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Abstract

A significant underlying component for the effective design of phase-
coded waveforms is the construction of finite unimodular codes whose
autocorrelations are zero everywhere except at the dc-component. We
refer to such codes as CAZACs, Constant Amplitude Zero AutoCorre-
lation codes.

We begin by describing some known results in the long history of this
subject. Then we construct new CAZACs and show that there is an in-
finitude of distinct CAZACs. This is important in the realm of waveform
diversity, especially as regards a fine local analysis of the ambiguity
function and the solutions of both the narrow band and wide band
radar ambiguity problems.

We also present the vector-valued theory as well as constructions of
infinite CAZAC codes.

Norbert Wiener Center The construction of perfect autocorrelation codes



Personnel

Enrico Au-Yeung, John J. Benedetto,

Abdelkrim Bourouihiya, Wojciech Czaja, Michael R. Dellomo,

Jeffrey J. Donatelli, Matthew Fickus, Andrew Kebo,

Ioannis Konstantinidis, Kasso Okoudjou, Onur Oktay,

Joseph F. Ryan, Christopher S. Shaw,

Jeffrey M. Sieracki, Jesse Sugar-Moore.

Norbert Wiener Center The construction of perfect autocorrelation codes



Processing



Topics

Narrow band ambiguity functions and
CAZAC codes
Wiener CAZAC codes
Frames
Björck CAZAC codes and ambiguity function
comparisons
Shapiro-Rudin polynomials
A vector-valued ambiguity function



Topics (continued)

Quantization methods
A comparison of Σ-∆ and PCM
Complex Σ-∆ and Yang Wang’s idea and
algorithm
Σ-∆ and analytic number theory
Hadamard matrices and infinite CAZAC
codes



Narrow band ambiguity functions and CAZAC codes

Narrow band ambiguity functions and
CAZAC codes
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Discrete ambiguity functions

Let u : {0,1, . . . ,N − 1} → C.
up : ZN → C is the N-periodic extension of u.
ua : Z→ C is an aperiodic extension of u:

ua[m] =

{
u[m], m = 0,1, . . . ,N − 1

0, otherwise.

The discrete periodic ambiguity function Ap(u) : ZN × ZN → C of
u is

Ap(u)(m,n) =
1
N

N−1∑
k=0

up[m + k ]up[k ]e2πikn/N .

The discrete aperiodic ambiguity function Aa(u) : Z× Z→ C of u
is

Aa(u)(m,n) =
1
N

N−1∑
k=0

ua[m + k ]ua[k ]e2πikn/N .
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The ambiguity function

The complex envelope w of the phase coded waveform Re(w)
associated to a unimodular N-periodic sequence u : ZN → C is

w(t) =
1√
τ

N−1∑
k=0

u[k ] 1

(
t − ktb

tb

)
,

where 1 is the characteristic function of the interval [0,1), τ is the
pulse duration, and tb = τ/N.
For spectral shaping problems, smooth replacements to 1 are
analyzed.
The (aperiodic) ambiguity function A(w) of w is

A(w)(t , γ) =

∫
w(s + t)w(s)e2πisγds,

where t ∈ R is time delay and γ ∈ R̂(= R) is frequency shift.
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CAZAC sequences

u : ZN → C is Constant Amplitude Zero Autocorrelation (CAZAC):

∀m ∈ ZN , |u[m]| = 1, (CA)
and

∀m ∈ ZN \ {0}, Ap(u)(m,0) = 0. (ZAC)

Empirically, the (ZAC) property of CAZAC sequences u leads to
phase coded waveforms w with low aperiodic autocorrelation
A(w)(t ,0).
Are there only finitely many non-equivalent CAZAC sequences?

”Yes” for N prime and ”No” for N = MK 2,
Generally unknown for N square free and not prime.



Properties of CAZAC codes

u CAZAC ⇒ u is broadband (full bandwidth).
There are different constructions of different CAZAC codes
resulting in different behavior vis à vis Doppler, additive noises,
and approximation by bandlimited waveforms.
u CA ⇔ DFT of u is ZAC off dc. (DFT of u can have zeros)
u CAZAC ⇔ DFT of u is CAZAC.
User friendly software: http://www.math.umd.edu/∼jjb/cazac



Examples of CAZAC codes

K = 75 : u(x) =

(1, 1, 1, 1, 1, 1, e2πi 1
15 , e2πi 2

15 , e2πi 1
5 , e2πi 4

15 , e2πi 1
3 , e2πi 7

15 , e2πi 3
5 ,

e2πi 11
15 , e2πi 13

15 , 1, e2πi 1
5 , e2πi 2

5 , e2πi 3
5 , e2πi 4

5 , 1, e2πi 4
15 , e2πi 8

15 , e2πi 4
5 ,

e2πi 16
15 , e2πi 1

3 , e2πi 2
3 , e2πi , e2πi 4

3 , e2πi 5
3 , 1, e2πi 2

5 , e2πi 4
5 , e2πi 6

5 ,
e2πi 8

5 , 1, e2πi 7
15 , e2πi 14

15 , e2πi 7
5 , e2πi 28

15 , e2πi 1
3 , e2πi 13

15 , e2πi 7
5 , e2πi 29

15 ,
e2πi 37

15 , 1, e2πi 3
5 , e2πi 6

5 , e2πi 9
5 , e2πi 12

5 , 1, e2πi 2
3 , e2πi 4

3 , e2πi·2, e2πi 8
3 ,

e2πi 1
3 , e2πi 16

15 , e2πi 9
5 , e2πi 38

15 , e2πi 49
15 , 1, e2πi 4

5 , e2πi 8
5 , e2πi 12

5 , e2πi 16
5 ,

1, e2πi 13
15 , e2πi 26

15 , e2πi 13
5 , e2πi 52

15 , e2πi 1
3 , e2πi 19

15 , e2πi 11
5 , e2πi 47

15 , e2πi 61
15 )



Autocorrelation of CAZAC K = 75
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Definition

A quadratic phase CAZAC u : ZN → C is given by

u[k ] = eπiP(k)/N , k = 0,1, . . . ,N − 1,

where P(k) is a quadratic polynomial.

Examples:
Chu sequences: P(k) = k(k − 1), N odd,
P4 sequences: P(k) = k(k − N),
Wiener CAZAC sequences: P(k) = k2, N odd.



Wiener CAZAC codes

Wiener CAZAC codes

Norbert Wiener Center The construction of perfect autocorrelation codes



Norbert Wiener Center Department of Mathematics, University of Maryland, College Park

Wiener CAZAC sequences

Elementary number theoretic techniques, dealing with primitive
roots of unity, are used to analyze Wiener CAZAC sequences.
Peaks in the discrete ambiguity function Ap(u) of a Wiener
CAZAC u are not stable under small perturbations in its domain,
see [BD2007].

101–49 101–4



Rationale and theorem

Different CAZACs exhibit different behavior in their ambiguity plots,
according to their construction method. Thus, the ambiguity function
reveals localization properties of different constructions.

Theorem
Given K odd, ζ = e 2πi

K , and u[k ] = ζk2
, k ∈ ZK

1 ≤ k ≤ K − 2 odd implies

A[m, k ] = eπi(K−k)2/K for m =
1
2 (K − k), and 0 elsewhere

2 ≤ k ≤ K − 1 even implies

A[m, k ] = eπi(2K−k)2/K for m =
1
2 (2K − k), and 0 elsewhere
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Rationale and theorem

Theorem 1
Given N ≥ 1. Let

M =

{
N, N odd,
2N, N even,

and let ω be a primitive M th root of unity. Define the Wiener waveform
u : ZN → C by u(k) = ωk2 , 0 ≤ k ≤ N − 1. Then u is a CAZAC
waveform.
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Rationale and theorem

Theorem 2
Let j ∈ Z. Define uj : ZN → C by uj (k) = e2πijk2/M , where M = 2N if N
is even and M = N if N is odd. If N is even, then

Auj (m, n) =

{
e2πijm2/(2N), jm + n ≡ 0 mod N,

0, otherwise.

If N is odd

Auj (m, n) =

{
e2πijm2/N , 2jm + n ≡ 0 mod N,

0, otherwise.
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Rationale and theorem
Proof. Let N be even, and set uj(k) = eπijk2/N . We calculate

Auj (m, n) =
1
N

N−1∑

k=0
uj(m + k)uj(k)e2πikn/N

=
1
N

N−1∑

k=0
e(πi/N)(jm2+2jkm+2kn) = eπijm2/N 1

N

N−1∑

k=0
e2πik(jm+n)/N .

If jm + n ≡ 0 mod N, then

1
N

N−1∑

k=0
e2πik(jm+n)/N = 1.

Otherwise, we have

1
N

N−1∑

k=0
e2πik(jm+n)/N =

e(2πi(jm+n)/N)N − 1
e2πi(jm+n)/N − 1 = 0.
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Rationale and theorem
Proof.(Continued) Let N be odd, and set u(k) = e2πik2/N . We
calculate

Auj (m, n) =
1
N

N−1∑

k=0
uj(m + k)uj(k)e2πikn/N

=
1
N

N−1∑

k=0
e(2πi/N)(jm2+2jkm+kn) = e2πijm2/N 1

N

N−1∑

k=0
e2πik(2jm+n)/N .

If 2jm + n ≡ 0 mod N, then

1
N

N−1∑

k=0
e2πik(2jm+n)/N = 1.

Otherwise, we have

1
N

N−1∑

k=0
e2πik(2jm+n)/N =

e2πi(2m+n)/N)N − 1
e(2πi(2m+n)/N − 1 = 0.
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Rationale and theorem

Corollary
Let {u(k)}N−1

k=0 be a Wiener CAZAC waveform as given in Theorem 1.
(In particular, ω is a primitive M-th root of unity.)
If N is even, then

Au(m, n) =

{
ωm2

, m ≡ −n mod N,
0, otherwise.

If N is odd, then

Au(m, n) =

{
ωm2

, m ≡ −n(N + 1)/2 mod N,
0, otherwise.
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Rationale and theorem

Example
a. Let N be odd and let ω = e2πi/N . Then, u(k) = ωk2

, 0 ≤ k ≤ N − 1,
is a CAZAC waveform. By the Corollary, |Au(m, n)| = |ωm2 | = 1 if
2m + n = lm,nN for some lm,n ∈ Z and |Au(m, n)| = 0 otherwise, i.e.,
Au(m, n) = 0 on ZN × ZN unless 2m + n ≡ 0 mod N. In the case
2m +n = lm,nN for some lm,n ∈ Z, we have the following phenomenon.
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Rationale and theorem

Example (Continued)
If 0 ≤ m ≤ N−1

2 and 2m + n = lm,nN for some lm,n ∈ Z, then n is odd;
and if N+1

2 ≤ m ≤ N − 1 and 2m + n = lm,nN for some lm,n ∈ Z, then n
is even. Thus, the values (m, n) in the domain of the discrete periodic
ambiguity function Au , for which Au(m, n) = 0, appear as two parallel
discrete lines. The line whose domain is 0 ≤ m ≤ N−1

2 has odd
function values n; and the line whose domain is N+1

2 ≤ m ≤ N − 1
has even function values n.
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Rationale and theorem

Example
b. The behavior observed in (a) has extensions for primitive and
non-primitive roots of unity.
Let u : ZN → C be a Wiener waveform. Thus, u(k) = ωk2 ,
0 ≤ k ≤ N − 1, and ω = e2πij/M , (j , M) = 1, where M is defined in
terms of N in Theorem 1. By the Corollary, for each fixed n ∈ ZN , the
function Au(•, n) of m vanishes everywhere except for a unique value
mn ∈ ZN for which |Au(mn, n)| = 1.
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Rationale and theorem

Example (Continued)
The hypotheses of Theorem 2 do not assume that e2πij/M is a
primitive M th root of unity. In fact, in the case that e2πij/M is not
primitive, then, for certain values of n, Au(•, n) will be identically 0
and, for certain values of n, |Au(•, n)| = 1 will have several solutions.
For example, if N = 100 and j = 2, then, for each odd n, Au(•, n) = 0
as a function of m. If N = 100 and j = 3, then (100, 3) = 1 so that
e2πi3/100 is a primitive 100th root of unity; and, in this case, for each
n ∈ ZN there is a unique mn ∈ ZN such that |Au(mn, n)| = 1 and
Au(m, n) = 0 for each m 6= mn.



Wiener CAZAC ambiguity domain

K = 100, j = 2
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Wiener CAZAC ambiguity domain

K = 75, j = 1
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Wiener CAZAC ambiguity domain

K = 101, j = 4
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Wiener CAZAC ambiguity domain

K = 101, j = 50
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Wiener CAZAC ambiguity domain

K = 101, j = 51
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Wiener CAZAC ambiguity domain

K = 100, j = 2
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Wiener CAZAC ambiguity domain

K = 100, j = 98
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Wiener CAZAC ambiguity domain

K = 100, j = 4
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Wiener CAZAC ambiguity domain

K = 100, j = 50
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Perspective

Sequences for coding theory, cryptography, phase-coded waveforms,
and communications (synchronization, fast start-up equalization,
frequency hopping) include the following in the periodic case:

Gauss, Wiener (1927), Zadoff (1963), Schroeder (1969), Chu
(1972), Zhang and Golomb (1993)
Frank (1953), Zadoff and Abourezk (1961), Heimiller (1961)
Milewski (1983)
Bj ¤orck (1985) and Golomb (1992),

and their generalizations, both periodic and aperiodic.
The general problem of using codes to generate signals leads to
frames.



Frames

Frames
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FRAMES

Definition
A collection (en)n∈Λ in a Hilbert space H is a frame for H if there exist
0 < A ≤ B < ∞ such that

∀x ∈ H, A‖x‖2 ≤
∑

n∈Λ

|〈x , en〉|2 ≤ B‖x‖2.

The constants A and B are the frame bounds. If A = B, the frame is
an A-tight frame.



Frames

Definition
Bessel (analysis) operator L: H → `2(Λ)

Lx = (〈x , en〉)

Synthesis operator L∗, the Hilbert space adjoint of L
Frame operator S = L∗L : H → H,

Sx =
∑

〈x , en〉en.

By the definition of frames, S satisfies AI ≤ S ≤ BI.
Grammian operator G = LL∗ : `2(Λ) → `2(Λ).



Frames

AI ≤ S ≤ BI implies that S is invertible and that B−1I ≤ S−1 ≤ A−1I.

Definition
Let F = {en} be a frame, and let ẽn = S−1en. F̃ = {ẽn} is the dual
frame of F .

∑
〈x , en〉ẽn = S−1 ∑

〈x , en〉en = S−1Sx = x .
∑〈x , ẽn〉en =

∑〈S−1x , en〉en = SS−1x = x .

The frame operator of F̃ is S−1 since
∑

〈x , ẽn〉ẽn = S−1
∑

〈S−1x , en〉en = S−1SS−1x = S−1x .

∑ |〈x , ẽn〉|2 = 〈S−1x , x〉. Then,

B−1‖x‖2 ≤
∑

|〈x , ẽn〉|2 ≤ A−1‖x‖2.



Frames



Frames

Theorem
Let H be a Hilbert space.

{en}n∈Λ ⊆ H is A-tight ⇔ S = AI,

where I is the identity operator.

Proof. (⇒) If S = L∗L = AI, then ∀x ∈ H

A‖x‖2 = A〈x , x〉 = 〈Ax , x〉 = 〈Sx , x〉
= 〈L∗Lx , x〉 = 〈Lx , Lx〉
= ‖Ly‖2

l2(Λ)

=
∑

i∈Λ

|〈x , ei〉|2.



Frames

Proof. (⇐) If {ei}i∈Λ is A-tight, then ∀x ∈ H, A〈x , x〉 is

A‖x‖2 =
∑

i∈K
|〈x , ei〉|2 =

∑

i∈K
〈x , ei〉〈ei , x〉 =

〈
∑

i∈K
〈x , ei〉ei , x

〉
= 〈Sx , x〉.

Therefore,
∀x ∈ H, 〈(S − AI)x , x〉 = 0.

In particular, S − AI is Hermitian and positive semi-definite, so

∀x , y ∈ H, |〈(S − AI)x , y〉| ≤
√
〈(S − AI)x , x〉〈(S − AI)y , y〉 = 0.

Thus, (S − AI) = 0, so, S = AI.



Frames

Theorem (Vitali, 1921)
Let H be a Hilbert space, {en} ⊆ H, ‖en‖ = 1.

{en} is 1-tight ⇔ {en} is an ONB.

Proof. If {en} is 1-tight, then ∀y ∈ H

‖y‖2 =
∑

n
|〈y , en〉|2.

Since each ‖en‖ = 1, we have

1 = ‖en‖2 =
∑

k
|〈en, ek 〉|2 = 1 +

∑

k ,k 6=n
|〈en, ek 〉|2

⇒
∑

k 6=n
|〈en, ek 〉|2 = 0 ⇒ ∀n 6= k , 〈en, ek 〉 = 0



Finite frames

Frames F = {en}N
n=1 for d-dimensional Hilbert space H, e.g., H = Kd ,

where K = C or K = R.
Any spanning set of vectors in Kd is a frame for Kd .
If {en}N

n=1 is a finite unit norm tight frame (FUNTF) for Kd , with
frame constant A, then A = N/d .
{en}d

n=1 is a A-tight frame for K
d , then it is a

√
A-normed

orthogonal set.



Properties and examples of FUNTFs

Frames give redundant signal representation to compensate for
hardware errors, to ensure numerical stability, and to minimize
the effects of noise.
Thus, if certain types of noises are known to exist, then the
FUNTFs are constructed using this information.
Orthonormal bases, vertices of Platonic solids, kissing numbers
(sphere packing and error correcting codes) are FUNTFs.
The vector-valued CAZAC – FUNTF problem: Characterize
u : ZK −→ Cd which are CAZAC FUNTFs.
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FUNTF

A set F = {ej}j∈J ⊆ Fd is a frame for Fd , F = R or C, if

∃ A,B > 0 such that ∀ x ∈ Fd , A‖x‖2 ≤
∑
j∈J

|〈x ,ej〉|2 ≤ B‖x‖2.

F tight if A = B. A finite unit-norm tight frame F is a FUNTF.
N row vectors from any fixed N × d submatrix of the N × N DFT
matrix, 1√

d
(e2πimn/N), is a FUNTF for Cd .

If F is a FUNTF for Fd , then

∀x ∈ Fd , x =
d
N

N∑
j=1

〈x ,ej〉ej .

Frames: redundant representation, compensate for hardware
errors, inexpensive, numerical stability, minimize effects of noise.



Recent applications of FUNTFs

Robust transmission of data over erasure channels such as the
internet [Casazza, Goyal, Kelner, Kovačevi·c]
Multiple antenna code design for wireless communications
[Hochwald, Marzetta,T. Richardson, Sweldens, Urbanke]
Multiple description coding [Goyal, Heath, Kovačevi·c,
Strohmer,Vetterli]
Quantum detection [B¤olcskei, Eldar, Forney, Oppenheim, Kebo,
B]
Grassmannian ”min-max” waveforms [Calderbank, Conway,
Sloane, et al., Kolesar, B]
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DFT FUNTFs

N × d submatrices of the N × N DFT matrix are FUNTFs for Cd .
These play a major role in finite frame Σ∆-quantization.

Sigma-Delta Super Audio CDs - but not all authorities are fans.



Naimark Theorem

Definition
Let H be a Hilbert space, V ⊆ H a closed subspace, and

V⊥ = {z ∈ H : ∀y ∈ V , 〈z, y〉 = 0}

be its orthogonal complement. Then, for every x ∈ H, there is a
unique y ∈ V satisfying

‖x − y‖ = min{‖x − y ′‖ : y ′ ∈ V},

and a unique z ∈ V⊥ such that x = y + z.
The map PV : H → V , PV x = y is the orthogonal projection on V .

If {vn} is an orthonormal basis for V , then PV can be expressed as

∀x ∈ H, PV x =
∑

n
〈x , vn〉vn.



Naimark Theorem

Can we make tight frames for H = Fd (F = R or C) with prescribed
redundancy?

Yes. Take an N × N unitary matrix U, and choose any d columns of it
to form an N × d matrix L. Then, L∗L = I, which means, the rows of L
form a 1-tight frame for Fd .

How about FUNTFs?

Yes, we shall explain how to generate FUNTFs by using the frame
potential.



Naimark Theorem

If {en}N
n=1 is an A-tight frame for Fd , and L is its Bessel map, then

L∗L = AI, i.e., the set of the columns of L, {c1, . . . , cd} is a√
A-normed orthogonal set in FN . Let V = span{c1, . . . , cd}, and let

{cd+1, . . . , cN} be a
√

A-normed orthogonal basis for V⊥. Then, the
matrix

U = A−1/2[c1 . . . cN ]

is a unitary matrix, since its columns give an ONB for Fd . Then, the
rows of U also give an ONB for Fd . Let ẽk be the k th row of A1/2U.
Then,

1 {ẽk} is a
√

A-normed orthogonal basis for FN ,
2 ek = Pẽk , where P : F

N → F
d ,

P(x [1], . . . x [N]) = (x [1], . . . , x [d ]).



Naimark Theorem

Theorem (Naimark)
Let H be a d-dimensional Hilbert space, {en}N

n=1 be an A-tight frame
for H. Then there exists an N-dimensional Hilbert space H̃ , and
orthogonal A-normed set {ẽn}N

n=1 ⊆ H̃ such that

PH ẽn = en

where PH is the orthogonal projection onto H.



The geometry of finite tight frames

We saw the vertices of platonic solids are FUNTFs.
However, points that constitute FUNTFs do not have to be
equidistributed, e.g., ONBs and Grassmanian frames.
FUNTFs can be characterized as minimizers of a frame potential
function (with Fickus) analogous to Coulomb’s Law.



Frame force and potential energy

F : Sd−1 × Sd−1 \ D −→ R
d

P : Sd−1 × Sd−1 \ D −→ R,

where P(a, b) = p(‖a − b‖), p′(x) = −xf (x)

Coulomb force

CF (a, b) = (a − b)/‖a − b‖3
, f (x) = 1/x3

Frame force

FF (a, b) = 〈a, b〉(a − b), f (x) = 1 − x2/2

Total potential energy for the frame force

TFP({xn}) =
N∑

m=1

N∑

n=1
|〈xm, xn〉|2



Characterization of FUNTFs

Theorem
Let N ≤ d . The minimum value of TFP, for the frame force and N
variables, is N; and the minimizers are precisely the orthonormal
sets of N elements for Rd .

Let N ≥ d . The minimum value of TFP, for the frame force and N
variables, is N2/d ; and the minimizers are precisely the FUNTFs of N
elements for Rd .

Problem
Find FUNTFs analytically, effectively, computationally.



Construction of FUNTFs

Suppose we want to construct a FUNTF for F
d .

If F = R, Let (x1, x2, . . . , xN) denote a point in RNd , where each
xk ∈ Rd . The solutions of the following constrained minimization
problem are FUNTFs.

minimize TFP(x1, x2, . . . , xN) =
N∑

m=1

N∑

n=1
|〈xm, xn〉|2 (1)

subject to ‖xn‖2 = 1, ∀n = 1, . . . , N.

If we view TFP as a function from RNd into R, then it is twice
differentiable in each argument, so are the constraints. We can
solve this problem numerically, e.g., by using Conjugate Gradient
minimization algorithm.
If F = C, we let (Re(x1), Im(x1), . . . , Re(xN), Im(xN)) denote a
point in R2Nd , view TFP as a function from R2Nd into R, and solve
(1) as in the real case.



Björck CAZAC codes and ambiguity function
comparisons

Björck CAZAC codes and ambiguity
function comparisons

Norbert Wiener Center The construction of perfect autocorrelation codes



aveform design

Legendre symbol

Let N be a prime and (k ,N) = 1 .
I k is a quadratic residue mod N if x2 = k (mod N) has a solution.
I k is a quadratic non–residue mod N if x2 = k (mod N) has no

solution.
I The Legendre symbol:(

k
N

)
=

{
1, if k is a quadratic residue mod N ,
−1, if k is a quadratic non–residue mod N.

The diagonal of the product table of ZN gives values k ∈ Z which are
squares. As such we can program Legendre symbol computation.

Example: N = 7. ( k
N ) = 1 if k = 1,2,4.

,
14
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Definition

Let N be a prime number. A Björck CAZAC sequence of length N is

u[k ] = eiθN (k), k = 0,1, . . . ,N − 1,

where, for N = 1 (mod 4),

θN(k) = arccos
(

1
1 +
√

N

)(
k
N

)
,

and, for N = 3 (mod 4),

θN(k) =
1
2

arccos
(

1− N
1 + N

)
[(1− δk )

(
k
N

)
+ δk ].

δk is Kronecker delta and
( k

N

)
is Legendre symbol.
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Quadratic and Björck ambiguity comparison

Waveforms associated to Chu-Zadoff and P4 CAZACs are known
for their low sidelobes at zero Doppler shift, but their ambiguity
functions exhibit strong coupling in the time-frequency plane.
Waveforms associated to Björck CAZACs can more effectively
decouple the effect of time and frequency shifts. However, at
zero Doppler shift, their sidelobe behavior is less desirable than
quadratic phase CAZACs.
These differences led to our concatenation idea.

Chu-Zadoff 101 Björck 101



aveform design

Definition

I A concatenation of partial CAZACs u and v is w = Mix(r%,u, v)
defined as

w [m] = u[m], if m = 0, . . . ,M

and
w [m] = v [m], if m = M + 1, . . . ,N − 1,

where M is the nearest integer to r × N/100.
I We show how the ambiguity function can be improved by

concatenation of partial CAZACs belonging to two different
families. The best choice is obtained with r = 50.

,
20
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Example

Ambiguity function of a partial concatenation.

Wiener 67 Björck 67

Mix(50%,Wiener 67,Björck 67)



aveform design

Diversity by averaging technique

I Shifting Wiener CAZACs leads to the same type of discrete
aperiodic ambiguity function, i.e., |Aa(u(· − k0))| = |Aa(u)|.

I Discrete aperiodic ambiguity functions of shifted Björck CAZACs
exhibit diversity in both the size and location of their sidelobes.

I New families of CAZAC sequences are developed by an
averaging technique based on shifting Björck CAZAC sequences.

I This technique is exploited using non-coherent processing
(averaging absolute values) in order to achieve lower sidelobe
levels.

,
16



aveform design

The discrete aperiodic ambiguity function

Zero shift Shift by 7

Shift by 12 Average

Shifted sequences of a Björck CAZAC of length 29;
threshold at -10 dB; darker color denotes higher value.

,
17



Shapiro-Rudin polynomials

Shapiro-Rudin polynomials
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Shapiro-Rudin polynomials

The Shapiro-Rudin polynomials, Pn(t), Qn(t), n = 0,1,2, ..., are
defined recursively in the following manner. For t ∈ R/Z,

P0(t) = Q0(t) = 1,

Pn+1(t) = Pn(t) + e2πi2ntQn(t),

Qn+1(t) = Pn(t)− e2πi2ntQn(t).

The number of terms in the nth polynomial, Pn(t) or Qn(t), is 2n.
Thus, the coefficients of each polynomial can be represented as
a finite sequence of length 2n of (±1)s.

Norbert Wiener Center Golay codes, vector-valued phase-coded waveforms, and Σ − ∆ quantization



Golay complementary pairs

For any sequence z = {zk}n−1
k=0 ⊆ C and for any

m ∈ {0,1, ...,n − 1}, the mth aperiodic autocorrelation coefficient,
Az(m), is defined as

Az(m) =
n−1−m∑

j=0

zjzm+j .

Two sequences, p = {pk}n−1
k=0 ,q = {qk}n−1

k=0 ⊆ C, are a Golay
complementary pair if Ap(0) + Aq(0) 6= 0, and,

∀m = 1,2, ...,n − 1, Ap(m) + Aq(m) = 0.

For each n, the coefficients of Pn and Qn, resp., are a Golay
complementary pair.

Norbert Wiener Center Golay codes, vector-valued phase-coded waveforms, and Σ − ∆ quantization



Cusps

A parametrized curve γ : R→ R2, defined by γ(t) = (u(t), v(t)),
has a non-regular point at t = t0 if du

dt |t=t0 = dv
dt |t=t0 = 0.

Otherwise, t0 is a regular point.
A non-regular point t0 gives rise to a quadratic cusp for γ if(

d2u
dt2 |t=t0 ,

d2v
dt2 |t=t0

)
6= (0,0).

A non-regular point t0 gives rise to an ordinary cusp if it gives
rise to a quadratic cusp, and

(
d2u
dt2 |t=t0 ,

d2v
dt2 |t=t0

)
and(

d3u
dt3 |t=t0 ,

d3v
dt3 |t=t0

)
are linearly independent vectors of the real

vector space R2.
Let P(z) = z2 − 2z on C, and define γ(t) = P(e2πit ). Then, γ has
a non-regular point at t = t0 and gives rise to a quadratic cusp
there.

Norbert Wiener Center Golay codes, vector-valued phase-coded waveforms, and Σ − ∆ quantization



Cusp theorem for Shapiro-Rudin polynomials

Theorem

a. For each n ∈ N, the parametrization (Re (P2n(t)) , Im (P2n(t)))
gives rise to a quadratic cusp at (2n,0), i.e., when t = 0.
b. Further, neither (Re (P2n+1(t)) , Im (P2n+1(t))) nor
(Re (Qn(t)) , Im (Qn(t))) gives rise to a cusp when t = 0.

Remark
The Theorem does not contradict the fact that P2n : R −→ C is
infinitely differentiable as a 1-periodic polynomial on R.

Norbert Wiener Center Golay codes, vector-valued phase-coded waveforms, and Σ − ∆ quantization



Graphs of Pn(t) and Qn(t) for n=1,2,3,4

Graphical parametrizations of Pn(t) and Qn(t) by means of
(Re (Pn(t)) , Im (Pn(t))) and (Re (Qn(t)) , Im (Qn(t))) for n = 1,2,3,4.

Norbert Wiener Center Golay codes, vector-valued phase-coded waveforms, and Σ − ∆ quantization



Norbert Wiener Center Golay codes, vector-valued phase-coded waveforms, and Σ − ∆ quantization



A vector-valued ambiguity function

A vector-valued ambiguity function
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Background

Originally, our problem was to construct libraries of phase-coded
waveforms v parameterized by design variables, for
communications and radar.
A goal was to achieve diverse ambiguity function behavior of v
by defining new classes of quadratic phase and number theoretic
perfect autocorrelation codes u with which to define v .
A realistic more general problem was to construct vector-valued
waveforms v in terms of vector-valued perfect autocorrelation
codes u. Such codes are relevant in light of vector sensor and
MIMO capabilities and modeling.
Example: Discrete time data vector u(k) for a d-element array,

k 7−→ u(k) = (u0(k), . . . ,ud−1(k)) ∈ Cd .

We can have RN → GL(d ,C), or even more general.

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



General problem and STFT theme

Establish the theory of vector-valued ambiguity functions to
estimate v in terms of ambiguity data.
First, establish this estimation theory by defining the discrete
periodic vector-valued ambiguity function in a natural way.
Mathematically, this natural way is to formulate the discrete
periodic vector-valued ambiguity function in terms of the Short
Time Fourier Transform (STFT).

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



STFT and ambiguity function

Short time Fourier transform – STFT
The narrow band cross-correlation ambiguity function of v ,w
defined on R is

A(v ,w)(t , γ) =

∫
R

v(s + t)w(s)e−2πisγds.

A(v ,w) is the STFT of v with window w .
The narrow band radar ambiguity function A(v) of v on R is

A(v)(t , γ) =

∫
R

v(s + t)v(s)e−2πisγds

= eπitγ
∫

R
v
(

s +
t
2

)
v
(

s − t
2

)
e−2πisγds, for (t , γ) ∈ R2.

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



Goal

Let v be a phase coded waveform with N lags defined by the
code u.
Let u be N-periodic, and so u : ZN −→ C, where ZN is the
additive group of integers modulo N.
The discrete periodic ambiguity function Ap(u) : ZN ×ZN −→ C is

Ap(u)(m,n) =
1
N

N−1∑
k=0

u(m + k)u(k)e−2πikn/N .

Goal

Given a vector valued N-periodic code u : ZN −→ Cd , construct the
following in a meaningful, computable way:

Generalized C-valued periodic ambiguity function
A1

p(u) : ZN × ZN −→ C
Cd -valued periodic ambiguity function Ad

p (u) : ZN × ZN −→ Cd

The STFT is the guide and the theory of frames is the technology to
obtain the goal.

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function
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Multiplication problem

Given u : ZN −→ Cd .
If d = 1 and en = e2πin/N , then

Ap(u)(m,n) =
1
N

N−1∑
k=0

〈u(m + k),u(k)enk 〉.

Multiplication problem

To characterize sequences {Ek} ⊆ Cd and multiplications ∗ so that

A1
p(u)(m,n) =

1
N

N−1∑
k=0

〈u(m + k),u(k) ∗ Enk 〉 ∈ C

is a meaningful and well-defined ambiguity function. This formula is
clearly motivated by the STFT.

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



Ambiguity function assumptions

There is a natural way to address the multiplication problem
motivated by the fact that emen = em+n. To this end, we shall make
the ambiguity function assumptions:

∃ {Ek}N−1
k=0 ⊆ Cd and a multiplication ∗ such that Em ∗ En = Em+n for

m, n ∈ ZN ;

{Ek}N−1
k=0 ⊆ Cd is a tight frame for Cd ;

∗ : Cd × Cd −→ Cd is bilinear, in particular,N−1∑
j=0

cjEj

 ∗(N−1∑
k=0

dk Ek

)
=

N−1∑
j=0

N−1∑
k=0

cjdk Ej ∗ Ek .

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



Calculation

Let {Ej}N−1
j ⊆ Cd satisfy the three ambiguity function

assumptions.
Given u, v : ZN −→ Cd and m,n ∈ ZN .
Then, one calculates

u(m) ∗ v(n) =
d2

N2

N−1∑
j=0

N−1∑
s=0

〈u(m),Ej〉〈v(n),Es〉Ej+s.

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function
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A1
p(u) for DFT frames

Let {Ej}N−1
j ⊆ Cd satisfy the three ambiguity function

assumptions.
Further, assume that {Ej}N−1

j=0 is a DFT frame, and let r designate
a fixed column.
Without loss of generality, choose the first d columns of the
N × N DFT matrix.
Then, one calculates

Em ∗ En(r) =
d2

N2

N−1∑
j=0

N−1∑
s=0

〈Em,Ej〉〈En,Es〉Ej+s(r).

=
e(m+n)r√

d
= Em+n(r).

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



A1
p(u) for DFT frames

Thus, for DFT frames, ∗ is componentwise multiplication in Cd

with a factor of
√

d .
In this case A1

p(u) is well-defined for u : ZN −→ Cd by

A1
p(u)(m,n) =

1
N

N−1∑
k=0

〈u(m + k),u(k) ∗ Enk 〉

=
d

N2

N−1∑
k=0

N−1∑
j=0

〈Ej ,u(k)〉〈u(m + k),Ej+nk 〉.

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



Remark

In the previous DFT example, ∗ is intrinsically related to the
“addition” defined on the indices of the frame elements, viz.,
Em ∗ En = Em+n.
Alternatively, we could have Em ∗ En = Em•n for some function
• : ZN × ZN −→ ZN , and, thereby, we could use frames which are
not FUNTFs.
Given a bilinear multiplication ∗ : Cd × Cd −→ Cd , we can find a
frame {Ej}j and an index operation • with the Em ∗ En = Em•n
property.
If • is the multiplication for a group, possibly non-abelian and/or
infinite, we may reverse the process and find a FUNTF and
bilinear multiplication ∗ with the Em ∗ En = Em•n property.

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



A1
p(u) for cross product frames

Take ∗ : C3 ×C3 −→ C3 to be the cross product on C3 and let {i , j , k} be
the standard basis.

i ∗ j = k , j ∗ i = −k , k ∗ i = j , i ∗ k = −j , j ∗ k = i , k ∗ j = −i ,
i ∗ i = j ∗ j = k ∗ k = 0. {0, i , j , k ,−i ,−j ,−k , } is a tight frame for C3 with
frame constant 2. Let
E0 = 0, E1 = i , E2 = j , E3 = k , E4 = −i , E5 = −j , E6 = −k .

The index operation corresponding to the frame multiplication is the
non-abelian operation • : Z7 × Z7 −→ Z7, where
1 • 2 = 3, 2 • 1 = 6, 3 • 1 = 2, 1 • 3 = 5, 2 • 3 = 1, 3 • 2 = 4, 1 • 1 =
2 • 2 = 3 • 3 = 0, n • 0 = 0 • n = 0, 1 • 4 = 0, 1 • 5 = 6, 1 • 6 = 2, 4 • 1 =
0, 5 • 1 = 3, 6 • 1 = 5, 2 • 4 = 3, 2 • 5 = 0, etc.

The three ambiguity function assumptions are valid and so we can write
the cross product as

u × v = u ∗ v =
1
22

6∑
s=1

6∑
t=1

〈u, Es〉〈v , Et〉Es•t .

Consequently, A1
p(u) can be well-defined.

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



Vector-valued ambiguity function Ad
p(u)

Let {Ej}N−1
j ⊆ Cd satisfy the three ambiguity function

assumptions.
Given u : ZN −→ Cd .

The following definition is clearly motivated by the STFT.

Definition

Ad
p (u) : ZN × ZN −→ Cd is defined by

Ad
p (u)(m,n) =

1
N

N−1∑
k=0

u(m + k) ∗ u(k) ∗ Enk .

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function
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STFT formulation of Ap(u)

The discrete periodic ambiguity function of u : ZN −→ C can be
written as

Ap(u)(m,n) =
1
N

N−1∑
k=0

〈τmu(k),F−1(τnû)(k)〉,

where τ(m)u(k) = u(m + k) is translation by m and
F−1(u)(k)) = ǔ(k) is Fourier inversion.
As such we see that Ap(u) has the form of a STFT.
We shall develop a vector-valued DFT theory to verify (not just
motivate) that Ad

p (u) is an STFT in the case {Ek}N−1
k=0 is a DFT

frame for Cd .

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



DFT frames and the vector-valued DFT

Definition

Given u : ZN −→ Cd , and let {Ek}N−1
k=0 be a DFT frame for Cd . The

vector-valued discrete Fourier transform of u is

∀ n ∈ ZN , F (u)(n) = û(n) =
N−1∑
m=0

u(m) ∗ Emn,

where ∗ is pointwise (coordinatewise) multiplication.

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



Vector-valued Fourier inversion theorem

Inversion process for the vector-valued case is analogous to the
1-dimensional case.
We must define a new multiplication in the frequency domain to
avoid divisibility problems.
Define the weighted multiplication (∗) : Cd × Cd −→ Cd by
u(∗)v = u ∗ v ∗ ω where ω = (ω1, . . . , ωd ) has the property that
each ωn = 1

#{m∈ZN :mn=0} .

For the following theorem assume d << N or N prime.

Theorem - Vector-valued Fourier inversion

The vector valued Fourier transform F is an isomorphism from `2(ZN)
to `2(ZN , ω) with inverse

∀ m ∈ ZN , F−1(m) = u(m) =
d
N

N−1∑
n=0

û(n) ∗ E−mn ∗ ω.

N prime implies F is unitary.

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



Ad
p(u) as an STFT

Given u, v : ZN −→ Cd , and let {Ek}N−1
k=0 be a DFT frame for Cd .

u ∗ v denotes pointwise (coordinatewise) multiplication with a
factor of

√
d .

We compute

Ad
p (u)(m,n) =

1
N

N−1∑
k=0

(τmu(k)) ∗ F−1(τnû)(k).

Thus, Ad
p (u) is compatible with point of view of defining a

vector-valued ambiguity function in the context of the STFT.

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function
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Epilogue

If (G, •) is a finite group with representation ρ : G −→ GL(Cd ),
then there is a frame {En}n∈G and bilinear multiplication,
∗ : Cd × Cd −→ Cd , such that Em ∗ En = Em•n. Thus, we can
develop Ad

p (u) theory in this setting.
Analyze ambiguity function behavior for (phase-coded)
vector-valued waveforms v : R −→ Cd , defined by u : ZN −→ Cd

as

v =
N−1∑
k=0

u(k)1[kT ,(k+1)T ),

in terms of Ad
p (u). (See Figure)

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



aveform design

Computation of u : ZN → Cd from ambiguity

I CAZAC and waveform computation of u : ZN → Cd from A(u):
Let Au be the N ×N matix, (A(u)(m,n)). Define the N ×N matrix
U = (Ui,j), where Ui,j = 〈u(i + j),u(j)〉. Then

U = AuDN , where DN = DFT matrix.

I Let d = 1. Note that Uk,0 = u(k)u(0). Hence, if we know the
values of the ambiguity function, and, thus, the ambiguity
function matrix Au, then the sequence u, which generates it, can
be computed as long as u(0) 6= 0. In fact, if u(0) = 1 then
u(k) = (AuDN)(k ,0).

I Similar result for AV (u) using our vector-valued Fourier analysis.
I Now we can address the classical radar ambiguity problem: Find

the structure of all z : ZN → Cd for which |A(u)| = |A(z)| on
X ⊆ ZN × ZN .

,
25
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SIGMA-DELTA QUANTIZATION

+ + +D Q
xn qn

-

un= un-1 + xn-qn

First Order Σ∆

Given u0 and {xn}n=1

un= un-1 + xn-qn
qn= Q(un-1 + xn)



A quantization problem
Qualitative Problem Obtain digital representations for class X ,
suitable for storage, transmission, recovery.
Quantitative Problem Find dictionary {en} ⊆ X :

1 Sampling [continuous range K is not digital]

∀x ∈ X , x =
∑

xnen, xn ∈ K.

2 Quantization. Construct finite alphabet A and

Q : X → {
∑

qnen : qn ∈ A ⊆ K}

such that |xn − qn| and/or ‖x −Qx‖ small.

Methods
Fine quantization, e.g., PCM. Take qn ∈ A close to given xn.
Reasonable in 16-bit (65,536 levels)digital audio.
Coarse quantization, e.g., Σ∆. Use fewer bits to exploit redundancy.
SRQP

Norbert Wiener Center Golay codes, vector-valued phase-coded waveforms, and Σ − ∆ quantization



Quantization

Aδ
K = {(−K +1/2)δ, (−K +3/2)δ, . . . , (−1/2)δ, (1/2)δ, . . . , (K −1/2)δ}

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2
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6

{

{
{δ

δ

δ

3δ/2
δ/2

u−axis

f(u)=u

(K−1/2)δ

(−K+1/2)δ

u

qu

Q(u) = arg min{|u − q| : q ∈ Aδ
K} = qu



PCM
Replace xn ↔ qn = arg{min |xn − q| : q ∈ Aδ

K}. Then

(PCM) x̃ =
d
N

N∑

n=1
qnen

satisfies

‖x − x̃‖ ≤ d
N ‖

N∑

n=1
(xn − qn)en‖ ≤ d

N
δ

2

N∑

n=1
‖en‖ =

d
2 δ.

Not good!

Bennett’s white noise assumption
Assume that (ηn) = (xn − qn) is a sequence of independent,
identically distributed random variables with mean 0 and variance δ2

12 .
Then the mean square error (MSE) satisfies

MSE = E‖x − x̃‖2 ≤ d
12A δ2 =

(dδ)2

12N



A2
1 = {−1, 1} and E7

Let x = ( 1
3 , 1

2 ), E7 = {(cos( 2nπ
7 ), sin( 2nπ

7 ))}7
n=1. Consider quantizers

with A = {−1, 1}.



A2
1 = {−1, 1} and E7

Let x = ( 1
3 , 1

2 ), E7 = {(cos( 2nπ
7 ), sin( 2nπ

7 ))}7
n=1. Consider quantizers

with A = {−1, 1}.
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A2
1 = {−1, 1} and E7

Let x = ( 1
3 , 1

2 ), E7 = {(cos( 2nπ
7 ), sin( 2nπ

7 ))}7
n=1. Consider quantizers

with A = {−1, 1}.

−1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

xPCM

xΣ∆



Σ∆ quantizers for finite frames

Let F = {en}N
n=1 be a frame for Rd , x ∈ Rd .

Define xn = 〈x , en〉.
Fix the ordering p, a permutation of {1, 2, . . . , N}.
Quantizer alphabet Aδ

K
Quantizer function Q(u) = arg{min |u − q| : q ∈ Aδ

K}
Define the first-order Σ∆ quantizer with ordering p and with the
quantizer alphabet Aδ

K by means of the following recursion.

un − un−1 = xp(n) − qn

qn = Q(un−1 + xp(n))

where u0 = 0 and n = 1, 2, . . . , N.



Sigma-Delta quantization – background

History from 1950s.
Treatises of Candy, Temes (1992) and Norsworthy, Schreier,
Temes (1997).
PCM for finite frames and Σ∆ for PWΩ:
B¤olcskei, Daubechies, DeVore, Goyal, G¤unt¤urk, Kovačevic̀, Thao,
Vetterli.
Combination of Σ∆ and finite frames:
Powell, Yılmaz, and B.
Subsequent work based on this Σ∆ finite frame theory:
Bodman and Paulsen; Boufounos and Oppenheim; Jimenez and
Yang Wang; Lammers, Powell, and Yılmaz.
Genuinely apply it.



Stability
The following stability result is used to prove error estimates.

Proposition
If the frame coefficients {xn}N

n=1 satisfy

|xn| ≤ (K − 1/2)δ, n = 1, · · · , N,

then the state sequence {un}N
n=0 generated by the first-order Σ∆

quantizer with alphabet Aδ
K satisfies |un| ≤ δ/2, n = 1, · · · , N.

The first-order Σ∆ scheme is equivalent to

un =

n∑

j=1
xp(j) −

n∑

j=1
qj , n = 1, · · · , N.

Stability results lead to tiling problems for higher order schemes.



Error estimate

Definition
Let F = {en}N

n=1 be a frame for Rd , and let p be a permutation of
{1, 2, . . . , N}. The variation σ(F , p) is

σ(F , p) =

N−1∑

n=1
‖ep(n) − ep(n+1)‖.



Error estimate

Theorem
Let F = {en}N

n=1 be an A-FUNTF for Rd . The approximation

x̃ =
d
N

N∑

n=1
qnep(n)

generated by the first-order Σ∆ quantizer with ordering p and with the
quantizer alphabet Aδ

K satisfies

‖x − x̃‖ ≤ (σ(F , p) + 1)d
N

δ

2 .



Harmonic frames
Zimmermann and Goyal, Kelner, Kovačevi·c, Thao, Vetterli.

Definition
H = Cd . An harmonic frame {en}N

n=1 for H is defined by the rows of
the Bessel map L which is the complex N-DFT N × d matrix with
N − d columns removed.

H = R
d , d even. The harmonic frame {en}N

n=1 is defined by the
Bessel map L which is the N × d matrix whose nth row is

eN
n =

√
2
d

(
cos(

2πn
N ), sin(

2πn
N ), . . . , cos(

2π(d/2)n
N ), sin(

2π(d/2)n
N )

)
.

Harmonic frames are FUNTFs.
Let EN be the harmonic frame for R

d and let pN be the identity
permutation. Then

∀N, σ(EN , pN) ≤ πd(d + 1).



Error estimate for harmonic frames
Theorem
Let EN be the harmonic frame for Rd with frame bound N/d .
Consider x ∈ Rd , ‖x‖ ≤ 1, and suppose the approximation x̃ of x is
generated by a first-order Σ∆ quantizer as before. Then

‖x − x̃‖ ≤ d2(d + 1) + d
N

δ

2 .

Hence, for harmonic frames (and all those with bounded
variation),

MSEΣ∆ ≤ Cd
N2 δ2.

This bound is clearly superior asymptotically to

MSEPCM =
(dδ)2

12N .



Σ∆ and ”optimal” PCM

Theorem
The first order Σ∆ scheme achieves the asymptotically optimal
MSEPCM for harmonic frames.

The digital encoding

MSEPCM =
(dδ)2

12N
in PCM format leaves open the possibility that decoding (consistent
nonlinear reconstruction, with additional numerical complexity this
entails) could lead to

“MSEopt
PCM” � O(

1
N ).

Goyal, Vetterli, Thao (1998) proved

“MSEopt
PCM” ∼ C̃d

N2 δ2.



A comparison of Σ-∆ and PCM

A comparison of Σ-∆ and PCM



Comparison of 1-bit PCM and 1-bit Σ∆

Let x ∈ Cd , ||x || ≤ 1.

Definition
qPCM(x) is the sequence to which x is mapped by PCM.
qΣ∆(x) is the sequence to which x is mapped by Σ∆.

errPCM(x) = ||x − d
N L∗qPCM(x)||

errΣ∆(x) = ||x − d
N L∗qΣ∆(x)||

Fickus question: We shall analyze to what extent
errΣ∆(x) < errPCM(x) beyond our results with Powell and Yilmaz.



Comparison of 1-bit PCM and 1-bit Σ∆

Definition
A function e : [a, b] → Cd is of bounded variation (BV) if there is a
K > 0 such that for every a ≤ t1 < t2 < · · · < tN ≤ b,

N−1∑

n=1
‖e(tn) − e(tn+1)‖ ≤ K .

The smallest such K is denoted by |e|BV , and defines a seminorm for
the space of BV functions.



Comparison of 1-bit PCM and 1-bit Σ∆

Theorem
Let e : [0, 1] → {x ∈ Cd : ‖x‖ = 1} be continuous function of bounded
variation such that FN = (e(n/N))N

n=1 is a FUNTF for Cd for every N.
Then,

∃N0 > 0 such that ∀N ≥ N0 and ∀0 < ‖x‖ ≤ 1
errΣ∆(x) ≤ errPCM(x).

Moreover, a lower bound for N0 is d(1 + |e|BV )/(
√

d − 1).



Comparison of 1-bit PCM and 1-bit Σ∆

Example (Roots of unity frames for R2)
eN

n = (cos(2πn/N), sin(2πn/N)).
Here, e(t) = (cos(2πt), sin(2πt)),
M = |e|BV = 2π, limαFN = 2/π.

Example (Real Harmonic Frames for R2k )
eN

n = 1√
k (cos(2πn/N), sin(2πn/N), . . . , cos(2πkn/N), sin(2πkn/N)).

In this case, e(t) = 1√
k (cos(2πt), sin(2πt), . . . , cos(2πkt), sin(2πkt)),

M = |e|BV = 2π
√

1
d

∑d
k=1 k2.



Comparison of 2-bit PCM and 1-bit Σ∆
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Comparison of 2-bit PCM and 1-bit Σ∆
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Comparison of 2-bit PCM and 1-bit Σ∆
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Comparison of 3-bit PCM and 1-bit Σ∆

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
81st Roots of 1 frame, 3bit PCM vs 1bit Σ∆

Red: errPCM(x) < errΣ∆(x), Green: errPCM(x) = errΣ∆(x).



Comparison of 3-bit PCM and 1-bit Σ∆
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Comparison of 3-bit PCM and 1-bit Σ∆
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Comparison of 3-bit PCM and 2-bit Σ∆
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Complex Σ-∆ and Yang Wang’s idea and algorithm

Complex Σ-∆ and Yang Wang’s idea
and algorithm



Waveform Design Finite frames Sigma-Delta quantization

Complex Σ∆ - Alphabet
Let K ∈ N and δ > 0. The midrise quantization alphabet is

Aδ
K =

{(
m +

1
2

)
δ + inδ : m = −K , . . . , K − 1, n = −K , . . . , K

}

Figure: Aδ

K for K = 3δ.



Waveform Design Finite frames Sigma-Delta quantization

Complex Σ∆

The scalar uniform quantizer associated to Aδ
K is

Qδ(a + ib) = δ

(1
2 +

⌊a
δ

⌋
+ i
⌊b

δ

⌋)
,

where bxc is the largest integer smaller than x .
For any z = a + ib with |a| ≤ K and |b| ≤ K , Q satisfies

|z − Qδ(z)| ≤ min
ζ∈Aδ

K

|z − ζ|.

Let {xn}N
n=1 ⊆ C and let p be a permutation of {1, . . . , N}. Analogous

to the real case, the first order Σ∆ quantization is defined by the
iteration

un = un−1 + xp(n) − qn,

qn = Qδ(un−1 + xp(n)).



Waveform Design Finite frames Sigma-Delta quantization

Complex Σ∆

The following theorem is analogous to BPY

Theorem

Let F = {en}N
n=1 be a finite unit norm frame for Cd , let p be a

permutation of {1, . . . , N}, let |u0| ≤ δ/2, and let x ∈ Cd satisfy
‖x‖ ≤ (K − 1/2)δ. The Σ∆ approximation error ‖x − x̃‖ satisfies

‖x − x̃‖ ≤
√

2‖S−1‖op

(
σ(F , p)

δ

2 + |uN | + |u0|
)

,

where S−1 is the inverse frame operator. In particular, if F is a
FUNTF, then

‖x − x̃‖ ≤
√

2 d
N

(
σ(F , p)

δ

2 + |uN | + |u0|
)

,



Waveform Design Finite frames Sigma-Delta quantization

Complex Σ∆

Let {FN} be a family of FUNTFs, and pN be a permutation of
{1, . . . , N}. Then the frame variation σ(FN , pN) is a function of N. If
σ(FN , pN) is bounded, then

‖x − x̃‖ = O(N−1) as N → ∞.

Wang gives an upper bound for the frame variation of frames for R
d ,

using the results from the Travelling Salesman Problem.

Theorem YW
Let S = {vj}N

j=1 ⊆ [− 1
2 , 1

2 ]d with d ≥ 3. There exists a permutation p
of {1, . . . , N} such that

N−1∑

j=1
‖vp(j) − vp(j+1)‖ ≤ 2

√
d + 3N1− 1

d − 2
√

d + 3.



Waveform Design Finite frames Sigma-Delta quantization

Complex Σ∆

Theorem
Let F = {en}N

n=1 be a FUNTF for R
d , |u0| ≤ δ/2, and let x ∈ R

d satisfy
‖x‖ ≤ (K − 1/2)δ. Then, there exists a permutation p of {1, 2, . . . , N}
such that the approximation error ‖x − x̃‖ satisfies

‖x − x̃‖ ≤
√

2δd
(
(1 −

√
d + 3)N−1 +

√
d + 3N− 1

d

)

This theorem guarantees that

‖x − x̃‖ ≤ O(N− 1
d ) as N → ∞

for FUNTFs for Rd .



Σ-∆ and analytic number theory

Σ-∆ and analytic number theory



Even – odd
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Even – odd

EN = {eN
n }N

n=1, eN
n = (cos(2πn/N), sin(2πn/N)). Let x = ( 1

π ,
√

3
17 ).

x =
d
N

N∑

n=1
xN

n eN
n , xN

n = 〈x , eN
n 〉.

Let x̃N be the approximation given by the 1st order Σ∆ quantizer with
alphabet {−1, 1} and natural ordering.



Improved estimates
EN = {eN

n }N
n=1, Nth roots of unity FUNTFs for R

2, x ∈ R
2,

‖x‖ ≤ (K − 1/2)δ.

Quantize x =
d
N

N∑

n=1
xN

n eN
n , xN

n = 〈x , eN
n 〉

using 1st order Σ∆ scheme with alphabet Aδ
K .

Theorem
If N is even and large then ‖x − x̃‖ ≤ Bx

δ log N
N5/4 .

If N is odd and large then Ax
δ
N ≤ ‖x − x̃‖ ≤ Bx

(2π+1)d
N

δ
2 .

The proof uses a theorem of G¤unt¤urk (from complex or harmonic
analysis); and Koksma and Erd¤os-Tur·an inequalities and van der
Corput lemma (from analytic number theory).
The Theorem is true for harmonic frames for Rd .



Proof of Improved Estimates theorem

If N is even and large then ‖x − x̃‖ ≤ Bx
δ log N
N5/4 .

If N is odd and large then Ax
δ
N ≤ ‖x − x̃‖ ≤ Bx

(2π+1)d
N

δ
2 .

∀N, {eN
n }N

n=1 is a FUNTF.

x − x̃N =
d
N

( N−2∑

n=1
vN

n (f N
n − f N

n+1) + vN
N−1f N

N−1 + uN
N eN

N

)

f N
n = eN

n − eN
n+1, vN

n =

n∑

j=1
uN

j , ũN
n =

uN
n
δ

To bound vN
n .



Koksma Inequality

Definition
The discrepancy DN of a finite sequence x1, . . . , xN of real numbers is
DN = DN(x1, . . . , xN) = sup0≤α〈β≤1

∣∣∣∣
1
N

∑N
n=1

�

[α,β)({xn}) − (β − α)

∣∣∣∣,
where {x} = x − bxc.

Theorem(Koksma Inequality)
g : [−1/2, 1/2) → R of bounded variation and
{ωj}n

j=1 ⊂ [−1/2, 1/2) =⇒
∣∣∣∣
1
n

n∑

j=1
g(ωj ) −

∫ 1
2

− 1
2

g(t)dt
∣∣∣∣ ≤ Var(g)Disc

(
{ωj}n

j=1

)
.

With g(t) = t and ωj = ũN
j , |vN

n | ≤ nδDisc
(
{ũN

j }n
j=1

)
.



Erdös-Turán Inequality

∃C > 0, ∀K , Disc
(
{ũN

n }j
n=1

)
≤ C

( 1
K +

1
j

K∑

k=1

1
k

∣∣∣
j∑

n=1
e2πikeuN

n

∣∣∣
)

.

To approximate the exponential sum.



Approximation of Exponential Sum

Güntürk’s Proposition (1)
∀N, ∃XN ∈ BΩ/N such that , ∀n = 0, . . . , N

XN(n) = uN
n + cn

δ

2 , cn ∈ Z

and, ∀t , ∣∣∣X ′
N(t) − h

( t
N

)∣∣∣ ≤ B 1
N

Bernstein’s Inequality (2)
If x ∈ BΩ, then ‖x (r)‖∞ ≤ Ωr‖x‖∞



Approximation of Exponential Sum

(1)+(2)

AA ��
QQ ��

∀t ,
∣∣∣X ′′

N (t) − 1
N h′

(
t
N

)∣∣∣ ≤ B 1
N2

B̂Ω = {T ∈ A′(R̂) : suppT ⊆ [−Ω, Ω ]}
MΩ = {h ∈ BΩ : h′ ∈
L∞(R) and all zeros of h′ on [0, 1] are simple}
We assume
∃h ∈ MΩ such that ∀N and ∀ 1 ≤ n ≤ N, h(n/N) = xN

n .



Van der Corput Lemma

Let a, b be integers with a < b, and let f satisfy f ′′ ≥ ρ > 0 on
[a, b] or f ′′ ≤ −ρ < 0 on [a, b]. Then

∣∣∣
b∑

n=a
e2πif (n)

∣∣∣ ≤
(∣∣f ′(b) − f ′(a)

∣∣ + 2
)( 4√

ρ
+ 3

)
.

AA ��
QQ ��

∀0 < α < 1, ∃Nα such that ∀N ≥ Nα,

∣∣∣
j∑

n=1
e2πikeuN

n

∣∣∣ ≤ Bx Nα + Bx

√
kN1−α

2
√

δ
+ Bx

k
δ
.



Choosing appropriate α and K

Putting α = 3/4, K = N1/4 yields

∃Ñ such that ∀N ≥ Ñ, Disc
(
{ũN

n }j
n=1

)
≤ Bx

1
N 1

4
+ Bx

N 3
4 log(N)

j

AA ��
QQ ��

Conclusion

∀n = 1, . . . , N, |vN
n | ≤ BxδN 3

4 log N



Hadamard matrices and infinite CAZAC codes

Hadamard matrices and infinite CAZAC codes



Accomplishments

Developed libraries of CAZAC codes parameterized by design
variables, proven mathematically and made available by user
friendly software (CAZAC Playstation).
Refined and formulated new, large classes of quadratic phase
CAZAC codes and introduced Björck CAZAC codes to achieve
diverse discrete periodic ambiguity function behavior.
Enhanced sidelobe suppression by averaging and mixing
techniques for CAZAC codes.
Constructed vector-valued CAZAC codes with frame properties.
This was motivated by the fact that frames lead to robust/stable
signal decompositions. Vector-valued CAZAC codes are relevant
in light of vector sensor and MIMO capabilities.
Established the theory of waveforms coded by finite Gabor
systems, and made a quantitative comparison with the
non-Gabor case (A. Bourouihiya).
Proved preliminary mathematical results to estimate the number
of essentially different CAZAC codes of length N.

Norbert Wiener Center Golay codes, vector-valued phase-coded waveforms, and Σ − ∆ quantization



Transition and the future

Our CAZAC software continues to be developed. This is ongoing
work in order to develop a useful tool for the community. See

www.math.umd.edu/˜jjb/cazac/

We shall analyze the wideband radar ambiguity function,

WA(u)(x ,a) =
√

a
∫

u(a(t − x))u(t)dt ,

in terms of wavelet frames, with the intent of solving the
wideband radar ambiguity problem.
We intend to complete our geometrical analysis of Shapiro-Rudin
polynomials, and to extend the study to Golay pairs.

Norbert Wiener Center Golay codes, vector-valued phase-coded waveforms, and Σ − ∆ quantization

 www.math.umd.edu/~jjb/cazac/


Transition and the future

We shall further develop and implement our theory of
vector-valued ambiguity functions in terms of our notion of frame
multiplication and the role of finite groups.
Our previous MURI results on number theoretic CAZAC codes,
such as Björck codes, serving as coefficients for phase-coded
waveforms, will be analyzed in the vector-valued setting.
We shall construct alternatives to the Golay waveform modality
by means of our vector-valued theory.
Gabor frames and pseudodifferential operators will be
incorporated in our investigation of the narrow band radar
ambiguity function
We are using our frame potential characterization of FUNTFs in
conjunction with L1-sparse representation criteria in order to
construction a new quantization scheme, called SRQP (Sparse
Representation Quantization Procedure), which goes beyond
Σ−∆.

Norbert Wiener Center Golay codes, vector-valued phase-coded waveforms, and Σ − ∆ quantization
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