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Happy birthday Lucía! 
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Outline 
-  Problem: Find “sparse solutions” of Ax = b. 
-  Definitions of “sparse solution”. 
-  How do we find sparse solutions? 

 The Orthogonal Matching Pursuit (OMP) 
-  Some theoretical results. 
-  Implementation and validation, some details. 
-  Validation results. 
-  Conclusions/Recapitulation. 
-  Project timeline, current status. 
-  References. 
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Problem 
Let A be an n by m matrix, with n < m, and rank(A) = n. 
We want to solve 

       Ax = b, 
 
where b is a data or signal vector, and x is the solution 
with the fewest number of non-zero entries possible, 
that is, the “sparsest” one. 
Observations: 
- A is underdetermined and, since rank(A) = n, 
there is an infinite number of solutions. Good! 
- How do we find the “sparsest” solution? What does 
this mean in practice? Is there a unique sparsest 
solution? 
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Why is this problem relevant? 

231 kb, uncompressed, 
320x240x3x8 bit 

74 kb, compressed 3.24:1 
JPEG 
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Why is this problem relevant? 

512 x 512 Pixels, 
24-Bit RGB, 

Size 786 Kbyte 

75:1, 10.6 Kbyte 
JPEG2000 
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Why is this problem relevant? 
“Sparsity” equals compression: 
 
Assume Ax = b. If x is sparse, and b is dense, store x! 
 
Image compression techniques, such as JPEG [6] or 
JPEG-2000 [5], are based in this idea, where a linear 
transformation provides a sparse representation within 
an error margin of the original image. 
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Definitions of “sparse” 
-  Convenient to introduce the l0 “norm” [1]: 
 

  ||x||0 = # {k : xk ≠ 0} 
 
-  (P0):   minx ||x||0  subject to  ||Ax - b||2 = 0 

-  (P0
ε):   minx ||x||0  subject to  ||Ax - b||2 < ε 

 

Observations: In practice, (P0 
ε) is the working 

definition of sparsity as it is the only one that is 
computationally practical. Solving (P0 

ε) is NP-hard [2]. 
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Some theoretical results 
Definition: The spark of a matrix A is the minimum 
number of linearly dependent columns of A. We write 
spark(A) to represent this number. 
 
Theorem: If there is a solution x to Ax = b, and 
||x||0 < spark(A) / 2, then x is the sparsest solution. 
That is, if y ≠ x also solves the equation, then 
||x||0 < ||y||0. 
 
Observation: Computing spark(A) is combinatorial, 
therefore hard. Alternative? 
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Some theoretical results 

Lemma: spark(A) ≥ 1+1/mu(A). 
 
Theorem: If x solves Ax = b, and ||x||0 < (1+µ(A)-1)/2, 
then x is the sparsest solution. That is, if y ≠ x also solves 
the equation, then ||x||0 < ||y||0. 
 
Observation: mu(A) is a lot easier and faster to compute, 
but 1+1/mu(A) far worse bound than spark(A), in general. 

Definition: The mutual coherence of a matrix A is the 
number 
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Finding sparse solutions: OMP 
Orthogonal Matching Pursuit algorithm [1]: 
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Some theoretical results 
Definition: The mutual coherence of a matrix A is the 
number 

Theorem: If x solves Ax = b, and ||x||0 < (1+µ(A)-1)/2, 
then x is the sparsest solution. That is, if y ≠ x also solves 
the equation, then ||x||0 < ||y||0. 
 
Theorem: For a system of linear equations Ax = b (A an n 
by m matrix, n < m, and rank(A) = n), if a solution x exists 
obeying ||x||0 < (1+µ(A)-1)/2, then an OMP run with 
threshold parameter ε0 = 0 is guaranteed to find x exactly.  
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Implementation and Validation 
In light of these theoretical results, we can envision the 
following roadmap to validate an implementation of OMP. 
 
-  We have a simple theoretical criterion to guarantee both 
solution uniqueness and OMP convergence: 
 
If x is a solution to Ax = b, and ||x||0 < (1+µ(A)-1)/2, 
then x is the unique sparsest solution to Ax = b and OMP 
will find it. 
 
-  Hence, given a full-rank n by m matrix A (n < m), compute 
µ(A), and find the largest integer k smaller than or equal 
to (1+µ(A)-1)/2. That is, k = floor((1+µ(A)-1)/2). 
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Implementation and Validation 
-  Build a vector x with exactly k non-zero entries and 
produce a right hand side vector b = Ax. This way, you 
have a known sparsest solution x to which to compare the 
output of any OMP implementation. 
 
-  Pass A, b, and ε0 to OMP to produce a solution vector 
xomp = OMP(A,b,ε0). 
 
-  If OMP terminates after k iterations and ||Axomp - b|| < ε0, 
for all possible x and ε0 > 0, then the OMP implementation 
would have been validated. 
 
Caveat: The theoretical proofs assume infinite precision. 
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Implementation and Validation 
- Some implementation details worth discussing: 
 
The core of the algorithm is found in the following three 
steps. We will discuss in detail our implementation of 
the “Update Support” and “Update Provisional Solution” 
steps. 
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Implementation and Validation 

---Initialization--- 
k = 0; 
activeCol = []; % will contain the indices of the active columns of A. 
epsilon = zeros(m,1); % contains the errors epsilon(j) described above. 
---Inside Main Loop--- 
k = k + 1; 
% Sweep 
for j = 1:m 
        a_j = A(:,j); 
        z_j = a_j'*r0/norm(a_j)^2; 
        epsilon(j) = norm(z_j*a_j - r0)^2; 
end 
% Update Support 
maxValueEpsilon = max(epsilon); 
epsilon(activeCol) = maxValueEpsilon; 
[minValueEpsilon, j_0] = min(epsilon); % j_0 is the new index to add. 
activeCol(k) = j_0; % update the set of active columns of A. 
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Implementation and Validation 

A3 = QR = Q1R1 + Q2R2 = Q1R1 + 0 = Q1R1 

Solve the linear system A3x* = b, with x* ∈ R3.  We have: 
 
      A3x* = QRx* = Q1R1x* = b ⇒ Q1

TQ1R1x* = Q1
Tb   (1) 

See [3] for more on the QR decomposition. 
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Implementation and Validation 

(1):  Q1
TQ1R1x* = Q1

Tb ⇔ R1x* = Q1
Tb 

                        ⇔ x* = (R1)-1 Q1
Tb, 

Observation: 

where we can obtain the last equation because A is a full 
rank matrix, and therefore A3 is too, implying (R1)-1 exists.  
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Implementation and Validation 

The minimizer xk=3 of ||Ax - b||22, subject to support{x} = Sk=3, 
is then obtained when we solve A3x* = b, with x* ∈ R3, and 
we set xk=3 equal to the “natural embedding” of x* into the 
zero vector 0 ∈ Rm. 

---Initialization--- 
x0 = zeros(m,1); 
---Inside Main Loop--- 
% Update the provisional solution by solving an equivalent unconstrained 
% least squares problem. 
A_k = A(:,activeCol); 
[Q,R] = qr(A_k); 
x0(activeCol) = R(1:k,:) \ Q(:,1:k)'*b; 
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Validation Results 
We ran two experiments: 
 
1)  A ∈ R100x200, with entries in N(0,1) i.i.d. for which 

 µ(A) = 0.3713, corresponding to k = 1 ≤ Κ. 
2)  A ∈ R200x400, with entries in N(0,1) i.i.d. for which 

 µ(A) = 0.3064, corresponding to k = 2 ≤ Κ. 
 
Observations: 
- A will be full-rank with probability 1 [1]. 
- For full-rank matrices A of size n x m, the mutual  
coherence satisfies µ(A) ≥ √{(m - n)/(n⋅(m - 1))} [4]. That  
is, the upper bound of Κ = (1 + µ(A)-1)/2 can be made  
as big as needed, provided n and m are big enough. 
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Validation Results 
For each matrix A, we chose 100 vectors with k non-zero 
entries whose positions were chosen at random, and 
whose entries were in N(0,1).  
 
Then, for each such vector x, we built a corresponding 
right hand side vector b = Ax. 
 
Each of these vectors would then be the unique sparsest 
solution to Ax = b, and OMP should be able to find them. 
 
Finally, given ε0 > 0, if our implementation of OMP were 
correct, it should stop after k steps (or less), and if 
xOMP = OMP(A,b,ε0), then ||b - AxOMP|| < ε0. 
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Validation Results 
k = 1 
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Validation Results 
k = 1 
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Validation Results 
k = 1 
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Validation Results 
k = 1 
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Validation Results 
k = 1 
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Validation Results 
k = 2 



12/16/2010 Ph.D. Preliminary Oral 
Examination 

28 

Validation Results 
k = 2 
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Validation Results 
k = 2 
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Validation Results 
k = 2 



12/16/2010 Ph.D. Preliminary Oral 
Examination 

31 

Validation Results 
k = 2 
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Conclusions/Recapitulation 

- There are simple criteria to test the uniqueness of a 
given sparse solution. 

-  There are algorithms that find sparse solutions, e.g., 
OMP; and their convergence can be guaranteed 
when there are “sufficiently sparse” solutions. 
 
- Our implementation of OMP is successful up to 
machine precision as predicted by current theoretical 
bounds. 
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Future Work 
Revisiting Compression: Propose to study the 
compression properties of the matrix 
 

   A = [DCT,DWT] 
 
and compare it with the compression properties of 
DCT or DWT alone. 
 
Study the behavior of OMP for this problem. 
 
Interested in compression vs error graph 
characteristics. 
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