk3}) = α, or there is an m2 ∈ {1, 2, 3, 4} \ {m1}

such that if m1, j1, j2 are the remaining indicies, then

1.) M∞(U) = max {|〈um2 , uj1〉| , |〈um2 , uj2〉|}

2.) |〈um2 , xm1〉| , |〈um2 , uj1〉| , |〈um2 , uj2〉| are not all equal, (5.15)

where (5.15) follows from (5.14). In this case we apply Lemma 5.9 to b = um2 ,

and {y1, y2, y3} = {uj1 , uj2 , xm1}. So there is a c′ ∈ R3 such that

max {|〈um2 , xm1〉| , |〈um2 , uj1〉| , |〈um2 , uj2〉|}

= max {|〈um2 , uj1〉| , |〈um2 , uj2〉|}

> max

{∣∣∣∣
〈

c′

‖c′‖ , xm1

〉∣∣∣∣ ,
∣∣∣∣
〈

c′

‖c′‖ , uj1

〉∣∣∣∣ ,
∣∣∣∣
〈

c′

‖c′‖ , uj2

〉∣∣∣∣
}

.

Let xm2 = c′

‖c′‖ , see step 3 in Figure 5.3. Thus

M∞ (U) = max {|〈um2 , uj1〉| , |〈um2 , uj2〉|}

> max {|〈xm2 , xm1〉| , |〈xm2 , uj1〉| , |〈xm2 , uj2〉|} (5.16)

=: α′

Therefore (5.14) and (5.16) imply

M∞ (U)

> max




|〈xm1 , uj1〉| , |〈xm1 , uj2〉| ,

|〈xm2 , xm1〉| , |〈xm2 , uj1〉| , |〈xm2 , uj2〉|





(5.17)

= max {α, α′} ,
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because j1, j2 ∈ {k1, k2, k3}.

So eitherM∞ ({xm1 , xm2 , uj1 , uj2}) = max {α, α′} or else

M∞ (U) = |〈uj1 , uj2〉|.

In the latter case, (5.16) implies that |〈uj1 , uj2〉| , |〈uj1 , xm1〉| , |〈uj1 , xm2〉| are

not all equal, so we apply Lemma 5.9 to b = uj1 , and {y1, y2, y3} = {uj2 , xm1 , xm2}.

Thus there is a c′′ ∈ R3 such that

max {|〈uj1 , xm1〉| , |〈uj1 , xm2〉| , |〈uj1 , uj2〉|}

= |〈uj2 , uj1〉|

> max

{∣∣∣∣
〈

c′′

‖c′′‖ , xm1

〉∣∣∣∣ ,
∣∣∣∣
〈

c′′

‖c′′‖ , xm2

〉∣∣∣∣ ,
∣∣∣∣
〈

c′′

‖c′′‖ , uj2

〉∣∣∣∣
}

. (5.18)

Let xm3 = c′′

‖c′′‖ and let X = xm1 , xm2 , xm3 , uj2 . Then (5.17) and (5.18) imply

M∞(U) > max




|〈xm3 , xm1〉| , |〈xm3 , xm2〉| , |〈xm3 , uj2〉| ,

|〈xm2 , xm1〉| , |〈xm2 , uj2〉| , |〈xm1 , uj2〉|





=M∞(X)

Next we show that if a 4 element set is equiangular then the vectors are

parallel to the diagonals of a cube or 4 of the diagonals of an icosahedron.

Theorem 5.10. If u1, u2, u3, u4 ∈ S2 and |〈uk, ul〉| = α for k, l ∈ {1, . . . , 4} with

k 6= l, then

α =
1

3
or

1√
5

Proof. Since sign changes and rotations do not effect inner products, let P be an

element of SO3 which rotates u1 to δ3, for k = 1, 2, 3, 4 let

εk = sign 〈Pxk, δ3〉,
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〈w2, w3〉 〈w2, w4〉 〈w3, w4〉

case 1 α α α impossible

case 2 −α α α α = 1/
√

5

case 3 −α −α α α = 1/
√

5

case 4 −α −α −α α = 1/3

Table 5.3: Four main cases in the proof of Theorem 5.10.

and let Q ∈ SO3 so that Q fixes δ3 and Q rotates εkPx2 to the positive xz-plane,

i.e 〈QεkPx2, δ1〉 ≥ 0 and 〈QεkPx2, δ2〉 = 0. Then for k 6= l

α = |〈uk, ul〉| = |〈εkQPuk, εlQPul〉| = |〈wk, wl〉|

where wk = εkQPuk. Now by the choice of εk, for k = 2, 3, 4,

α = |〈w1, wk〉| = 〈δ3, wk〉 ,

so the third component of wk is α. Also 0 = 〈δ2, w2〉, and w2 ∈ S2, so the first

component of w2 is
√

1− α2. Therefore, we have

w1 = (0, 0, 1)T

w2 = (
√

1− α2, 0, α)T

w3 = (x3, y3, α)T

w4 = (x4, y4, α)T . (5.19)

Now we have four cases, see Table 5.3, where both case 2 and 3 have three

subcases which by relabeling can be reduced to the considered case.

Case 1. For k = 3, 4, 〈w2, wk〉 = α implies

xk =
α− α2

√
1− α2

= α

√
1− α

1 + α
. (5.20)
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Then (5.20) and ‖wk‖2 = 1 implies

yk = ±
√

1 + α− 2α2

1 + α
. (5.21)

In addition (5.20) and 〈w3, w4〉 = α implies

y3 · y4 =
α

1 + α
(5.22)

Now combining (5.21) and (5.22), we have

−1 + α− 2α2

1 + α
=

α

1 + α
=⇒ 2α2 − 2α− 1 = 0 =⇒ α ∈ C,

hence case 1 is impossible.

Case 2. Now 〈w2, w3〉 = α implies

x3 =
α− α2

√
1− α2

, (5.23)

and 〈w2, w4〉 = −α implies

x4 =
−α− α2

√
1− α2

, (5.24)

and (5.23), and (5.24) imply

y3 · y4 = α. (5.25)

Then (5.23) and ‖w3‖2 = 1 implies

y2
3 = −2α2 − α− 1

α + 1
=

(2α + 1)(α− 1)

α + 1
, (5.26)

and (5.24) and ‖w4‖2 = 1 implies

y2
4 =

2α2 + α− 1

α− 1
=

(2α− 1)(α + 1)

α− 1
. (5.27)

Finally, (5.25), (5.26), and (5.27) imply

−α2 = (2α + 1)(2α− 1) =⇒ α = ± 1√
5
.

Since α is assumed to be positive, we have proven case 2.
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Case 3. For k = 3, 4, 〈w2, wk〉 = −α implies

xk =
−α− α2

√
1− α2

= −α

√
1 + α

1− α
. (5.28)

Then (5.28) and ‖wk‖2 = 1 imply

y2
k =

2α2 + α− 1

α− 1
=

(2α− 1)(α + 1)

α− 1
. (5.29)

So (5.28) and 〈w3, w4〉 = α imply

y3 · y4 =
α− 3α2

1− α
(5.30)

Now combining (5.29) and (5.30), we have

−(2α− 1)(α + 1)

α− 1
= −y2

k = y3 · y4 =
α− 3α2

1− α
=⇒ α = ± 1√

5
,

and since α is positive, we have shown case 3.

Case 4. This is the same as case 3 except 〈w3, w4〉 = α and (5.28) imply

y3 · y4 =
α(α + 1)

α− 1
(5.31)

Now combining (5.29) and (5.31), we have

−(2α− 1)(α + 1)

α− 1
= −y2

k = y3 · y4 =
α(α + 1)

α− 1
=⇒ α =

1

3
,

and we have proven case 4.

Hence we have proven the theorem.

Now by Theorem 5.10, since 1√
5

> 1
3

we see that the (4, 3)-Grassmannian

bound is 1
3

which is also seen to be optimal by inspection.
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5.4 (5, 3)-Grassmannian frames

We first introduce some ideas from convex analysis, [Pan93, Lay82, Web94].

Definition 5.11. A set A ⊂ Rn is convex if for any x1, x2 ∈ A, and for any

λ ∈ [0, 1],

λx1 + (1− λ)x2 ∈ A.

A point x ∈ A is an extreme point of A if whenever x = λx1 + (1− λ)x2, where

0 < λ < 1 and x1, x2 ∈ A, then x = x1 = x2. Given a set A ⊂ Rn, the convex

hull of A is

Hull(A) =

{
m∑

j=1

λjxj :
m∑

j=1

λj = 1, λj > 0, xj ∈ A,m ∈ N

}
.

There is the following relationship between extreme points, convex hulls and

convex sets, [KM40].

Theorem 5.12. A nonempty bounded convex set in Rd is the convex hull of its

set of extreme points.

We need the following 2 Propositions.

Proposition 5.13. Let N ≥ d, let Y = {y1, . . . , yN} ⊂ Sd−1 ⊂ Rd, and assume

span(Y ) = Rd. Let

Q =
{
v ∈ Rd : |〈v, yk〉| ≤ 1, for k = 1, . . . , N

}

and let C be the set of extreme points of Q. Then

1.) Q is a bounded convex set,

2.) If v0 ∈ C then there are at least d distinct k1, . . . , kd ∈ {1, . . . , N} such

that |〈v0, yki
〉| = 1 for i = 1, . . . , d,

3.) |C| ≤
(

N
d

)
2d <∞.
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Proof of 1. First, to show Q is convex, let x1, x2 ∈ Q. Then for any λ ∈ [0, 1],

and for any k ∈ {1, . . . , N},

|〈λx1 + (1− λ)x2, yk〉| ≤ λ |〈x1, yk〉|+ (1− λ) |〈x2, yk〉|

≤ λ + (1− λ)

= 1.

Next, we show Q is bounded. Now since span(Y ) = Rd, Proposition 4.2

implies Y is a frame for Rd. Let S be the associated frame operator, and A and

B be the lower and upper frame bounds respectively. Now S is invertible, so we

can set vj = S−1yj for j = 1, . . . N . Then we have

‖vj‖ =
∥∥S−1yj

∥∥ ≤
∥∥S−1

∥∥ ‖yj‖ =
1

A
.

Now, for any x ∈ Rd,

x = S−1Sx =
N∑

j=1

〈x, yj〉S−1(yj) =
N∑

j=1

〈x, yj〉 vj.

Thus, given x ∈ Q,

‖x‖ =

∥∥∥∥∥
N∑

j=1

〈x, yj〉 vj

∥∥∥∥∥ ≤
N∑

j=1

|〈x, yj〉| ‖vj‖ =
N∑

j=1

‖vj‖ ≤
N

A

Proof of 2. We prove the contrapositive. Assume |〈v0, yk〉| = 1 for less than d

vectors in Y , i.e, by relabeling, assume there is an m ≥ 0 such that

|〈v0, yk〉| = 1, for k ∈ N with k ≤ m,

|〈v0, yk〉| < 1, for k = m + 1, . . . , N .
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We now show that v0 is not an extreme point by constructing x1, x2 ∈ Q with

x1 6= x2 such that there is a λ ∈ (0, 1) for which

v0 = λx1 + (1− λ)x2.

Let Ỹ = span {y1, . . . , ym}, where Ỹ is empty if m = 0. Since by assumption

m < d, we have dim(Ỹ ) < d. Hence let z ∈ Ỹ ⊥ ∩ Sd−1. Set

β = max {|〈v0, yk〉| : k = m + 1, . . . , N} .

Then by the choice of m, we have β < 1. Now set

x1 = v0 +
1− β

2
z, and x2 = v0 −

1− β

2
z.

Notice β < 1 implies ‖x1 − x2‖ = (1 − β) ‖z‖ = 1 − β > 0, hence x1 6= x2.

Furthermore if λ = 1
2
, then

λx1 + (1− λ) x2 =
1

2
v0 +

1− β

4
z +

1

2
v0 −

1− β

4
z = v0.

Finally, we check that x1 and x2 are in Q. For k = 1, . . . ,m, and l = 1, 2,

|〈xl, yk〉| =
∣∣∣∣〈v0, yk〉 ±

1− β

2
〈z, yk〉

∣∣∣∣ = |〈v0, yk〉| = 1

and for k = m + 1, . . . , N , and l = 1, 2,

|〈xl, yk〉| =
∣∣∣∣〈v0, yk〉 ±

1− β

2
〈z, yk〉

∣∣∣∣

≤ |〈v0, yk〉|+
1− β

2
|〈z, yk〉|

≤ β +
1− β

2
‖z‖ yk

=
1 + β

2
< 1.

Hence, v0 ∈ Q \ C.
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Proof of 3. If v0 is an extreme point then v0 must satisfy at least d of the N

equations which define Q. Therefore we count the number of ways we can pick

d distinct elements, yk, from Y to satisfy the d equations |〈v0, yk〉| = 1. There

are
(

N
d

)
d-element subsets of {1, . . . , N}, and because of the absolute value there

are two choices for the equation each v0 can satsify, namely 〈v0, yk〉 = 1 or

〈v0, yk〉 = −1. Note, if any one of the remaining N−d inequalities is not satisfied

by v0, then v0 is not an extreme point. Which shows we can have less than
(

N
d

)
2d

extreme points for a given arrangement of yks.

Under the same hypotheses of Proposition 5.13 we have

Proposition 5.14. Let N, d, Y,Q, and C be as in Proposition 5.13, and let c ∈ C

such that ‖c‖ = max {‖c̃‖ : c̃ ∈ C}. Then for any v ∈ Q \ C,

‖v‖ < ‖c‖ .

Proof. Let v ∈ Q \ C. Then there is a λ ∈ (0, 1), and there are x1, x2 ∈ Q with

x1 6= x2 such that v = λx1 + (1− λ)x2. Consider the function f : R→ R by

f(λ) = ‖λx1 + (1− λ)x2‖ .

Now we check that f is continuous on R. Let λ0 ∈ R, let ε > 0 be given, and

choose δ < ε
‖x1−x2‖ . Then whenever |λ− λ0| < δ, we have

|f(λ)− f(λ0)| =
∣∣∣ ‖λx1 + (1− λ)x2‖ − ‖λ0x1 + (1− λ)0x2‖

∣∣∣

≤ ‖λx1 + (1− λ)x2 − λ0x1 − (1− λ)0x2‖

= ‖(λ− λ0)(x1 − x2)‖

= |λ− λ0| ‖x1 − x2‖

< δ ‖x1 − x2‖ < ε.
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Now set g(λ) = f(λ)2. Then g(λ) is also continuous on R and

g(λ) = ‖λx1 + (1− λ)x2‖2

= λ2 ‖x1‖2 + 2(λ− λ2) 〈x1, x2〉 − 2(1− λ) ‖x2‖2 ,

so

g′(λ) = 2λ ‖x1‖2 + (2− 4λ) 〈x1, x2〉 − 2(1− λ) ‖x2‖2

= 2λ
(
‖x1‖2 + 2 〈x1, x2〉 ‖x2‖2

)
+ 2 〈x1, x2〉 − 2 ‖x2‖2

= 2λ ‖x1 − x2‖2 + 2 〈x1 − x2, x2〉 ,

and g′(λ) = 0 at

λ∗ = −〈x1 − x2, x2〉
‖x1 − x2‖2

.

Furthermore, for all λ ∈ R

g′′(λ) = 2 ‖x1 − x2‖2 > 0, (5.32)

so g attains a minimum at λ∗, and for all λ 6= λ∗, we have g(λ) > g(λ∗). Now if

we restrict g to [0, 1], then g achieves its maximum and minimum on [0, 1]. Thus

if λ∗ ∈ [0, 1], then by(5.32),

min
λ∈[0,1]

g(λ) = g(λ∗) and max
λ∈[0,1]

g(λ) = max {g(0), g(1)} .

If λ∗ /∈ [0, 1], then

min
λ∈[0,1]

g(λ) = min {g(0), g(1)} and max
λ∈[0,1]

g(λ) = max {g(0), g(1)} .

In either case the maximum of g occurs at the at one of the end points. Further-

more at interior points, g is strictly less that the maximum value.

Now since ‖v‖2 = g (λ0) for some λ0 ∈ (0, 1), (5.32) implies

‖v‖2 = g (λ0) < max
λ∈[0,1]

g(λ) = max {g(0), g(1)} = max
{
‖x1‖2 , ‖x2‖2

}
.
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Thus, we have shown that

v ∈ Q \ C =⇒ there is an x ∈ Q such that ‖v‖ < ‖x‖ (5.33)

=⇒ ‖v‖ < max {‖x‖ : x ∈ Q} . (5.34)

Now Q is a bounded closed set so by continuity of ‖·‖, the maximum norm is

achieved on Q, but (5.34) shows that this maximum norm is not achieved on

Q \ C. Thus

max {‖x‖ : x ∈ Q} = max {‖x‖ : x ∈ C} = ‖c‖ .

so for any v ∈ Q \ C we have, ‖v‖ < max {‖x‖ : x ∈ Q} = ‖c‖ .

Using these Propositions we can compute the (5, 3)-Grassmannian bound.

Again we follow the basic geometric idea in [Tot65], but we use the propositions

above, which can be implemented as explicit algorithms, to reduce the correlation

of a given frame. To compute the (5, 3) case, we need the following two lemmas,

Lemma 5.15. Let U = {b, y1, y2, y3, y4} ⊂ S2 ⊂ R3, and let α = M∞(U).

Assume |〈b, y1〉| < α and |〈b, y2〉| < α. Then there exists a c ∈ R3 such that

∣∣∣∣
〈

c

‖c‖ , yk

〉∣∣∣∣ < α for k = 1, 2, 3, 4.

Proof. If both |〈b, y3〉| < α and |〈b, y4〉| < α, then take c = b. Otherwise, without

loss of generality, assume |〈b, y3〉| = α. We have 2 cases:

Case 1. dim (span {y1, . . . , y4}) < 3.

Then similar to Lemma 5.9, choose c ∈ (span {y1, . . . , y4})⊥. Then by Theo-

rem 5.4 〈
c

‖c‖ , yk

〉
= 0 <

1√
6
≤ α.
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Case 2. span {y1, . . . y4} = R3.

Let

Q =
{
v ∈ Rd : |〈v, yk〉| ≤ 1, k = 1, . . . , 4

}

and let C be the set of extreme points of Q. Then by Proposition 5.13, Q is

bounded and convex and C is finite. Let c be a point in C of maximum norm.

Then by assumption

∣∣∣∣
〈

b

α
, y1

〉∣∣∣∣ < 1,

∣∣∣∣
〈

b

α
, y2

〉∣∣∣∣ < 1,

∣∣∣∣
〈

b

α
, y3

〉∣∣∣∣ = 1,

∣∣∣∣
〈

b

α
, y4

〉∣∣∣∣ ≤ 1,

which shows that b
α

can satisfy with equality at most two of the four equations

which define Q. Then by Proposition 5.13, b
α

is not an extreme point of Q. Hence

by Proposition 5.14,

1

α
=

∥∥∥∥
b

α

∥∥∥∥ < ‖c‖

Therefore, since c ∈ C ⊂ Q, we have |〈c, yk〉| ≤ 1 and

∣∣∣∣
〈

c

‖c‖ , yk

〉∣∣∣∣ ≤
1

‖c‖ < α

for k = 1, 2, 3, 4.

Lemma 5.16. Let U = {u1, . . . , u5} be a (5, 3)-Grassmannian frame, and let

α =M∞(U). Then for any j, there are distinct j1, j2, j3 ∈ {1, . . . , 5} \ {j} such

that

|〈uj, ujk
〉| = α for k = 1, 2, 3.

Proof. We prove the contrapositive. By relabeling if necessary, without loss of

generality, assume |〈u1, u2〉| < α and |〈u1, u3〉| < α. We use Lemma 5.15 to

construct a new set W for which M∞(W ) < α. This shows U is not (5, 3)-

Grassmannian.
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First let b = u1 and {y1, . . . , y4} = {u2, . . . , u5} and apply Lemma 5.15. Then

there is a c1 ∈ R3 such that

∣∣∣∣
〈

c1

‖c1‖
, uk

〉∣∣∣∣ < α for k = 2, 3, 4, 5.

Second consider the set Ũ := {u2, . . . , u5}. We have two cases,

Case 1. There exist j0, k0 ∈ {2, 3, 4, 5} with j0 6= k0, for which |〈uj0 , uk0〉| < α.

For ease in notation, by relabeling if necessary, we assume j0 = 2 and k0 =

3. In this case, we can apply Lemma 5.15 with b = u2 and {y1, . . . , y4} =
{

c1
‖c1‖ , u3, u4, u5

}
, and construct c2 ∈ R3 such that

∣∣∣∣
〈

c1

‖c1‖
,

c2

‖c2‖

〉∣∣∣∣ < α

and

max

{∣∣∣∣
〈

c2

‖c2‖
, uk

〉∣∣∣∣ : k = 3, 4, 5

}
< α

Now we can apply Lemma 5.15 to the remaining points and produce a frame with

strictly smaller ∞-correlation. Namely, since
∣∣∣
〈

ci

‖ci‖ , u3

〉∣∣∣ < α for i = 1, 2, we let

b = u3 and {y1, . . . , y4} =
{

c1
‖c1‖ ,

c2
‖c2‖ , u4, u5

}
. Then, by Lemma 5.15, there is a

c3 ∈ Rd such that ∣∣∣∣
〈

c3

‖c3‖
,

ci

‖ci‖

〉∣∣∣∣ < α for i = 1, 2,

and

max

{∣∣∣∣
〈

c3

‖c3‖
, uk

〉∣∣∣∣ : k = 4, 5

}
< α.

Finally, apply Lemma 5.15 one last time to b = u4 and

{y1, . . . , y4} =

{
c1

‖c1‖
,

c2

‖c2‖
,

c3

‖c3‖
, u5

}
,

and obtain c4 ∈ Rd for which

∣∣∣∣
〈

c4

‖c4‖
,

ci

‖ci‖

〉∣∣∣∣ < α for i = 1, 2, 3,
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and ∣∣∣∣
〈

c4

‖c4‖
, u5

〉∣∣∣∣ < α.

Thus, if we let W =
{

c1
‖c1‖ ,

c2
‖c2‖ ,

c3
‖c3‖ ,

c4
‖c4‖ , u5

}
, then by construction, for any

i, j ∈ {1, . . . , 4}, if i 6= j, then we have
∣∣∣
〈

ci

‖ci‖ ,
c1

‖c1‖

〉∣∣∣ < α and
∣∣∣
〈

ci

‖ci‖ , u5

〉∣∣∣ < α.

Hence,

M∞(W ) < α =M∞(U),

so U is not (5, 3)-Grassmannian. This finishes case 1.

Case 2. Ũ is equiangular.

Since Ũ has four elements, Theorem 5.10 implies α = 1/3 or α = 1/
√

5. If

α = 1/3, then set

β = max

{∣∣∣∣
〈

c1

‖c1‖
, uk

〉∣∣∣∣ : k = 2, 3, 4, 5

}
.

Thus by construction of c1, we have β < 1
3

and

M∞

({
c1

‖c1‖

}
∪ Ũ

)
= max

{
1

3
, β

}
=

1

3
,

but Theorem 5.4 with N = 5 and d = 3 implies

1√
6
≤M∞

({
c1

‖c1‖

}
∪ Ũ

)
=

1

3

which is a contradiction.

Thus, α = 1√
5
, and |〈u1, uk〉| < α, for k = 2, 3, 4, 5 and |〈uk, uj〉| = α, for

k 6= j and k, j ∈ {2, 3, 4, 5}.

We seek to find a contradiction. We can reduce to the following general

position by using rotations and sign changes as in Theorem 5.10. Thus, without
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loss of generality

u2 = (0, 0, 1)T

u3 = (
√

1− α2, 0, α)T

u4, u5 ∈ {p1, p2, p3, p4} ,

where

p1 =

(
α

√
1− α

1 + α
,

√
(1 + 2α)(1− α)

1 + α
, α

)T

=

(√
1− α2 cos

(
2π

5

)
,
√

1− α2 sin

(
2π

5

)
, α

)T

and

p2 =

(
−α

√
1 + α

1− α
,

√
(1− 2α)(1 + α)

1− α
, α

)T

=

(√
1− α2 cos

(
4π

5

)
,
√

1− α2 sin

(
4π

5

)
, α

)T

and

p3 =

(
−α

√
1 + α

1− α
,−
√

(1− 2α)(1 + α)

1− α
, α

)T

=

(√
1− α2 cos

(
−4π

5

)
,
√

1− α2 sin

(
−4π

5

)
, α

)T

and

p4 =

(
α

√
1− α

1 + α
,−
√

(1 + 2α)(1− α)

1 + α
, α

)T

=

(√
1− α2 cos

(
−2π

5

)
,
√

1− α2 sin

(
−2π

5

)
, α

)T

Therefore, if

A =




cos(2π/5) − sin(2π/5) 0

sin(2π/5) cos(2π/5) 0

0 0 1
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and p0 = u3, then

Ak(p0, p1, p2, p3, p4) = (pσ(0), pσ(1), pσ(2), pσ(3), pσ(4))

where σ(n) = n + k mod 5.

Now if we set β = |〈u1, u2〉| < α, then by changing the sign of u1 if necessary

and since ‖u1‖ = 1, we may assume

u1 =
(√

1− β2 cos t0,
√

1− β2 sin t0, β
)T

,

for some fixed t0 ∈ [−π, π). Hence |〈u1, u3〉| < α

⇐⇒
∣∣∣
√

1− α2
√

1− β2 cos t0 + αβ
∣∣∣ < α

⇐⇒ −α√
1− α2

1 + β√
1− β2

< cos t0 <
α√

1− α2

1− β√
1− β2

⇐⇒ cos−1

(
1

2

√
1− β

1 + β

)

︸ ︷︷ ︸
γ1(β)

< |t0| < cos−1

(
−1

2

√
1 + β

1− β

)

︸ ︷︷ ︸
γ2(β)

. (5.35)

We notice that

γ1(β) =





6π
15

= 2π
5

, if β = α,

5π
15

= π
3
, if β = 0,

and

γ2(β) =





12π
15

= 4π
5

, if β = α,

10π
15

= 2π
3

, if β = 0,

and that d
dβ

(γ2 − γ1) (β) > 0 for β ∈ (0, α), see Figure 5.4. Thus 5π
15
≤ γ2(β) −

γ1(β) < 6π
15

, when β ∈ [0, α).

Now fix a β ∈ [0, α), then,

γ2(β) < γ1(β) +
6π

15
,
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Figure 5.4: Top figure is the function γ2 − γ1, bottom figure is the

function d
dβ

(γ2 − γ1). We can see that the original function is strictly

increasing.

and for k = 1, 2, 3, 4, we have

α > |〈u1, pk〉| =
∣∣〈A−ku1, A

−kpk

〉∣∣ =
∣∣〈A−ku1, p0

〉∣∣ =
∣∣〈A−ku1, u3

〉∣∣ ,

where

A−ku1 =

(√
1− β2 cos

(
t0 −

2πk

5

)
,
√

1− β2 sin

(
t0 −

2πk

5

)
, β

)T

.

Therefore by (5.35),

α > |〈u1, pk〉| ⇐⇒ γ1(β) ≤
∣∣∣∣t0 −

2πk

5

∣∣∣∣ ≤ γ2(β), (5.36)

for k = 0, 1, 2, 3, 4. These inequalities define ten intervals on the torus T2π. If we

plot these ten intervals on T2π, we see that no set of three of them overlap, see

Figure 5.5.
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Figure 5.5: Ten intervals on T2π coreesponding to the points p0 = u3,

and p1, . . . , p4.
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This can also be seen since

γ1(β) ≤
∣∣∣∣t0 −

2πk

5

∣∣∣∣ ≤ γ2(β) =⇒ γ1(β) ≤
∣∣∣∣t0 −

2πk

5

∣∣∣∣ < γ1(β) +
2π

5

=⇒ t0 ∈
[
γ + εk, γ + ε(k + 1)

)
︸ ︷︷ ︸

Pk

∪
[
− γ + ε(k − 1),−γ + εk

)
︸ ︷︷ ︸

Nk

where γ = γ1(β), ε = 2π
5

and k = 0, 1, 2, 3, 4. So ∪4
k=0Pk is a disjoint cover of

T2π \ [γ − ε, γ), and ∪4
k=0Nkis a disjoint cover of T2π \ [−γ + ε,−γ), so t0 can be

in at most two of the ten sets Pk, Nk.

Now by assumption, |〈u1, u3〉| = |〈u1, p0〉| < α. Also |〈u1, u4〉| < α and

|〈u1, u5〉| < α where u4, u5 ∈ {p1, p2, p3, p4}. Thus (5.36) implies t0 lies in three

of the ten intervals represented in Figure 5.5. A contradiction. Thus Ũ cannot

be equiangular.

Finally, using Lemma 5.16 we have,

Theorem 5.17. If U ⊂ S2 ⊂ R3 is (5, 3)-Grassmannian, then M∞(U) = 1√
5
.

Proof. Let α = M∞(U), and consider the graph whose vertices are u1, . . . , u5,

and whose edges are defined as follows: for any pair of points uk, uj ∈ U with

k 6= j, an edge connects uk and uj if and only if |〈uk, uj〉| = α. We call the

number of edges emanating from a vertex uk, the degree of uk, denoted deg (uk).

Then Lemma 5.16 implies that

5∑

k=1

deg (uk) ≥
5∑

k=1

3 = 15

but since each edge connects two vertices, the sum of the degrees must be an

even number. Thus at least one vertex uj must have degree 4, i.e., there is a
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j ∈ {1, . . . , 5}, such that |〈uj, uji
〉| = α for i = 1, . . . , 4, where {j1, j2, j3, j4} =

{1, 2, 3, 4, 5} \ {j}. By relabeling if necessary we may assume

|〈u1, uk〉| = α for k = 2, 3, 4, 5,

|〈u2, uk〉| = α for k = 3, 4.

Furthermore, we can reduce to the general position used in Theorem 5.10, i.e.,

assume

u1 = (0, 0, 1)T

u2 = (
√

1− α2, 0, α)T

u3 = (x3, y3, α)T

u4 = (x4, y4, α)T

u5 = (x5, y5, α)T .

Now we have 2 cases:

Case 1. |〈u3, u4〉| = α.

Then the subset Ũ = {u1, u2, u3, u4} is equiangular, hence Theorem 5.10 im-

plies α = 1
3

or 1√
5
. But just as in Lemma 5.16, α = 1

3
implies that

1

3
=M∞(U) ≤ 1√

6
.

So α = 1√
5
.

Case 2. |〈u3, u4〉| < α. Then since each vertex must be of degree 3, we have that

|〈u3, u5〉| and |〈u4, u5〉| equal α. Thus if we remove the absolute values, we have

the following four equations

〈u2, u3〉 = ±α, 〈u2, u4〉 = ±α, 〈u3, u5〉 = ±α, 〈u4, u5〉 = ±α.
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This gives 24 = 16 possible cases. Of these 16 cases, 7 lead to contradictions and

the remaining 9 fall into 5 types but each implies that u3, u4, u5 are three of the

four points

(
α

√
1− α

1 + α
,±
√

(1 + 2α)(1− α)

1 + α
, α

)T

,

(
−α

√
1 + α

1− α
,±
√

(1− 2α)(1 + α)

1− α
, α

)T

,

which are the positive endpoints on the remaining 4 diagonals of an icosahedron.

Hence in each case, α = 1/
√

5.

The (5, 3)-Grassmannian frame is the first example of a non-optimal Grasm-

mannian frame since 1√
5

> 1√
6
. Hence, by Theorem 5.4, the (5, 3)-Grassmannian

frame is the first three dimensional example of a Grasmannian frame which is

not tight.

5.5 (6, 3)-Grassmannian frames

The (6, 3)-Grassmannian bound can be calculated as a consequence of Theorem

5.4.

Corollary 5.18. If U = {u1, . . . , u6} ⊂ S2 is (6, 3)-Grassmannian, then

M∞(U) = 1/
√

5.
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Proof. Set α = 1√
5
, and consider the set W with vertices

w1 = (0, 0, 1)T ,

w2 =
(√

1− α2, 0, α
)T

,

w3 =

(
α

√
1− α

1 + α
,

√
(1 + 2α)(1− α)

1 + α
, α

)T

,

w4 =

(
α

√
1− α

1 + α
,−
√

(1 + 2α)(1− α)

1 + α
, α

)T

,

w5 =

(
−α

√
1 + α

1− α
,

√
(1− 2α)(1 + α)

1− α
, α

)T

,

w6 =

(
−α

√
1 + α

1− α
,−
√

(1− 2α)(1 + α)

1− α
, α

)T

.

Note that ±W are the twelve verticies of an icosahedron. Now for k 6= l, we

compute that |〈wk, wl〉| = 1√
5
. Furthermore, by Theorem 5.4, if U is a 6 element

subset of S2, then

M∞ (U) ≥
√

6− 3

3(6− 1)
=

1√
5

=M∞(W )

Thus W is a (6, 3)-Grassmannian frame.

Notice the (6, 3) Grassmanian arrangement is so good that when you remove

a vector from it, it remains Grassmanian, and when we remove two vectors from

it, it is still a local minimum of M∞. Conway has found that there are other

instances of this in higher dimensions, particularly when the symmetry group of

the frame has a large number of elements.
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5.6 Applications of Grassmanian frames to

communication theory

Frames have found many applications in communication theory because of the

natural redudancy and numerical stability of the frame reconstruction algorithm,

[SH03, GKK01, CK03]. Grassmannian frames have the potential of reducing the

losses associated with packet-based communication systems such as the internet.

By packet-based, we mean a communication system which transmits packets of

information of a certain length with the following error controling mechanism:

if the packet contains errors, then it is not delivered, i.e., the packet is erased.

This type of communication channel is called an erasure channel. For example,

if y ∈ Rd represents the information to be transmitted, and if X = {xk}Nk=1 is a

frame for Rd. Then we send the coefficents {〈y, xk〉}Nk=1 over the erasure channel.

The erasures can then be modeled as erased frame coefficients, or erased frame

elements. Thus we desire a frame with the property that if m elements are

deleted, the remaining elements still form a frame for Rd.

Using our classification of (N, 2)-Grassmannian frames, we now give a brief

example to motivate why Grassmannian frames are amenable to erasure channel

applications.

Consider the following two frames for R2,

X = {(±1, 0), (0,±1)}

and

Y =
{(

cos(πk/N), sin(πk/N)
)

: k = 0, 1, 2, 3
}

,

see Figure 5.6. If exactly one of the elements of either X or Y is removed at

random, then both X and Y remain a frame for R2, in this case we say that both
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Figure 5.6: The frames X (left), and Y (right). To model an erasure

channel remove two elements at random from X and Y . With X, the

remaining elements may not span R2, but with Y , the remaining elements

will still span R2.

X and Y are robust to 1 erasure. Now if 2 elements are erased from Y , then we

see that Y still remains a frames for R2 since the remaining vectors are not scalar

multiples of each other. On the other hand, if both (±1, 0) is erased form X,

then the remaining vectors only span the y-axis. Hence Y is robust to 2 erasures,

whereas X is not.

5.7 Future research

Let d ≥ 2, N > d + 1, and X = {x1, . . . , xN} ⊂ Sd−1. For k = 1, . . . , N , set

Qk =
{
v ∈ Rd : |〈v, yl〉| ≤ 1, for l ∈ {1, . . . , N} \ {k}

}

and let Ck be the set of extreme points. Also, let ck be an element of Ck of

maximal norm. Now, we consider the following replacement algorithm to reduce

the∞-correlation: as k cyclically ranges through the numbers 1, . . . , N , compute

the new Qk, Ck, and ck, and set yk = ck. Hence after many interations of
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this replacement algorithm, since we are reducing the correlation at each step,

we expect our algorithm to converge to a local minimum of the function M∞.

Determining the speed of convergence and the value ofM∞ on the limit set is a

topic for future research. See Figure 5.7 for an example of this algorithm when

N = 4 and d = 2.
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Figure 5.7: Applying the replacement algorithm cyclically to more than

3 points on S1. The empty circle is the point to which we are moving

the circled star.

120



BIBLIOGRAPHY

[ASVDS96] P. Aziz, H. Sorensen, and J. Van Der Spiegel, An overview of sigma

delta converters, IEEE Sig. Proc. Mag. 13 (Jan. 1996), no. 1, 61–84.

[Ben97] J. J. Benedetto, Harmonic Analysis and Applications, CRC Press,

Boca Raton, FL, 1997.

[BF94] John J. Benedetto and Michael W. Frazier (eds.), Wavelets: Math-

ematics and Applications, CRC Press, Boca Raton, FL, 1994. MR

94f:42048

[BF01] John J. Benedetto and Paulo J. S. G. Ferreira (eds.), Modern Sam-

pling Theory: Mathematics and Applications, Birkhäuser Boston,
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