Frames: CAZAC sequences and potential theory for sampling and classification

John J. Benedetto

Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu

< < >> < <</p>

Narrow band ambiguity functions and CAZAC codes

Narrow band ambiguity functions and CAZAC codes

Discrete ambiguity functions

Let $u: \{0, 1, \ldots, N-1\} \rightarrow \mathbb{C}$.

- $u_p : \mathbb{Z}_N \to \mathbb{C}$ is the *N*-periodic extension of *u*.
- $u_a : \mathbb{Z} \to \mathbb{C}$ is an aperiodic extension of u:

$$u_a[m] = \left\{ egin{array}{cc} u[m], & m=0,1,\ldots,N-1 \ 0, & ext{otherwise}. \end{array}
ight.$$

The discrete periodic ambiguity function A_p(u) : Z_N × Z_N → C of u is

$$A_{p}(u)(m,n)=\frac{1}{N}\sum_{k=0}^{N-1}u_{p}[m+k]\overline{u_{p}[k]}e^{2\pi i kn/N}.$$

The discrete aperiodic ambiguity function A_a(u) : ℤ × ℤ → ℂ of u is

$$A_{a}(u)(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} u_{a}[m+k] \overline{u_{a}[k]} e^{2\pi i k n/N}.$$

CAZAC sequences

• $u : \mathbb{Z}_N \to \mathbb{C}$ is Constant Amplitude Zero Autocorrelation (CAZAC):

 $\forall m \in \mathbb{Z}_N, |u[m]| = 1, (CA)$

and

 $\forall m \in \mathbb{Z}_N \setminus \{0\}, \quad A_p(u)(m,0) = 0.$ (ZAC)

- Empirically, the (ZAC) property of CAZAC sequences u leads to phase coded waveforms w with low *aperiodic autocorrelation* $\mathcal{A}(w)(t, 0)$.
- Are there only finitely many non-equivalent CAZAC sequences?
 - "Yes" for *N* prime and "No" for $N = MK^2$,
 - Generally unknown for *N* square free and not prime.

Björck CAZAC codes and ambiguity function comparisons

Björck CAZAC codes and ambiguity function comparisons

aveform design

Legendre symbol

Let N be a prime and (k, N) = 1.

- ▶ *k* is a quadratic residue mod *N* if $x^2 = k \pmod{N}$ has a solution.
- ▶ k is a quadratic non-residue mod N if x² = k (mod N) has no solution.
- The Legendre symbol:

$$\begin{pmatrix} \frac{k}{N} \end{pmatrix} = \begin{cases} 1, & \text{if } k \text{ is a quadratic residue mod } N, \\ -1, & \text{if } k \text{ is a quadratic non-residue mod } N. \end{cases}$$

The diagonal of the product table of \mathbb{Z}_N gives values $k \in \mathbb{Z}$ which are squares. As such we can program Legendre symbol computation.

Example:
$$N = 7$$
. $(\frac{k}{N}) = 1$ if $k = 1, 2, 4$.

< ロ > < 同 > < 回 > < 回 >

Definition

Let N be a prime number. A Björck CAZAC sequence of length N is

$$u[k] = e^{i\theta_N(k)}, \quad k = 0, 1, \dots, N-1,$$

where, for $N = 1 \pmod{4}$,

$$\theta_N(k) = \arccos\left(\frac{1}{1+\sqrt{N}}\right)\left(\frac{k}{N}\right),$$

and, for $N = 3 \pmod{4}$,

$$\theta_N(k) = \frac{1}{2} \arccos\left(\frac{1-N}{1+N}\right) \left[\left(1-\delta_k\right)\left(\frac{k}{N}\right)+\delta_k\right].$$

 δ_k is Kronecker delta and $\left(\frac{k}{N}\right)$ is Legendre symbol.

Absolute value of Bjorck code of length 17

Absolute value of Bjorck code of length 53

|A_p(Bjorck₅₃)(t,γ)|

Norbert Wiener Center for Harmonic Analysis and Applications

Absolute value of Bjorck code of length 503

Björck CAZAC Discrete Narrow-band Ambiguity Function

Let u_p denote the Björck CAZAC sequence for prime p, and let $A_p(u_p)$ be the discrete narrow band ambiguity function defined on $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Theorem (J. and R. Benedetto and J. Woodworth)

$$|A_p(u_p)(m,n)| \leq rac{2}{\sqrt{p}} + rac{4}{p}$$

for all $(m, n) \in (\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}) \setminus (0, 0)$.

- The bound is more precise but not better than $\frac{2}{\sqrt{p}}$ depending on whether $p \equiv 1 \pmod{4}$ or $p \equiv 3 \pmod{4}$.
- The proof is at the level of Weil's proof of the Riemann hypothesis for finite fields and depends on Weil's exponential sum bound.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Elementary construction/coding and intricate combinatorial/geometrical patterns.

Waveform diversity is a government program for disadvantaged waveforms

- G. Linde, (a real) radar engineer

The ambiguity function

The complex envelope w of the phase coded waveform Re(w) associated to a unimodular N-periodic sequence u : Z_N → C is

$$w(t) = \frac{1}{\sqrt{\tau}} \sum_{k=0}^{N-1} u[k] \mathbb{1}\left(\frac{t-kt_b}{t_b}\right),$$

where $\mathbb{1}$ is the characteristic function of the interval [0, 1), τ is the pulse duration, and $t_b = \tau/N$.

- For spectral shaping problems, smooth replacements to 1 are analyzed.
- The (aperiodic) ambiguity function $\mathcal{A}(w)$ of w is

$$\mathcal{A}(w)(t,\gamma) = \int w(s+t)\overline{w(s)}e^{2\pi i s \gamma} ds,$$

where $t \in \mathbb{R}$ is time delay and $\gamma \in \widehat{\mathbb{R}}(=\mathbb{R})$ is frequency shiftent Wener Center of the state of t

Doppler Shift (y)

Sequences for coding theory, cryptography, phase-coded waveforms, and communications (synchronization, fast start-up equalization, frequency hopping) include the following in the periodic case:

- Gauss, Wiener (1927), Zadoff (1963), Schroeder (1969), Chu (1972), Zhang and Golomb (1993)
- Frank (1953), Zadoff and Abourezk (1961), Heimiller (1961)
- Milewski (1983)
- Bjørck (1985) and Golomb (1992),

and their generalizations, both periodic and aperiodic.

The general problem of using codes to generate signals leads to frames.

Balayage, Fourier frames, and sampling theory

Fourier frames, goal, and a litany of names

Definition

$$\mathsf{E} = \{x_n\} \subseteq \mathbb{R}^d, \Lambda \subseteq \widehat{\mathbb{R}}^d$$
. E is a *Fourier frame* for $L^2(\Lambda)$ if

$$\exists A,B>0, \forall F\in L^2(\Lambda),$$

$$A ||F||_{L^{2}(\Lambda)}^{2} \leq \sum_{n} |\langle F(\gamma), e^{-2\pi i x_{n} \cdot \gamma} \rangle|^{2} \leq B ||F||_{L^{2}(\Lambda)}^{2}.$$

- Goal Formulate a general theory of Fourier frames and non-uniform sampling formulas parametrized by the space $M(\mathbb{R}^d)$ of bounded Radon measures.
- *Motivation* Beurling theory (1959-1960).
- Names Riemann-Weber, Dini, G.D. Birkhoff, Paley-Wiener, Levinson, Duffin-Schaeffer, Beurling-Malliavin, Beurling, H.J. Landau, Jaffard, Seip, Ortega-Certà–Seip.

- Let M(G) be the algebra of bounded Radon measures on the LCAG G.
- Balayage in potential theory was introduced by Christoffel (early 1870s) and Poincaré (1890).

Definition

(Beurling) Balayage is possible for $(E,\Lambda) \subseteq G \times \widehat{G}$, a LCAG pair, if

 $\forall \mu \in M(G), \exists \nu \in M(E) \text{ such that } \hat{\mu} = \hat{\nu} \text{ on } \Lambda.$

We write balayage (E, Λ) .

- The set, Λ , of group characters is the analogue of the original role of Λ in balayage as a collection of potential theoretic kernels.
- Kahane formulated balayage for the harmonic analysis of restriction algebras.

Definition

 $\begin{array}{ll} \mbox{(Wiener, Beurling) Closed } \Lambda \subseteq \widehat{G} \mbox{ is a set of } spectral synthesis (S-set) if \\ \forall \mu \in M(G), \forall f \in C_b(G), \\ & \mbox{supp}(\widehat{f}) \subseteq \Lambda \mbox{ and } \widehat{\mu} = 0 \mbox{ on } \Lambda \Longrightarrow \int_G f \ d\mu = 0. \\ \mbox{(}\forall T \in A'(\widehat{G}), \forall \phi \in A(\widehat{G}), \quad \mbox{supp}(T) \subseteq \Lambda \mbox{ and } \phi = 0 \mbox{ on } \Lambda \Rightarrow T(\phi) = 0. \end{array}$

- $\bullet\,$ Ideal structure of $L^1(G)$ the Nullstellensatz of harmonic analysis
- $T \in D'(\widehat{\mathbb{R}}^d), \phi \in C_c^{\infty}(\widehat{\mathbb{R}}^d)$, and $\phi = 0$ on $\operatorname{supp}(T) \Rightarrow T(\phi) = 0$, with same result for $M(\widehat{\mathbb{R}}^d)$ and $C_0(\widehat{\mathbb{R}}^d)$.
- $S^2 \subseteq \widehat{\mathbb{R}}^3$ is not an S-set (L. Schwartz), and every non-discrete \widehat{G} has non-S-sets (Malliavin).
- Polyhedra are S-sets. The $\frac{1}{3}$ -Cantor set is an S-set with non-S-subsets.

Strict multiplicity

Definition

 $\Gamma\subseteq \widehat{G}$ is a set of strict multiplicity if

 $\exists \ \mu \in M(\Gamma) \setminus \{0\}$ such that $\check{\mu}$ vanishes at infinity in G.

- Riemann and sets of uniqueness in the wide sense.
- Menchov (1916): \exists closed $\Gamma \subseteq \widehat{\mathbb{R}}/\mathbb{Z}$ and $\mu \in M(\Gamma) \setminus \{0\}$, $|\Gamma| = 0$ and $\check{\mu}(n) = O((\log |n|)^{-1/2}), |n| \to \infty.$
- 20th century history to study rate of decrease: Bary (1927), Littlewood (1936), Salem (1942, 1950), Ivašev-Mucatov (1957), Beurling.

Assumption

 $\forall \gamma \in \Lambda \text{ and } \forall N(\gamma)$, compact neighborhood, $\Lambda \cap N(\gamma)$ is a set of strict multiplicity.

э

A 30 M

A theorem of Beurling

Definition

 $\mathsf{E} = \{x_n\} \subseteq \mathbb{R}^d$ is separated if

$$\exists r > 0, \ \forall m, n, \ m \neq n \Rightarrow ||x_m - x_n|| \ge r.$$

Theorem

Let $\Lambda \subseteq \widehat{\mathbb{R}}^d$ be a compact S-set, symmetric about $0 \in \widehat{\mathbb{R}}^d$, and let $E \subseteq \mathbb{R}^d$ be separated. If balayage (E,Λ) , then

E is a Fourier frame for $L^2(\Lambda)$.

• Equivalent formulation in terms of

$$\begin{split} &PW_{\Lambda} = \{f \in L^2(\mathbb{R}^d) : \mathsf{supp}(\hat{f}) \subseteq \Lambda\}.\\ \bullet \ \forall F \in L^2(\Lambda), \qquad F = \sum_{x \in \mathsf{E}} < F, S^{-1}(e_x) >_{\Lambda} e_x \ \text{ in } L^2(\Lambda). \end{split}$$

• For \mathbb{R}^d and other generality beyond Beurling's theorem in \mathbb{R} , the result above was formulated by Hui-Chuan Wu and JB (1998), see Landau (1967).

Let $G \in L^2(\widehat{\mathbb{R}}^d)$ satisfy $||G||_{L^2(\widehat{\mathbb{R}}^d)} = 1$; let $\Lambda \subset \widehat{\mathbb{R}}^d$ be an S-set, symmetric about 0; and let $E \subset \mathbb{R}^d$ be separated. Define

 $(\mathsf{STFT}) \quad \forall F \in L^2(\Lambda), \quad V_G F(x,\gamma) = \int_{\Lambda} F(\lambda) G(\lambda - \gamma) e^{2\pi i x \cdot \lambda} \ d\lambda.$

Theorem

If balayage (E, Λ), then $\exists A, B > 0, \quad \forall F \in L^2(\Lambda),$ $A ||F||^2_{L^2(\Lambda)} \leq \int_{\widehat{\mathbb{R}}^d} \sum_{x \in E} |V_G F(x, \gamma)|^2 d\gamma \leq B ||F||^2_{L^2(\Lambda)}.$

Remark There are basic problems to be resolved and there have been fundamental recent advances.

Balayage and the theory of generalized Fourier frames

Examples of balayage

• Let $\mathsf{E} \subseteq \mathbb{R}^d$ be separated. Define

$$r = r(E) = \sup_{x \in \mathbb{R}^d} \mathsf{dist}(x, E).$$

If $r\rho < \frac{1}{4}$, then balayage (E, $\bar{B}(0, \rho)$). $\frac{1}{4}$ is the best possible.

- **2** If balayage (E, Λ) and $\Lambda_0 \subseteq \Lambda$, then balayage (E, Λ_0).
- Outer E = {x_n} be a Fourier frame for PW_Λ. Then for all Λ₀ ⊆ Λ with dist(Λ₀, Λ^c) > 0, we have balayage (E, Λ₀).
- In ℝ¹, for a separated set E, Beurling lower density > ρ is necessary and sufficient for balayage (E, [^{-ρ}/₂, ^ρ/₂]).

Remark In \mathbb{R}^1 , if E is uniformly dense in the sense of Duffin-Schaeffer, then $D^-(E), D^+(E)$, and $D_u(E)$ coincide. So Beurling's result \Rightarrow Duffin-Schaeffer's result on Fourier frames.

ΦDOs, balayage, synthesis, and sampling

ΦDOs and the Kohn-Nirenberg correspondence

Definition/notation for $\Lambda \subseteq \widehat{\mathbb{R}}^d$

• $\forall \gamma \in \Lambda, g_{\gamma} \in C_b(\mathbb{R}^d) \text{ and } supp(g_{\gamma}) \subseteq \Lambda$

•
$$s(x,\gamma) = e^{2\pi i x \cdot \gamma} g_{\gamma}(x)$$

The Kohn-Nirenberg correspondence

 $s \mapsto H_s$

with symbol H_s is defined by the Hörmander operator

$$H_{s}: L^{2}(\widehat{\mathbb{R}}^{d}) \to L^{2}(\Lambda) \subseteq L^{2}(\widehat{\mathbb{R}}^{d})$$
$$H_{s}(\widehat{f})(\gamma) = \int_{\mathbb{R}^{d}} s(x, \gamma) f(x) e^{-2\pi i x \cdot \gamma} dx$$

Remark

Classically, the symbol is σ and integration is over $\widehat{\mathbb{R}}^d$.

ΦDOs, balayage, synthesis, and sampling

• DOs and generalized Fourier frames for non-uniform sampling

Theorem

Assume balayage (E, Λ) where $\Lambda \subseteq \widehat{\mathbb{R}}^d$ is a compact, symmetric S-set. Assume $E = \{x_n\}$ is separated. Let $s(x, \gamma) = e^{2\pi i x \cdot \gamma} g_{\gamma}(x)$, where

 $\{g_{\gamma}: \gamma \in \Lambda\} \subseteq C_b(\mathbb{R}^d)$

and

 $\forall \gamma \in \Lambda$, $supp(g_{\gamma}) \subseteq \Lambda$

Let $f \in X_s \subseteq L^2(\mathbb{R}^d)$ if $H_s(\widehat{f}) = F \in L^2(\Lambda)$ and $supp F \subseteq \Lambda$, then

$$\exists A > 0 \quad \text{such that} \quad \forall f \in X_s$$
$$A \frac{\int_{\Lambda} |F(\gamma)|^2 \, d\gamma}{\|f\|_{L^2(\mathbb{R}^d)}} \le \left(\sum_{n \in \mathbb{Z}} \left| \int_{\Lambda} \overline{F(\gamma)} s(x_n, \gamma) e^{2\pi i x_n \cdot \gamma} \, d\gamma \right|^2 \right)^{1/2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Classification

- Dimension reduction
- Finite frames and frame potential energy
- Frame potential energy classification algorithm
- Hyperspectral image processing

Dimension reduction

イロト イポト イヨト イヨト

æ

Given data space X of N vectors in \mathbb{R}^{D} . (N is the number of pixels in the hypercube, D is the number of spectral bands.)

Two Steps:

- Construction of an N × N symmetric, positive semi–definite kernel, K, from these N data points in ℝ^D.
- ② Diagonalization of K, and then choosing $d \le D$ significant orthogonal eigenmaps of K.

- Different classes of interest may not be orthogonal to each other; however, they may be captured by different frame elements. It is plausible that classes may correspond to elements in a frame but not elements in a basis.
- A frame generalizes the concept of an orthonormal basis. Frame elements are non-orthogonal.

John J. Benedetto

Dimension reduction paradigm

• Given data space *X* of *N* vectors $x_m \in \mathbb{R}^D$, and let

$$K: X \times X \to \mathbb{R}$$

be a symmetric (K(x, y) = K(y, x)), positive semi-definite kernel.

• We map X to a low dimensional space via the following mapping:

$$X \longrightarrow K \longrightarrow \mathbb{R}^d(K), \quad d < D$$

$$x_m \mapsto y_m = (y[m, n_1], y[m, n_2], \ldots, y[m, n_d]) \in \mathbb{R}^d(\mathcal{K}),$$

where $y[\cdot, n] \in \mathbb{R}^N$ is an eigenvector of *K*.

Laplacian Eigenmaps

- Consider the data points *X* as the nodes of a graph.
- Define a metric ρ : X × X → ℝ⁺, e.g., ρ(x_m, x_n) = ||x_m x_n|| is the Euclidean distance.
- Choose $q \in \mathbb{N}$.
- For each x_i choose the q nodes x_n closest to x_i in the metric ρ, and place an edge between x_i and each of these nodes.
- This defines $N'(x_i)$, viz., $N'(x_i) = \{x \in X : \exists \text{ an edge between } x \text{ and } x_i.\}.$
- To define the weights on the edges, we compute:

$$W_{ij} = \begin{cases} \exp(-\|x_i - x_j\|^2 / \sigma) & \text{if } x_j \in N'(x_i) \text{ or } x_i \in N'(x_j) \\ 0 & \text{otherwise} \end{cases}$$

- Set K = D W, where $D_{ii} = \sum_{j} W_{ij}$ and $D_{ij} = 0$ for $i \neq j$;
- Diagonalize K.
- *K* is symmetric and positive semi–definite.

Finite frames and frame potential energy

FUNTF

• A set $F = \{e_j\}_{j \in J} \subseteq \mathbb{F}^d$ is a *frame* for \mathbb{F}^d , $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , if

$$\exists \ \textit{A},\textit{B} > 0 \quad \text{such that} \quad \forall \ \textit{x} \in \mathbb{F}^d, \quad \textit{A} \|\textit{x}\|^2 \leq \sum_{j \in J} |\langle \textit{x},\textit{e}_j \rangle|^2 \leq \textit{B} \|\textit{x}\|^2.$$

- *F* tight if A = B. A finite unit-norm tight frame *F* is a FUNTF.
- N row vectors from any fixed N × d submatrix of the N × N DFT matrix, 1/√d (e^{2πimn/N}), is a FUNTF for C^d.
- If F is a FUNTF for \mathbb{F}^d , then

$$\forall x \in \mathbb{F}^d, \quad x = \frac{d}{N} \sum_{j=1}^N \langle x, e_j \rangle e_j.$$

 Frames: redundant representation, compensate for hardware errors, inexpensive, numerical stability, minimize effects of noise representation.

CAZACs and FUNTFs

• Let $u = \{u[k]\}_{k=1}^{N}$ be a CAZAC sequence in \mathbb{C} . Define

$$\forall k = 1, ..., N, \quad v_k = v[k] = \frac{1}{\sqrt{d}}(u[k], u[k+1], ..., u[k+d-1]).$$

Then $v = \{v[k]\}_{k=1}^N \subseteq \mathbb{C}^d$ is a CAZAC sequence in \mathbb{C}^d and $\{v_k\}_{k=1}^N$ is a FUNTF for \mathbb{C}^d with frame constant N/d.

• Let $\{x_k\}_{k=1}^N \subseteq \mathbb{C}^d$ be a FUNTF for \mathbb{C}^d , with frame constant A and with associated Bessel map $L : \mathbb{C}^d \to \ell^2(\mathbb{Z}_N)$; and let $u = \{u[j]\}_{j=1}^M \subseteq \mathbb{C}^d$ be a CAZAC sequence in \mathbb{C}^d . Then $\{\frac{1}{\sqrt{A}}L(u[j])\}_{j=1}^M \subseteq \mathbb{C}^N (=\ell^2(\mathbb{Z}_N)$ is a CAZAC sequence in \mathbb{C}^N .

Examples of frames

$$F: S^{d-1} imes S^{d-1} \setminus D \longrightarrow \mathbb{R}^d$$

$$P: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R},$$

where $P(a, b) = p(||a - b||), \quad p'(x) = -xf(x)$

Coulomb force

$$CF(a,b) = (a-b)/||a-b||^3$$
, $f(x) = 1/x^3$

Frame force

$$FF(a,b) = \langle a,b \rangle (a-b), \quad f(x) = 1 - x^2/2$$

Total potential energy for the frame force

$$TFP(\{x_n\}) = \sum_{m=1}^{N} \sum_{n=1}^{N} |\langle x_m, x_n \rangle|^2$$

Theorem

Let $N \le d$. The minimum value of *TFP*, for the frame force and *N* variables, is *N*; and the *minimizers* are precisely the orthonormal sets of *N* elements for \mathbb{R}^d .

Let $N \ge d$. The minimum value of *TFP*, for the frame force and *N* variables, is N^2/d ; and the *minimizers* are precisely the FUNTFs of *N* elements for \mathbb{R}^d .

Problem

Find FUNTFs analytically, effectively, computationally.

Frame potential energy classification algorithm

▶ ◀ ᆿ ▶

Goal: Construct a FUNTF $\{\Psi_k\}_{k=1}^s$ such that each Ψ_k is associated to only one classifiable material.

For
$$\{\theta_k\}_{k=1}^s \in S^{d-1} \times \cdots \times S^{d-1}$$
 and $n = 1, \dots, s$, set
$$p(\theta_n) = \sum_{m=1}^N |\langle y_m, \theta_n \rangle|$$

and consider the maximal separation

$$\sup_{\{\theta_j\}_{j=1}^s} \min\{|p(\theta_k) - p(\theta_n)| : k \neq n\}.$$

•
$$Y = \{y_m\}_{m=1}^N \subseteq \mathbb{R}^d(K) \subseteq \mathbb{R}^N$$

• Given *s* classes C_j , j = 1, ..., s, defined in terms of a tolerance $\epsilon > 0$ and partition $\{P_j\}_{j=0}^s$ of *Y*, as $C_j = P_j \cap Y \subseteq B(z_j, \epsilon)$ j = 1, ..., s for some $z_j \in \mathbb{R}^d(K)$.

Optimization problem: FUNTF construction

- Point of view: Combine frame potential energy theorem, maximal separation criteria (*M*_δ), and ideal class definition (*C*_ε).
- Paradigm: Given Y, s, M_δ, and C_ε. Construct a FUNTF {Ψ_j}^s_{j=1} such that

$$\forall j = 1, \dots, s, |\langle \Psi_j, Y \cap P_j \rangle| \ge R(\epsilon, \delta)$$

and

$$\forall j \neq k, |\langle \Psi_k, Y \cap P_j \rangle| \leq r(\epsilon, \delta),$$

where $r(\epsilon, \delta) < R(\epsilon, \delta)$.

Frame coefficient images

• Given $\Psi = {\{\Psi_n\}_{n=1}^s \subseteq \mathbb{R}^d = \mathbb{R}^d(K) \subseteq \mathbb{R}^N \text{ and } m \in {\{1, \dots, N\}}.$ Consider the set of frame decompositions

$$\forall y_m \in \mathbb{R}^d, m = 1, \dots, N, \quad y_m = \sum_{n=1}^s c_{m,n}^{\alpha} \Psi_n, \text{ indexed by } \alpha \in \mathbb{R}.$$

• For each $m \in \{1, ..., N\}$ choose an ℓ^1 sparse decomposition

$$y_m = \sum_{n=1}^s c_{m,n}^{\alpha(m)} \Psi_n$$

defined by the inequality,

$$\forall \alpha, \quad \sum_{n=1}^{s} |\mathcal{C}_{m,n}^{\alpha(m)}| \leq \sum_{n=1}^{s} |\mathcal{C}_{m,n}^{\alpha}|.$$
Norbert Wiener Center
te Harmonic Analysis as Applications

Frame coefficient images (continued)

Choose n ∈ {1,..., s}. Take a slice, P_n, of the data cube at n. P_n contains N points m.

• The image with *N* pixels *m*, associated to the the frame element Ψ_n , is defined by $\{c_{m,n}^{\alpha(m)} \mid m = 1, ..., N\}$.

Hyperspectral image processing

イロト イ理ト イヨト イヨト

크

Urban data set classes

Figure: HYDICE Copperas Cove, TX - http://www.tec.army.mil/Hypercube/

< □ > < □ > < □ > < □ >

- There are 23 classes associated with the different colors in the previous figure.
- In fact, if the 23 classes were to correspond roughly to orthogonal subspaces, then one cannot achieve effective dimension reduction less than dimension d = 23.
- However, we could have a frame with 23 elements in a space of reduced dimension d < 23.

Frame coefficients

(a) Original

(b) Road coefficients

(d) White house coefficients

Overview of Classification Results

d

ARO MURI | Opportunistic Sensing | Rice, Maryland, Illinois, Yale, Duke, UCLA | October 2010

Happy 60th, Hans!

Norbert Wiener Center for Harmonic Analysis, and Applications

Norbert Wiener Center

지니 제지 아이에 지는 제지를

Sampling formulas (1)

- Let $\Lambda \in \widehat{\mathbb{R}}^d$ be a compact S-set, and assume balayage (E, Λ), $\mathsf{E} = \{x_n\} \subseteq \mathbb{R}^d$ separated.
- Theorem $\exists \epsilon > 0$, balayage (E, Λ_{ϵ}).
- Theorem $\forall x \in \mathbb{R}^d, \exists \{b_n(x)\} \in l^1(\mathbb{Z}),$ $\sup_{x \in \mathbb{R}^d} \sum_n |b_n(x)| \le K(E, \Lambda_{\epsilon})$ and $e^{-2\pi i x \cdot \gamma} = \sum_n b_n(x) e^{-2\pi i x_n \cdot \gamma}$ uniformly on Λ_{ϵ} .
- Let h be entire on \mathbb{R}^d with $e^{-\Omega(|x|)}$ decay, $h(0)=1 \text{ and } \mathrm{supp}(\hat{h})\subseteq \bar{B}(0,\epsilon).$

Theorem

 $\forall f \in C_b(\mathbb{R}), supp(\hat{f}) \subseteq \Lambda,$

$$\forall y \in \mathbb{R}^d, \quad f(y) = \sum f(x_n)b_n(y)h(x_n - y)$$

• Weighted sampling function $b_n(y)h(x_n - y)$ independent of $f \in C_b(\mathbb{R}^d)$, $\operatorname{supp}(\hat{f}) \subseteq \Lambda$.

Balayage and the theory of generalized Fourier frames

ert Wiener Center

э

Sampling formulas (2)

- The Nyquist condition, 2TΩ ≤ 1, for sampling period T and bandwidth [-Ω, Ω], gives way to balayage (E,Λ), where Λ is the bandwidth and the sampling set E is related to Λ by balayage (E,Λ).
- Let $s \in C_b(\mathbb{R}^d)$, supp $(\hat{s}) \subseteq \Lambda$, a compact S-set sampling function s.
- Let $A = \{a(n)\} \subseteq \mathbb{R}^d, n \in \mathbb{Z}$ and distinct points a(n). Define $V_A = \{f \in C_b(\mathbb{R}^d) : \forall x \in \mathbb{R}^d, f(x) = \sum_n c_n(f)s(x-a(n)), \sum_n |c_n(f)| < \infty\}.$
- Assume balayage (E, Λ), E = { x_n } $\subseteq \mathbb{R}^d$ separated.
- Define

$$V_E = \{ f \in C_b(\mathbb{R}^d) : \forall x \in \mathbb{R}^d, f(x) = \sum_n c_n(f) s(x - x_n), \sum_n |c_n(f)| < \infty \}.$$

Theorem

$$V = \bigcup_A V_A \subseteq V_E \subseteq C_b(\mathbb{R}^d)$$
. Thus,
 $\forall f \in V, \quad f(x) = \sum_n c_n(f)s(x - x_n), \text{ uniformly on } \mathbb{R}^d.$

Center

plications

- Robust transmission of data over erasure channels such as the internet [Casazza, Goyal, Kelner, Kovačevic]
- Multiple antenna code design for wireless communications [Hochwald, Marzetta,T. Richardson, Sweldens, Urbanke]
- Multiple description coding [Goyal, Heath, Kovačevic, Strohmer, Vetterli]
- Quantum detection [Bølcskei, Eldar, Forney, Oppenheim, Kebo, B]
- Grassmannian "min-max" waveforms [Calderbank, Conway, Sloane, et al., Kolesar, B]

Björck CAZAC Discrete Narrow-band Ambiguity Function

Let u_p denote the Björck CAZAC sequence for prime p, and let $A(u_p)$ be its discrete narrow-band ambiguity function defined on $\mathbb{Z}_N \times \mathbb{Z}_N$.

<u>**Theorem</u></u> (Benedetto-Woodworth) \forall \epsilon > 0, \exists p_{\epsilon}, a \text{ prime number which can} be calculated, such that \forall p \geq p_{\epsilon}, p \text{ prime, and } \forall (m,n) \in \mathbb{Z}_N \times \mathbb{Z}_N \setminus (0,0), |A(u_p)(m,n)| < \epsilon.</u>**

Classification

- Dimension reduction
- Finite frames and frame potential energy
- Frame potential energy classification algorithm
- Hyperspectral image processing

Optimization problem: ideal class definition

•
$$Y = \{y_m\}_{m=1}^N \subseteq \mathbb{R}^d(K) \subseteq \mathbb{R}^N$$

• Given *s* classes C_j , j = 1, ..., s, defined in terms of a tolerance $\epsilon > 0$ and partition $\{P_j\}_{j=0}^s$ of *Y*, as $C_j = P_j \cap Y \subseteq B(z_j, \epsilon)$ j = 1, ..., s for some $z_j \in \mathbb{R}^d(K)$.

Optimization problem: FUNTF construction

- Point of view: Combine frame potential energy theorem, maximal separation criteria (*M*_δ), and ideal class definition (*C*_ε).
- Paradigm: Given Y, s, M_δ, and C_ε. Construct a FUNTF {Ψ_j}^s_{j=1} such that

$$\forall j = 1, \dots, s, |\langle \Psi_j, Y \cap P_j \rangle| \ge R(\epsilon, \delta)$$

and

$$orall j
eq m{k}, \ |\langle \Psi_{m{k}}, m{Y} \cap m{P}_{m{j}}
angle| \leq m{s}(\epsilon, \delta),$$

where $s(\epsilon, \delta) < R(\epsilon, \delta)$.

Frame coefficient images

• Given $\Psi = \{\Psi_n\}_{n=1}^s \subseteq \mathbb{R}^d = \mathbb{R}^d(K) \subseteq \mathbb{R}^N$ and $m \in \{1, \dots, N\}$. Consider the set of frame decompositions

$$\forall y_m \in \mathbb{R}^d, m = 1, \dots, N, \quad y_m = \sum_{n=1}^s c_{m,n}^{\alpha} \Psi_n, \text{ indexed by } \alpha \in \mathbb{R}.$$

• For each $m \in \{1, \ldots, N\}$ choose an ℓ^1 sparse decomposition

$$y_m = \sum_{n=1}^{s} c_{m,n}^{\alpha(m)} \Psi_n$$

defined by the inequality,

A

$$\alpha, \quad \sum_{n=1}^{s} |\mathbf{C}_{m,n}^{\alpha(m)}| \leq \sum_{n=1}^{s} |\mathbf{C}_{m,n}^{\alpha}|.$$
Norbert Wiener Center
w Harmonic Analysis of Applications

Combine maximal separation with frame potential to construct a pseudo-FUNTF $\Psi = \{\psi_k\}_{k=1}^s$ by solving the minimization problem:

$$\sup\left\{\min\{|p(\theta_k) - p(\theta_n)| : k \neq n\} : \{\theta_j\} \in \{\arg\min_{\Phi} TFP(\Phi)\right\}, \quad (1)$$

where $\Phi = \{\phi_k\}_{k=1}^s$.

- (1) is solved using a new, fast gradient descent method for products of spheres.
- Nate Strawn created the method and developed new geometric ideas for such computation.

Optimization problem: FUNTF construction

Combine frame potential with " l^1 -energy" to construct a FUNTF $\Psi = \{\psi_k\}_{k=1}^s$ by solving a minimization problem of the following type:

$$\min\{\mathit{TFP}(\Theta) + \mathit{P}(\mathit{Y}, \Theta) : \Theta \in \mathit{S}^{d-1} \times \cdots \times \mathit{S}^{d-1}\},$$

where

$$P(Y,\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{s} |\langle y_n, \theta_k \rangle| = \sum_{k=1}^{s} p(\theta_k).$$

Remark. a. Minimization of *P* is convex optimization of l^1 -energy of *Y* for a given frame.

b. By Candes and Tao (2005), under suitable conditions, this can yield a frame Ψ with a sparse set of coefficients $\{\langle y_n, \psi_k \rangle\}$. We do not proceed this way to obtain sparsity.

Frame coefficient images (continued)

• For each $m \in \{1, \dots, N\}$ choose an ℓ^1 sparse decomposition

$$y_m = \sum_{n=1}^s c_{m,n}^{\alpha(m)} \Psi_n$$

defined by the inequality,

$$orall lpha, \quad \sum_{n=1}^{s} |\boldsymbol{c}_{m,n}^{\alpha(m)}| \leq \sum_{n=1}^{s} |\boldsymbol{c}_{m,n}^{lpha}|.$$

• There is ℓ^0 theory.

Given $\Psi = {\{\Psi_n\}_{n=1}^s}$ and $m \in {\{1, ..., N\}}$. Consider the set of frame decompositions

$$y_m = \sum_{n=1}^{s} c_{m,n}^{\alpha} \Psi_n$$
, indexed by $\alpha \in \mathbb{R}$.

• If Ψ is a FUNTF then $\alpha = 0$ designates the canonical dual, i.e.,

$$c_{m,n}^{0}=rac{d}{s}\langle y_{m},\Psi_{n}
angle.$$

$$F: S^{d-1} imes S^{d-1} \setminus D \longrightarrow \mathbb{R}^d$$

$$P: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R},$$

where $P(a, b) = p(||a - b||), \quad p'(x) = -xf(x)$

Coulomb force

$$CF(a,b) = (a-b)/||a-b||^3$$
, $f(x) = 1/x^3$

Frame force

$$FF(a,b) = \langle a,b \rangle (a-b), \quad f(x) = 1 - x^2/2$$

Total potential energy for the frame force

$$TFP(\{x_n\}) = \sum_{m=1}^{N} \sum_{n=1}^{N} |\langle x_m, x_n \rangle|^2$$

Theorem

Let $N \le d$. The minimum value of *TFP*, for the frame force and *N* variables, is *N*; and the *minimizers* are precisely the orthonormal sets of *N* elements for \mathbb{R}^d .

Let $N \ge d$. The minimum value of *TFP*, for the frame force and *N* variables, is N^2/d ; and the *minimizers* are precisely the FUNTFs of *N* elements for \mathbb{R}^d .

Problem

Find FUNTFs analytically, effectively, computationally.

Overview of Classification Results

d

ARO MURI | Opportunistic Sensing | Rice, Maryland, Illinois, Yale, Duke, UCLA | October 2010

That's all folks!

Lower frame bounds

• Let $\Lambda \subseteq \widehat{\mathbb{R}}^d$ be a compact S-set, and assume balayage (E, Λ) where $\mathsf{E} = \{x_n\}$ is separated.

$$\begin{array}{l} \bullet \quad \forall F \in L^{2}(\Lambda), \ \Lambda \ \text{convex}, \\ & \sqrt{A} \ \frac{\int_{\Lambda} |F(\gamma) + F(2\gamma) + F(3\gamma)|^{2} \ d\gamma}{(\int_{\Lambda} |F(\gamma)|^{2} \ d\gamma)^{1/2}} \\ & \leq (\sum |\check{F}(x_{n})|^{2})^{1/2} + \frac{1}{2} (\sum |\check{F}(\frac{1}{2}x_{n})|^{2})^{1/2} + \frac{1}{3} (\sum |\check{F}(\frac{1}{3}x_{n})|^{2})^{1/2}. \end{array}$$

 $\textbf{@} \quad \text{Given positive } G \in L^2(\Lambda). \text{ Then } \forall F \in L^2(\Lambda),$

$$\sqrt{A} \; \frac{\int_{\Lambda} |F(\gamma)|^2 G(\gamma) \; d\gamma}{(\int_{\Lambda} |F(\gamma)|^2 \; d\gamma)^{\frac{1}{2}}} \le (\sum |(FG)(x_n)|^2)^{1/2}.$$

Norbert Wiener Center for Harmonic Analysis and Applications

Balayage and the theory of generalized Fourier frames

- Consider the data points *X* as the nodes of a graph.
- Define a metric ρ : X × X → ℝ⁺, e.g., ρ(x_m, x_n) = ||x_m − x_n|| is the Euclidean distance.
- Choose $q \in \mathbb{N}$.
- For each x_i choose the q nodes x_n closest to x_i in the metric ρ, and place an edge between x_i and each of these nodes.
- This defines $N'(x_i)$, viz., $N'(x_i) = \{x \in X : \exists an edge between x and x_i.\}.$
- To define the weights on the edges, we compute:

$$W = \operatorname*{argmin}_{\widetilde{W}} \left| x_i - \sum_{j \in \mathcal{N}'(x_i)} \widetilde{W}(x_i, x_j) x_j \right|^2$$

- Set $K = (I W)(I W^{T})$ and diagonalize K.
- *K* is symmetric and positive semi–definite.
DFT FUNTFs

 N × d submatrices of the N × N DFT matrix are FUNTFs for C^d. These play a major role in finite frame ΣΔ-quantization.

$$N = 8, d = 5 \qquad \frac{1}{\sqrt{5}} \begin{bmatrix} * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \\ * & * & \cdot & \cdot & * & * & * & \cdot \end{bmatrix}$$
$$x_m = \frac{1}{5} (e^{2\pi i \frac{m}{8}}, e^{2\pi i \frac{m^2}{8}}, e^{2\pi i \frac{m^5}{8}}, e^{2\pi i \frac{m^6}{8}}, e^{2\pi i \frac{m^7}{8}})$$
$$m = 1, \dots, 8.$$

Sigma-Delta Super Audio CDs - but not all authorities are fans.

Norbert Wiener Center

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

The geometry of finite tight frames

- We saw the vertices of platonic solids are FUNTFs.
- However, points that constitute FUNTFs do not have to be equidistributed, e.g., ONBs and Grassmanian frames.
- FUNTFs can be characterized as minimizers of a frame potential function (with Fickus) analogous to Coulomb's Law.
- Frame potential energy optimization has basic applications dealing with classification problems for hyperspectral and multi-spectral (biomedical) image data.

Frame coefficients

Norbert Wiener Center Frame Potential and Wiener Amalgam Penalty Criteria for Classification

her Center

Quantization Methods

Given u_0 and $\{x_n\}_{n=1}$

$$u_n = u_{n-1} + x_n - q_n$$

 $q_n = Q(u_{n-1} + x_n)$

First Order $\Sigma\Delta$

A quantization problem

Qualitative Problem Obtain *digital* representations for class *X*, suitable for storage, transmission, recovery. **Quantitative Problem** Find dictionary $\{e_n\} \subseteq X$:

• Sampling [continuous range \mathbb{K} is not digital]

 $\forall x \in X, \quad x = \sum x_n e_n, \quad x_n \in \mathbb{K}.$

2 Quantization. Construct finite alphabet A and

 $Q: X \to \{\sum q_n e_n : q_n \in \mathcal{A} \subseteq \mathbb{K}\}$

such that $|x_n - q_n|$ and/or ||x - Qx|| small.

Methods

Fine quantization, e.g., PCM. Take $q_n \in A$ close to given x_n . Reasonable in 16-bit (65,536 levels)digital audio. Coarse quantization, e.g., $\Sigma \Delta$. Use fewer bits to exploit redundancy. SRQP

$$\mathcal{A}_{K}^{\delta} = \{(-K+1/2)\delta, (-K+3/2)\delta, \dots, (-1/2)\delta, (1/2)\delta, \dots, (K-1/2)\delta\}$$

PCM and first order Sigma-Delta

Let $x \in \mathbb{C}^d$, $\{e_n\}_{n=1}^N$ be a frame for \mathbb{C}^d .

- PCM: $\forall n = 1, \dots, N$, $q_n = Q_{\delta}(\langle x, e_n \rangle)$,
- First Order Sigma-Delta: Let *p* be a permutation of {1,..., N}.
 First Order Sigma-Delta quantization generates quantized sequence {*q_n*}^N_{n=1} by the iteration

$$\begin{array}{rcl} q_n & = & \mathsf{Q}_{\delta}(u_{n-1} + \langle \mathbf{x}, \mathbf{e}_{p(n)} \rangle), \\ u_n & = & u_{n-1} + \langle \mathbf{x}, \mathbf{e}_{p(n)} \rangle - q_n, \end{array}$$

for n = 1, ..., N, with an initial condition u_0 .

In either case, the quantized estimate is

$$\widetilde{\mathbf{x}} = \frac{d}{N} \sum_{n=1}^{N} q_n \mathbf{e}_n = \frac{d}{N} L^* q$$

Replace
$$x_n \leftrightarrow q_n = \arg\{\min |x_n - q| : q \in \mathcal{A}_{\mathcal{K}}^{\delta}\}$$
. Then

$$(PCM) \qquad \tilde{x} = \frac{d}{N} \sum_{n=1}^{N} q_n e_n$$

satisfies

$$\|\boldsymbol{x}-\tilde{\boldsymbol{x}}\| \leq \frac{d}{N} \|\sum_{n=1}^{N} (\boldsymbol{x}_n - \boldsymbol{q}_n) \boldsymbol{e}_n\| \leq \frac{d}{N} \frac{\delta}{2} \sum_{n=1}^{N} \|\boldsymbol{e}_n\| = \frac{d}{2} \delta.$$

Not good!

Bennett's white noise assumption

Assume that $(\eta_n) = (x_n - q_n)$ is a sequence of independent, identically distributed random variables with mean 0 and variance $\frac{\delta^2}{12}$. Then the mean square error (MSE) satisfies

$$\mathsf{MSE} = E \| x - \tilde{x} \|^2 \le \frac{d}{12A} \, \delta^2 = \frac{(d\delta)^2}{12N}$$

enter

Let $x = (\frac{1}{3}, \frac{1}{2}), E_7 = \{(\cos(\frac{2n\pi}{7}), \sin(\frac{2n\pi}{7}))\}_{n=1}^7$. Consider quantizers with $A = \{-1, 1\}$.

$A_1^2 = \{-1, 1\}$ and E_7

$A_1^2 = \{-1, 1\}$ and E_7

$A_1^2 = \{-1, 1\}$ and E_7

Sigma-Delta quantization – background

- History from 1950s.
- Treatises of Candy, Temes (1992) and Norsworthy, Schreier, Temes (1997).
- PCM for finite frames and ΣΔ for PW_Ω: Bølcskei, Daubechies, DeVore, Goyal, Gunturk, Kovačevič, Thao, Vetterli.
- Combination of $\Sigma\Delta$ and finite frames: Powell, Yılmaz, and B.
- Subsequent work based on this ΣΔ finite frame theory: Bodman and Paulsen; Boufounos and Oppenheim; Jimenez and Yang Wang; Lammers, Powell, and Yılmaz.
- Genuinely apply it.

Let $F = \{e_n\}_{n=1}^N$ be a frame for \mathbb{R}^d , $x \in \mathbb{R}^d$. Define $x_n = \langle x, e_n \rangle$. Fix the ordering p, a permutation of $\{1, 2, ..., N\}$. Quantizer alphabet $\mathcal{A}_{\mathcal{K}}^{\delta}$ Quantizer function $Q(u) = \arg\{\min | u - q| : q \in \mathcal{A}_{\mathcal{K}}^{\delta}\}$ Define the first-order $\Sigma \wedge$ quantizer with ordering p and with

Define the *first-order* $\Sigma \Delta$ *quantizer* with ordering *p* and with the quantizer alphabet $\mathcal{A}_{\mathcal{K}}^{\delta}$ by means of the following recursion.

$$U_n - U_{n-1} = X_{p(n)} - Q_n$$

 $q_n = Q(U_{n-1} + X_{p(n)})$

where $u_0 = 0$ and n = 1, 2, ..., N.

Stability

The following stability result is used to prove error estimates.

Proposition

If the frame coefficients $\{x_n\}_{n=1}^N$ satisfy

$$|x_n| \leq (K-1/2)\delta, \quad n=1,\cdots,N,$$

then the state sequence $\{u_n\}_{n=0}^N$ generated by the first-order $\Sigma \Delta$ quantizer with alphabet \mathcal{A}_K^{δ} satisfies $|u_n| \leq \delta/2, n = 1, \dots, N$.

• The first-order $\Sigma\Delta$ scheme is equivalent to

$$u_n = \sum_{j=1}^n x_{p(j)} - \sum_{j=1}^n q_j, \quad n = 1, \cdots, N.$$

Stability results lead to tiling problems for higher order schemes.

・ロット 小型マン キリマ

Definition

Let $F = \{e_n\}_{n=1}^N$ be a frame for \mathbb{R}^d , and let p be a permutation of $\{1, 2, ..., N\}$. The variation $\sigma(F, p)$ is

$$\sigma(F,p) = \sum_{n=1}^{N-1} \|e_{p(n)} - e_{p(n+1)}\|.$$

Theorem

Let $F = \{e_n\}_{n=1}^N$ be an A-FUNTF for \mathbb{R}^d . The approximation

$$\tilde{x} = \frac{d}{N} \sum_{n=1}^{N} q_n e_{p(n)}$$

generated by the first-order $\Sigma\Delta$ quantizer with ordering *p* and with the quantizer alphabet $\mathcal{A}_{\mathcal{K}}^{\delta}$ satisfies

$$\|x-\tilde{x}\| \leq \frac{(\sigma(F,p)+1)d}{N} \frac{\delta}{2}$$

Norbert Wiener Center

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Zimmermann and Goyal, Kelner, Kovačevic, Thao, Vetterli.

Definition

 $H = \mathbb{C}^d$. An harmonic frame $\{e_n\}_{n=1}^N$ for H is defined by the rows of the Bessel map L which is the complex N-DFT $N \times d$ matrix with N - d columns removed.

 $H = \mathbb{R}^d$, *d* even. The harmonic frame $\{e_n\}_{n=1}^N$ is defined by the Bessel map *L* which is the $N \times d$ matrix whose *n*th row is

$$e_n^N = \sqrt{\frac{2}{d}} \left(\cos(\frac{2\pi n}{N}), \sin(\frac{2\pi n}{N}), \dots, \cos(\frac{2\pi (d/2)n}{N}), \sin(\frac{2\pi (d/2)n}{N}) \right)$$

- Harmonic frames are FUNTFs.
- Let E_N be the harmonic frame for \mathbb{R}^d and let p_N be the identity permutation. Then

$$\forall N, \ \sigma(E_N, p_N) \leq \pi d(d+1).$$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Error estimate for harmonic frames

Theorem

Let E_N be the harmonic frame for \mathbb{R}^d with frame bound N/d. Consider $x \in \mathbb{R}^d$, $||x|| \le 1$, and suppose the approximation \tilde{x} of x is generated by a first-order $\Sigma \Delta$ quantizer as before. Then

$$\|x-\tilde{x}\|\leq rac{d^2(d+1)+d}{N} rac{\delta}{2}.$$

Hence, for harmonic frames (and all those with bounded variation),

$$\mathsf{MSE}_{\Sigma\Delta} \leq rac{C_d}{N^2} \, \delta^2.$$

• This bound is clearly superior asymptotically to

$$\mathsf{MSE}_{\mathsf{PCM}} = \frac{(d\delta)^2}{12N}.$$

(日) (同) (日) (日)

Theorem

The first order $\Sigma\Delta$ scheme achieves the asymptotically optimal MSE_{PCM} for harmonic frames.

The digital encoding

$$\mathsf{MSE}_{\mathsf{PCM}} = \frac{(d\delta)^2}{12N}$$

in PCM format leaves open the possibility that decoding (consistent nonlinear reconstruction, with additional numerical complexity this entails) could lead to

"MSE_{PCM}"
$$\ll O(\frac{1}{N}).$$

Goyal, Vetterli, Thao (1998) proved

$$ext{`MSE}_{ extsf{PCM}}^{ extsf{opt}} extsf{``} \sim rac{ ilde{C}_d}{N^2} \delta^2.$$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

A comparison of $\Sigma\text{-}\Delta$ and PCM

Let
$$x \in \mathbb{C}^d$$
, $||x|| \leq 1$.

Definition

- $q_{PCM}(x)$ is the sequence to which x is mapped by PCM.
- $q_{\Sigma\Delta}(x)$ is the sequence to which x is mapped by $\Sigma\Delta$.

$$ext{err}_{PCM}(x) = ||x - rac{d}{N}L^*q_{PCM}(x)||$$

 $ext{err}_{\Sigma\Delta}(x) = ||x - rac{d}{N}L^*q_{\Sigma\Delta}(x)||$

Fickus question: We shall analyze to what extent $err_{\Sigma\Delta}(x) < err_{PCM}(x)$ beyond our results with Powell and Yilmaz.

< ロ > < 同 > < 回 > < 回 > :

PCM and first order Sigma-Delta

Let $x \in \mathbb{C}^d$, Let $F = \{e_n\}_{n=1}^N$ be a FUNTF for \mathbb{C}^d with the analysis matrix *L*.

Definition

- $q_{PCM}(x, F, b)$ is the quantized sequence given by *b*-bit PCM,
- $q_{\Sigma\Delta}(x, F, b)$ is the quantized sequence given by *b*-bit Sigma-Delta.

$$ext{err}_{PCM}(x, F, b) = \|x - rac{d}{N}L^*q_{PCM}(x)\|,$$

 $ext{err}_{\Sigma\Delta}(x, F, b) = \|x - rac{d}{N}L^*q_{\Sigma\Delta}(x)\|.$

Definition

A function $e : [a, b] \to \mathbb{C}^d$ is of *bounded variation (BV)* if there is a K > 0 such that for every $a \le t_1 < t_2 < \cdots < t_N \le b$,

$$\sum_{n=1}^{N-1} \|e(t_n) - e(t_{n+1})\| \le K.$$

The smallest such *K* is denoted by $|e|_{BV}$, and defines a seminorm for the space of BV functions.

Theorem 1

Let $x \in \mathbb{C}^d$ satisfy $0 < ||x|| \le 1$, and let $F = \{e_n\}_{n=1}^N$ be a FUNTF for \mathbb{C}^d . Then, the 1-bit PCM error satisfies

$$\texttt{err}_{\textit{PCM}}(\pmb{x}, \pmb{F}, \pmb{1}) \geq lpha_{\pmb{F}} + \pmb{1} - \|\pmb{x}\|$$

where

$$\alpha_{\mathcal{F}} := \inf_{\|\boldsymbol{x}\|=1} \frac{d}{N} \sum_{n=1}^{N} \left(|\boldsymbol{Re}(\langle \boldsymbol{x}, \boldsymbol{e}_n \rangle)| + |\boldsymbol{Im}(\langle \boldsymbol{x}, \boldsymbol{e}_n \rangle)| \right) - 1 \ge 0.$$

Theorem 2

Let $\{F_N = \{e_n^N\}_{n=1}^N\}$ be a family of FUNTFs for \mathbb{C}^d . Then,

 $\forall \varepsilon > 0, \ \exists N_0 > 0, \ \text{such that} \ \forall N \ge N_0 \ \text{and} \ \forall 0 < \|x\| \le 1 - \varepsilon$

 $\operatorname{err}_{\Sigma\Delta}(x, F_N, 1) \leq \operatorname{err}_{PCM}(x, F_N, 1).$

Numerical experiments suggest that, we can choose *N* significantly smaller than $(M/\varepsilon)^{2d}$.

If $\{\alpha_{F_N}\}$ is bounded below by a positive number, then we can improve Theorem 2:

Theorem 3

Let $\{F_N = \{e_n^N\}_{n=1}^N\}$ be a family of FUNTFs for \mathbb{C}^d such that

$$\exists a > 0, \forall N, \alpha_{F_N} \ge a.$$

Then,

 $\exists N_0 > 0 \text{ such that } \forall N \ge N_0 \text{ and } \forall 0 < \|x\| \le 1 \\ \texttt{err}_{\Sigma\Delta}(x, F_N, 1) \le \texttt{err}_{PCM}(x, F_N, 1).$

Below is a family $\{F_N\}$ of FUNTFs where $\{\alpha_{F_N}\}$ is bounded below by a positive constant. Harmonic frames are examples to such families.

Theorem 4

Let $e : [0, 1] \to \{x \in \mathbb{C}^d : ||x|| = 1\}$ be continuous function of bounded variation such that $F_N = \{e(n/N)\}_{n=1}^N$ is a FUNTF for \mathbb{C}^d for every *N*. Then,

$$\exists N_0 > 0$$
 such that $orall N \geq N_0$ and $orall 0 < \|m{x}\| \leq 1$

$$\operatorname{err}_{\Sigma\Delta}(x, F_N, 1) \leq \operatorname{err}_{PCM}(x, F_N, 1).$$

One can show that $\alpha := \lim_{N \to \infty} \alpha_{F_N}$ is positive, and that

$$\alpha + 1 = d \inf_{\|x\|=1} \int_0^1 \left(|\operatorname{Re}(\langle x, e(t) \rangle)| + |\operatorname{Im}(\langle x, e(t) \rangle)| \right) dt.$$

Theorem

Let $e : [0, 1] \to \{x \in \mathbb{C}^d : ||x|| = 1\}$ be continuous function of bounded variation such that $F_N = (e(n/N))_{n=1}^N$ is a FUNTF for \mathbb{C}^d for every *N*. Then,

$$\exists N_0 > 0 \text{ such that } \forall N \ge N_0 \text{ and } \forall 0 < \|x\| \le 1$$

$$\operatorname{err}_{\Sigma\Delta}(X) \leq \operatorname{err}_{PCM}(X).$$

Moreover, a lower bound for N_0 is $d(1 + |e|_{BV})/(\sqrt{d} - 1)$.

Example (Roots of unity frames for \mathbb{R}^2)

 $e_n^N = (\cos(2\pi n/N), \sin(2\pi n/N)).$

Here, $e(t) = (\cos(2\pi t), \sin(2\pi t)),$ $M = |e|_{BV} = 2\pi, \lim \alpha_{F_N} = 2/\pi.$

Example (Real Harmonic Frames for \mathbb{R}^{2k})

$$e_n^N = \frac{1}{\sqrt{k}} (\cos(2\pi n/N), \sin(2\pi n/N), \dots, \cos(2\pi kn/N), \sin(2\pi kn/N)).$$

In this case, $e(t) = \frac{1}{\sqrt{k}} (\cos(2\pi t), \sin(2\pi t), \dots, \cos(2\pi kt), \sin(2\pi kt)),$
 $M = |e|_{BV} = 2\pi \sqrt{\frac{1}{d} \sum_{k=1}^{d} k^2}.$

Norbert Wiener Center

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Red: $err_{PCM}(x) < err_{\Sigma\Delta}(x)$, Green: $err_{PCM}(x) = err_{\Sigma\Delta}(x)$

・ロット (雪) ・ ヨ)

Red: $\operatorname{err}_{PCM}(x) < \operatorname{err}_{\Sigma\Delta}(x)$, Green: $\operatorname{err}_{PCM}(x) = \operatorname{err}_{\Sigma\Delta}(X)$

< ロ > < 同 > < 回 > < 回 >

Red: $\operatorname{err}_{PCM}(x) < \operatorname{err}_{\Sigma\Delta}(x)$, Green: $\operatorname{err}_{PCM}(x) = \operatorname{err}_{\Sigma\Delta}(X)$

・ロト ・聞 ト ・ ヨト ・ ヨト

81st Roots of 1 frame, 3bit PCM vs 1bit $\Sigma\Delta$

Red: $err_{PCM}(x) < err_{\Sigma\Delta}(x)$, Green: $err_{PCM}(x) = err_{\Sigma\Delta}(x)$

101st Roots of 1 frame, 3bit PCM vs 1bit $\Sigma\Delta$

Red: $err_{PCM}(x) < err_{\Sigma\Delta}(x)$, Green: $err_{PCM}(x) = err_{\Sigma\Delta}(x)$

< ロ > < 同 > < 回 > < 回 > .
Comparison of 3-bit PCM and 1-bit $\Sigma \Delta$

Red: $\operatorname{err}_{PCM}(x) < \operatorname{err}_{\Sigma\Delta}(x)$, Green: $\operatorname{err}_{PCM}(x) = \operatorname{err}_{\Sigma\Delta}(X)$

< ロ > < 同 > < 回 > < 回 >

Comparison of 3-bit PCM and 2-bit $\Sigma \Delta$

Red: $\operatorname{err}_{PCM}(x) < \operatorname{err}_{\Sigma\Delta}(x)$, Green: $\operatorname{err}_{PCM}(x) = \operatorname{err}_{\Sigma\Delta}(X)$

Comparison of 3-bit PCM and 2-bit $\Sigma \Delta$

Red: $\operatorname{err}_{PCM}(x) < \operatorname{err}_{\Sigma\Delta}(x)$, Green: $\operatorname{err}_{PCM}(x) = \operatorname{err}_{\Sigma\Delta}(x)$

A B > A B >

Comparison of 3-bit PCM and 2-bit $\Sigma \Delta$

Red: $\operatorname{err}_{PCM}(x) < \operatorname{err}_{\Sigma\Delta}(x)$, Green: $\operatorname{err}_{PCM}(x) = \operatorname{err}_{\Sigma\Delta}(X)$

Complex $\Sigma \Delta$ - Alphabet

Let $K \in \mathbb{N}$ and $\delta > 0$. The *midrise* quantization alphabet is

$$\mathcal{A}_{K}^{\delta} = \left\{ \left(m + \frac{1}{2} \right) \delta + in\delta : m = -K, \dots, K-1, n = -K, \dots, K \right\}$$

Figure: \mathcal{A}_{K}^{δ} for $K = 3\delta$.

Alphabet

For K > 0 (we consider only K = 1) and $b \ge 1$, an integer representing the number of bits, let $\delta = 2K/(2^b - 1)$.

$$\mathcal{A}_{\delta}^{\mathsf{K}} = \{(-\mathsf{K}+\mathsf{m}\delta)+\mathsf{i}(-\mathsf{K}+\mathsf{n}\delta):\mathsf{m},\mathsf{n}=\mathsf{0},\ldots,\mathsf{2}^{\mathsf{b}}-\mathsf{1}\}.$$

The associated scalar uniform quantizer is

$$\mathsf{Q}_{\delta}(u+iv) = \delta\left(\frac{1}{2} + \left\lfloor \frac{u}{\delta} \right\rfloor + i\left(\frac{1}{2} + \left\lfloor \frac{v}{\delta} \right\rfloor\right)\right).$$

In particular, for 1-bit case, Q(u + iv) = sign(u) + isign(v)

Finite frames

Complex $\Sigma \Delta$

The scalar uniform quantizer associated to $\mathcal{A}_{\mathcal{K}}^{\delta}$ is

$$Q_{\delta}(a+ib) = \delta\left(rac{1}{2} + \left\lfloorrac{a}{\delta}
ight
floor + i\left\lfloorrac{b}{\delta}
ight
floor
ight),$$

where $\lfloor x \rfloor$ is the largest integer smaller than *x*. For any z = a + ib with $|a| \le K$ and $|b| \le K$, *Q* satisfies

$$|z-Q_{\delta}(z)|\leq \min_{\zeta\in \mathcal{A}_{K}^{\delta}}|z-\zeta|.$$

Let $\{x_n\}_{n=1}^N \subseteq \mathbb{C}$ and let *p* be a permutation of $\{1, \ldots, N\}$. Analogous to the real case, the first order $\Sigma \Delta$ quantization is defined by the iteration

Complex $\Sigma \Delta$

The following theorem is analogous to BPY

Theorem

Let $F = \{e_n\}_{n=1}^N$ be a finite unit norm frame for \mathbb{C}^d , let p be a permutation of $\{1, \ldots, N\}$, let $|u_0| \le \delta/2$, and let $x \in \mathbb{C}^d$ satisfy $||x|| \le (K - 1/2)\delta$. The $\Sigma\Delta$ approximation error $||x - \tilde{x}||$ satisfies

$$\|\boldsymbol{x}-\widetilde{\boldsymbol{x}}\| \leq \sqrt{2} \|\boldsymbol{S}^{-1}\|_{\mathrm{op}} \left(\sigma(\boldsymbol{F},\boldsymbol{p})\frac{\delta}{2} + |\boldsymbol{u}_N| + |\boldsymbol{u}_0|\right),$$

where S^{-1} is the inverse frame operator. In particular, if F is a FUNTF, then

$$\|\mathbf{x}-\widetilde{\mathbf{x}}\| \leq \sqrt{2} \frac{d}{N} \left(\sigma(F, p) \frac{\delta}{2} + |u_N| + |u_0| \right),$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

'enter

< ロ > < 同 > < 回 > < 回 > < □ > <

Complex $\Sigma \Delta$

Let $\{F_N\}$ be a family of FUNTFs, and p_N be a permutation of $\{1, \ldots, N\}$. Then the frame variation $\sigma(F_N, p_N)$ is a function of *N*. If $\sigma(F_N, p_N)$ is bounded, then

$$\|x - \widetilde{x}\| = \mathcal{O}(N^{-1})$$
 as $N \to \infty$.

Wang gives an upper bound for the frame variation of frames for \mathbb{R}^d , using the results from the Travelling Salesman Problem.

Theorem YW

Let $S = \{v_j\}_{j=1}^N \subseteq [-\frac{1}{2}, \frac{1}{2}]^d$ with $d \ge 3$. There exists a permutation p of $\{1, \ldots, N\}$ such that

$$\sum_{j=1}^{N-1} \|v_{\rho(j)} - v_{\rho(j+1)}\| \leq 2\sqrt{d+3}N^{1-\frac{1}{d}} - 2\sqrt{d+3}.$$

Complex $\Sigma \Delta$

Theorem

Let $F = \{e_n\}_{n=1}^N$ be a FUNTF for \mathbb{R}^d , $|u_0| \le \delta/2$, and let $x \in \mathbb{R}^d$ satisfy $||x|| \le (K - 1/2)\delta$. Then, there exists a permutation p of $\{1, 2, ..., N\}$ such that the approximation error $||x - \tilde{x}||$ satisfies

$$\|x - \widetilde{x}\| \leq \sqrt{2}\delta d\left((1 - \sqrt{d+3})N^{-1} + \sqrt{d+3}N^{-\frac{1}{d}}\right)$$

This theorem guarantees that

$$\|x - \widetilde{x}\| \leq \mathcal{O}(N^{-rac{1}{d}})$$
 as $N \to \infty$

for FUNTFs for \mathbb{R}^d .

Preprocessing for clutter mitigation

- Massive sensor data set \rightarrow dimension reduction \rightarrow sparse representation
- False targets caused by clutter inhibit data triage, waste vital resources, and degrade sparse representation algorithms
- View clutter mitigation as preprocessing step for ATR/ATE
- For active sensors, choose waveform to reduce clutter effects by limiting side lobe magnitude
 - improves concise data representation
 - supports dimensionality reduction processing

Sparse coefficient sets for stable representation

- Opportunistic sensing systems can utilize large networks of diverse sensors
 - sensor quality may vary, e.g., low cost wireless sensors
 - massive amount of noisy sensor data
- Signal representations using sparse coefficient sets
 - compensate for hardware errors
 - ensure numerical stability
 - frame setting \rightarrow frame dimension reduction

Norbert Wiener Ce

for Harmonic Analysis and Applications

Frame variation and $\Sigma\Delta$

•
$$F = \{e_j\}_{j=1}^N$$
 a FUNTF for \mathbb{C}^d

• $x \in \mathbb{C}^d$, p a permutation of $\{1, ..., N\}$, $x_{p(n)} = \langle x, e_{p(n)} \rangle$,

$$x = \frac{d}{N} \sum_{n=1}^{N} x_{p(n)} e_{p(n)} \text{ and } \tilde{x} \equiv \frac{d}{N} \sum_{n=1}^{N} q_n e_{p(n)}$$

Frame variation,

$$\sigma(F,p) = \sum_{n=1}^{N-1} \left\| e_{p(n)} - e_{p(n+1)} \right\|$$

 Transport ΣΔ FUNTF setting to coefficient sparse representation point of view. Given a signal x and a tolerance r > 0

- Define frames using Frame Potential Energy and SQP (or other optimization)
- Analyze Frame Variation in terms of our permutation algorithm
- Compute x
 having separated coefficients taken from a fixed small and sparse alphabet
- Ensure that $||x \tilde{x}|| < r$.

Conclusion: \tilde{x} is a stable sparse coefficient approximant of x

Overview of Classification Results

d

ARO MURI | Opportunistic Sensing | Rice, Maryland, Illinois, Yale, Duke, UCLA | October 2010

Overview of Classification Results

d

ARO MURI | Opportunistic Sensing | Rice, Maryland, Illinois, Yale, Duke, UCLA | October 2010

Overview of Classification Results

d

ARO MURI | Opportunistic Sensing | Rice, Maryland, Illinois, Yale, Duke, UCLA | October 2010

Overview of Finite Frames Enumeration of Prime Order Harmonic Frames Frame Based Dimension Reduction Hyperspectral Imagery Data The Algorithm Results

Overview of Classification Results

vsis and Applications

Overview of Finite Frames Enumeration of Prime Order Harmonic Frames Frame Based Dimension Reduction Hyperspectral Imagery Data The Algorithm Results

Overview of Classification Results

vsis and Applications

A vector-valued ambiguity function

Norbert Wiener Center The construction of perfect autocorrelation codes

Outline

Problem and goal

2 Frames

3 Multiplication problem and A_p^1

5 $A_p^d(u)$ for DFT frames

6 Figure

Background

- Originally, our problem was to construct libraries of phase-coded waveforms v parameterized by design variables, for communications and radar.
- A goal was to achieve diverse ambiguity function behavior of *v* by defining new classes of quadratic phase and number theoretic perfect autocorrelation codes *u* with which to define *v*.
- A realistic more general problem was to construct vector-valued waveforms *v* in terms of vector-valued perfect autocorrelation codes *u*. Such codes are relevant in light of vector sensor and MIMO capabilities and modeling.
- Example: Discrete time data vector *u*(*k*) for a *d*-element array,

$$k \mapsto u(k) = (u_0(k), \ldots, u_{d-1}(k)) \in \mathbb{C}^d.$$

We can have $\mathbb{R}^N \to GL(d, \mathbb{C})$, or even more general.

General problem and STFT theme

- Establish the theory of vector-valued ambiguity functions to estimate v in terms of ambiguity data.
- First, establish this estimation theory by defining the discrete periodic vector-valued ambiguity function in a natural way.
- Mathematically, this natural way is to formulate the discrete periodic vector-valued ambiguity function in terms of the Short Time Fourier Transform (STFT).

STFT and ambiguity function

Short time Fourier transform - STFT

• The narrow band cross-correlation ambiguity function of v, w defined on $\mathbb R$ is

$$A(\mathbf{v},\mathbf{w})(t,\gamma) = \int_{\mathbb{R}} \mathbf{v}(\mathbf{s}+t) \overline{\mathbf{w}(\mathbf{s})} e^{-2\pi i \mathbf{s} \gamma} d\mathbf{s}.$$

- *A*(*v*, *w*) is the STFT of *v* with window *w*.
- The narrow band radar ambiguity function A(v) of v on \mathbb{R} is

$$\begin{aligned} \mathsf{A}(\mathsf{v})(t,\gamma) &= \int_{\mathbb{R}} \mathsf{v}(s+t)\overline{\mathsf{v}(s)}e^{-2\pi i s \gamma} ds \\ &= e^{\pi i t \gamma} \int_{\mathbb{R}} \mathsf{v}\left(s+\frac{t}{2}\right) \overline{\mathsf{v}\left(s-\frac{t}{2}\right)} e^{-2\pi i s \gamma} ds, \text{ for } (t,\gamma) \in \mathbb{R}^{2}. \end{aligned}$$

Goal

- Let *v* be a phase coded waveform with *N* lags defined by the code *u*.
- Let *u* be *N*-periodic, and so *u* : Z_N → C, where Z_N is the additive group of integers modulo *N*.
- The discrete periodic ambiguity function $A_p(u) : \mathbb{Z}_N \times \mathbb{Z}_N \longrightarrow \mathbb{C}$ is

$$A_{p}(u)(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} u(m+k)\overline{u(k)}e^{-2\pi i k n/N}$$

Goal

Given a vector valued *N*-periodic code $u : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$, construct the following in a meaningful, computable way:

- Generalized C-valued periodic ambiguity function
 A¹_D(u) : Z_N × Z_N → C
- \mathbb{C}^d -valued periodic ambiguity function $A^d_p(u) : \mathbb{Z}_N \times \mathbb{Z}_N \longrightarrow \mathbb{C}^d$

The STFT is the *guide* and the *theory of frames* is the technology to the Applications obtain the goal.

Problem and goal

2 Frames

3 Multiplication problem and A_p^1

5 $A_p^d(u)$ for DFT frames

6 Figure

Multiplication problem

• Given
$$u : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$$
.

• If
$$d = 1$$
 and $e_n = e^{2\pi i n/N}$, then

$$A_{\rho}(u)(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} \langle u(m+k), u(k) \boldsymbol{e}_{nk} \rangle.$$

Multiplication problem

To characterize sequences $\{E_k\} \subseteq \mathbb{C}^d$ and multiplications * so that

$$egin{aligned} \mathcal{A}^1_{
ho}(u)(m,n) &= rac{1}{N}\sum_{k=0}^{N-1} \langle u(m+k), u(k) * \mathcal{E}_{nk}
angle \in \mathbb{C} \end{aligned}$$

is a meaningful and well-defined *ambiguity function*. This formula is clearly motivated by the STFT.

for Harmonic Analysis and Application

There is a natural way to address the multiplication problem motivated by the fact that $e_m e_n = e_{m+n}$. To this end, we shall make the *ambiguity function assumptions*:

- $\exists \{E_k\}_{k=0}^{N-1} \subseteq \mathbb{C}^d$ and a multiplication * such that $E_m * E_n = E_{m+n}$ for $m, n \in \mathbb{Z}_N$;
- $\{E_k\}_{k=0}^{N-1} \subseteq \mathbb{C}^d$ is a tight frame for \mathbb{C}^d ;
- $*: \mathbb{C}^d \times \mathbb{C}^d \longrightarrow \mathbb{C}^d$ is bilinear, in particular,

$$\left(\sum_{j=0}^{N-1} c_j E_j\right) * \left(\sum_{k=0}^{N-1} d_k E_k\right) = \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} c_j d_k E_j * E_k.$$

- Let {*E_j*}^{*N*-1} ⊆ ℂ^{*d*} satisfy the three ambiguity function assumptions.
- Given $u, v : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$ and $m, n \in \mathbb{Z}_N$.
- Then, one calculates

$$u(m) * v(n) = \frac{d^2}{N^2} \sum_{j=0}^{N-1} \sum_{s=0}^{N-1} \langle u(m), E_j \rangle \langle v(n), E_s \rangle E_{j+s}.$$

Problem and goal

2 Frames

- 3 Multiplication problem and A_p^1
- **5** $A_p^d(u)$ for DFT frames

6 Figure

7 Epilogue

$A_{\rho}^{1}(u)$ for DFT frames

- Let {E_j}^{N-1} ⊆ C^d satisfy the three ambiguity function assumptions.
- Further, assume that $\{E_j\}_{j=0}^{N-1}$ is a DFT frame, and let *r* designate a fixed column.
- Without loss of generality, choose the first *d* columns of the $N \times N$ DFT matrix.
- Then, one calculates

$$E_m * E_n(r) = \frac{d^2}{N^2} \sum_{j=0}^{N-1} \sum_{s=0}^{N-1} \langle E_m, E_j \rangle \langle E_n, E_s \rangle E_{j+s}(r).$$
$$= \frac{e_{(m+n)r}}{\sqrt{d}} = E_{m+n}(r).$$

- Thus, for DFT frames, ∗ is componentwise multiplication in C^d with a factor of √d.
- In this case $A^1_p(u)$ is well-defined for $u : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$ by

$$\begin{aligned} A_p^1(u)(m,n) &= \frac{1}{N} \sum_{k=0}^{N-1} \langle u(m+k), u(k) * E_{nk} \rangle \\ &= \frac{d}{N^2} \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} \langle E_j, u(k) \rangle \langle u(m+k), E_{j+nk} \rangle. \end{aligned}$$

< < >> < <</p>

Remark

- In the previous DFT example, * is intrinsically related to the "addition" defined on the indices of the frame elements, viz., $E_m * E_n = E_{m+n}$.
- Alternatively, we could have $E_m * E_n = E_{m \bullet n}$ for some function
 - : $\mathbb{Z}_N \times \mathbb{Z}_N \longrightarrow \mathbb{Z}_N$, and, thereby, we could use frames which are not FUNTFs.
- Given a bilinear multiplication * : C^d × C^d → C^d, we can find a frame {E_j}_j and an index operation with the E_m * E_n = E_{m•n} property.
- If

 is the multiplication for a group, possibly non-abelian and/or infinite, we may reverse the process and find a FUNTF and bilinear multiplication * with the E_m * E_n = E_{m•n} property.

$A_{\rho}^{1}(u)$ for cross product frames

- Take * : C³ × C³ → C³ to be the cross product on C³ and let {*i*, *j*, *k*} be the standard basis.
- i * j = k, j * i = -k, k * i = j, i * k = -j, j * k = i, k * j = -i, $i * i = j * j = k * k = 0. \{0, i, j, k, -i, -j, -k, \}$ is a tight frame for \mathbb{C}^3 with frame constant 2. Let $E_0 = 0, E_1 = i, E_2 = j, E_3 = k, E_4 = -i, E_5 = -j, E_6 = -k.$
- The index operation corresponding to the frame multiplication is the non-abelian operation $\bullet: \mathbb{Z}_7 \times \mathbb{Z}_7 \longrightarrow \mathbb{Z}_7$, where $1 \bullet 2 = 3, 2 \bullet 1 = 6, 3 \bullet 1 = 2, 1 \bullet 3 = 5, 2 \bullet 3 = 1, 3 \bullet 2 = 4, 1 \bullet 1 = 2 \bullet 2 = 3 \bullet 3 = 0, n \bullet 0 = 0 \bullet n = 0, 1 \bullet 4 = 0, 1 \bullet 5 = 6, 1 \bullet 6 = 2, 4 \bullet 1 = 0, 5 \bullet 1 = 3, 6 \bullet 1 = 5, 2 \bullet 4 = 3, 2 \bullet 5 = 0$, etc.
- The three ambiguity function assumptions are valid and so we can write the cross product as

$$u \times v = u * v = \frac{1}{2^2} \sum_{s=1}^{6} \sum_{t=1}^{6} \langle u, E_s \rangle \langle v, E_t \rangle E_{s \bullet t}.$$

• Consequently, $A_{\rho}^{1}(u)$ can be well-defined.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Inverse 4D Quaternion Julia Set

< ∃ > <

Vector-valued ambiguity function $A_p^d(u)$

- Let {E_j}^{N-1} ⊆ C^d satisfy the three ambiguity function assumptions.
- Given $u : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$.
- The following definition is clearly motivated by the STFT.

Definition

$$A^d_p(u):\mathbb{Z}_N imes\mathbb{Z}_N\longrightarrow\mathbb{C}^d$$
 is defined by

$$A_{\rho}^{d}(u)(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} u(m+k) * \overline{u(k)} * \overline{E_{nk}}.$$

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
Problem and goal

2 Frames

- 3 Multiplication problem and A_p^1
- **5** $A_p^d(u)$ for DFT frames
- 6 Figure
- 7 Epilogue

STFT formulation of $A_p(u)$

The discrete periodic ambiguity function of *u* : Z_N → C can be written as

$$A_{p}(u)(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} \langle \tau_{m} u(k), F^{-1}(\tau_{n} \hat{u})(k) \rangle,$$

where $\tau_{(m)}u(k) = u(m+k)$ is translation by *m* and $F^{-1}(u)(k)) = \check{u}(k)$ is Fourier inversion.

- As such we see that $A_{\rho}(u)$ has the form of a STFT.
- We shall develop a vector-valued DFT theory to *verify* (not just *motivate*) that $A_p^d(u)$ is an STFT in the case $\{E_k\}_{k=0}^{N-1}$ is a DFT frame for \mathbb{C}^d .

Definition

Given $u : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$, and let $\{E_k\}_{k=0}^{N-1}$ be a DFT frame for \mathbb{C}^d . The vector-valued discrete Fourier transform of u is

$$\forall n \in \mathbb{Z}_N, \ F(u)(n) = \hat{u}(n) = \sum_{m=0}^{N-1} u(m) * E_{mn},$$

where * is pointwise (coordinatewise) multiplication.

- The vector-valued DFT inversion formula is valid if N is prime.
- Vector-valued DFT uncertainty principle inequalities are valid, similar to Tao-Candes in compressive sensing.

Vector-valued Fourier inversion theorem

- Inversion process for the vector-valued case is analogous to the 1-dimensional case.
- We must define a new multiplication in the frequency domain to avoid divisibility problems.
- Define the weighted multiplication $(*) : \mathbb{C}^d \times \mathbb{C}^d \longrightarrow \mathbb{C}^d$ by $u(*)v = u * v * \omega$ where $\omega = (\omega_1, \dots, \omega_d)$ has the property that each $\omega_n = \frac{1}{\#\{m \in \mathbb{Z}_N: mn=0\}}$.
- For the following theorem assume *d* << *N* or *N* prime.

Theorem - Vector-valued Fourier inversion

The vector valued Fourier transform *F* is an isomorphism from $\ell^2(\mathbb{Z}_N)$ to $\ell^2(\mathbb{Z}_N, \omega)$ with inverse

$$\forall m \in \mathbb{Z}_N, \quad F^{-1}(m) = u(m) = \frac{d}{N} \sum_{n=0}^{N-1} \hat{u}(n) * E_{-mn} * \omega.$$

N prime implies F is unitary.

$A_p^d(u)$ as an STFT

- Given $u, v : \mathbb{Z}_N \longrightarrow \mathbb{C}^d$, and let $\{E_k\}_{k=0}^{N-1}$ be a DFT frame for \mathbb{C}^d .
- $u * \overline{v}$ denotes pointwise (coordinatewise) multiplication with a factor of \sqrt{d} .
- We compute

$$A_p^d(u)(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} (\tau_m u(k)) * \overline{F^{-1}(\tau_n \hat{u})(k)}.$$

 Thus, A^d_p(u) is compatible with point of view of defining a vector-valued ambiguity function in the context of the STFT. Problem and goal

2 Frames

3 Multiplication problem and A_p^1

5 $A_p^d(u)$ for DFT frames

6 Figure

- If (G, •) is a finite group with representation ρ : G → GL(C^d), then there is a frame {E_n}_{n∈G} and bilinear multiplication,
 * : C^d × C^d → C^d, such that E_m * E_n = E_{m•n}. Thus, we can develop A^d_ρ(u) theory in this setting.
- Analyze ambiguity function behavior for (phase-coded) vector-valued waveforms *v* : ℝ → ℂ^d, defined by *u* : ℤ_N → ℂ^d as

$$v = \sum_{k=0}^{N-1} u(k) \mathbb{1}_{[kT,(k+1)T)},$$

in terms of $A_{p}^{d}(u)$. (See Figure)

aveform design

Computation of $u : \mathbb{Z}_N \to \mathbb{C}^d$ from ambiguity

▶ CAZAC and waveform computation of $u : \mathbb{Z}_N \to \mathbb{C}^d$ from A(u): Let A_u be the $N \times N$ matix, (A(u)(m, n)). Define the $N \times N$ matrix $U = (U_{i,j})$, where $U_{i,j} = \langle u(i+j), u(j) \rangle$. Then

 $U = A_u D_N$, where $D_N = DFT$ matrix.

- ▶ Let d = 1. Note that $U_{k,0} = u(k)\overline{u(0)}$. Hence, if we know the values of the ambiguity function, and, thus, the ambiguity function matrix A_u , then the sequence u, which generates it, can be computed as long as $u(0) \neq 0$. In fact, if u(0) = 1 then $u(k) = (A_u D_N)(k, 0)$.
- Similar result for $A_V(u)$ using our vector-valued Fourier analysis.
- ▶ Now we can address the classical *radar ambiguity problem*: Find the structure of all $z : \mathbb{Z}_N \to \mathbb{C}^d$ for which |A(u)| = |A(z)| on $X \subseteq \mathbb{Z}_N \times \mathbb{Z}_N$.

(日)

Computation of $u : \mathbb{Z}_N \to \mathbb{C}^d$ from ambiguity

• CAZAC and waveform computation of $u : \mathbb{Z}_N \to \mathbb{C}^d$ from A(u): Let A_u be the $N \times N$ matix, (A(u)(m, n)). Define the $N \times N$ matrix $U = (U_{i,j})$, where $U_{i,j} = \langle u(i+j), u(j) \rangle$. Then

 $U = A_u D_N$, where $D_N = DFT$ matrix.

- Let d = 1. If u(0) = 1 then $u(k) = (A_u D_N)(k, 0)$.
- Similar result for $A_V(u)$ using our vector-valued Fourier analysis.
- We are addressing the classical *radar ambiguity problem*: Find the structure of all $z : \mathbb{Z}_N \to \mathbb{C}^d$ for which |A(u)| = |A(z)| on $X \subseteq \mathbb{Z}_N \times \mathbb{Z}_N$. This is not even resolved for the narrow-band case.
- The radar ambiguity problem is closely related to our approach of achieving diverse ambiguity function behavior.

< ロ > < 同 > < 回 > < 回 > < 回 >

for Harmonic Analysis and Applications

Norbert Wiener Center for Harmonic Analysis and Applications Norbert Wiener 26° 26° 26