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Overview 

•  Problem statement 
•  Image representation concepts 
•  Image compression basics 
•  Sparsity is the key, l0-minimization, OMP 
•  Image compression revisited 
•  Imagery metrics 
•  Solving our problem: compressed sensing and 

deterministic sampling masks 
•  Solving our problem: results 
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Problem statement 

JPEG, JPEG 2000 

Sampling Compression 

Representation 
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Image representation concepts 
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Image representation concepts 
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     I[n1,n2] 

0 ≤ n1 < N1, 0 ≤ n2 < N2 
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 I[n1,n2] = pixel 

n1 

n2 
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Image representation concepts 
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I[n1,n2] ~ intensity, brightness 
        at [n1,n2] 

I[n1,n2]     {0, … , 2B-1}, or 
I[n1,n2]     {-2B-1, … , 2B-1-1}, where 
I[n1,n2] = round(2B I’[n1,n2]) and 
I’[n1,n2]     [0,1) or [-½, ½) 
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Image representation concepts 
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Image compression 

9/24/13 

512 x 512 x 8 x 3 = 6,291,456 bits 

10 Sampling in image representation 
and compression 



Image compression 
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JPEG, JPEG 2000 

11 Sampling in image representation 
and compression 



Image compression 
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1)  Partitioning of the image I in sub-images 
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Image compression 
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1)  Partitioning of the image I in sub-images 
2)  Transform sub-images to exploit 

correlations within them 
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Image compression 
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1)  Partitioning of the image I in sub-images 
2)  Transform sub-images to exploit 

correlations within them 
3)  Quantize and encode 
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Image compression 
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Sparsity is the key 
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Cn u rd ths? 

vs 

Can you read this? 
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Sparsity is the key 
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Sparsity 

The l0 “norm”: 

  ||x||0 = # {k : xk ≠ 0} 

18 Sampling in image representation 
and compression 



9/24/13 

l0-minimization ~ sparse solution 

 (P0):   minx ||x||0  subject to  ||Ax - b||2 = 0 
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l0-minimization ~ sparse solution 

 (P0
ε):   minx ||x||0  subject to  ||Ax - b||2 < ε 
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l0-minimization ~ sparse solution 

 (P0
ε):   minx ||x||0  subject to  ||Ax - b||2 < ε 

Solving (P0 
ε) is NP-hard! 

Is there any hope? 
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Finding sparse solutions:OMP 
Orthogonal Matching Pursuit algorithm: 
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Finding sparse solutions:OMP 
Orthogonal Matching Pursuit algorithm: 
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Finding sparse solutions:OMP 
Orthogonal Matching Pursuit algorithm: 
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Finding sparse solutions:OMP 
Orthogonal Matching Pursuit algorithm: 
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Image compression 
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T = Tε = OMP(A, - ,ε),  T’ = A 
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We need a matrix A 

DCT Haar 
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We need a matrix A 

2D - DCT 2D - Haar 
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We need a matrix A 
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Compressing a test image 
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c3() = b 

 = c3
-1(b’) 

x0 = Tε b = OMP(A, b ,ε) 

b’ = T’ x0 = A x0 
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Compressing a test image 
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 ~  ?  || b - b’ ||2 < ε 

But what does that mean visually? 
How many bits were used? 
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Imagery metrics 

Peak Signal-to-Noise Ratio (PSNR), measured in dB: 

PSNR(X,Y) = 20 log10(MAXB / √MSE), 

with MAXB = 2B-1, and MSE = ∑i,j [X(i,j) - Y(i,j)]2 /nm. 
In our case, n = m = 512, and B = 8, i.e. MAXB = 255. 
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Imagery metrics 

Structural Similarity (SSIM), and Mean Structural 
Similarity(MSSIM) indices: 
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Imagery metrics 

The normalized sparse bit-rate is 

nsbr(I,A,ε) = ∑ ||xj||0/N1N2, 

where image I is of size N1 by N2. 
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Imagery metrics: test images 

Stream Boat 

Elaine Barbara 
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Imagery metrics: bpp vs ε 
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Imagery metrics: bpp vs ε 
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Imagery metrics: bpp vs ε 

38 Sampling in image representation 
and compression 



9/24/13 

Imagery metrics: bpp vs ε 
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Imagery metrics: bpp vs PSNR 
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Imagery metrics: bpp vs MSSIM 
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Imagery metrics: PSNR vs MSSIM 
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Compression results 

ε  = 32, c = 4 
PSNR = 36.5220 dB, MSSIM = 0.9104, nsbr = 0.1609 bpp 
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Back to our original problem 
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k = 40 (62.5%) k = 32 (50%) 
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Compressed sensing and sampling 
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minx ||x||0 subject to ||PA x – c ||2 < ε 

P in Rk x n, A in Rn x m, and c in Rk 
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Deterministic sampling masks 
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ε = c       , c = 4  

€ 

k
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Deterministic sampling masks 
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||A’ x’ – c ||2 < ε, with x’ = OMP(A’,c,ε), and x’ in Rm  
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Deterministic sampling masks 
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||A’ x’ – c ||2 < ε, with x’ = OMP(A’,c,ε), and x’ in Rm  

 = c3
-1(A x’ ) 
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Results 
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k = 40, c = 4 Luminance SSIM 
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Results 
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k = 40, c = 4 

PSNR = 21.1575 PSNR = 39.7019 PSNR = 39.4193 
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Results 
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k = 40, c = 4 Deterministic sampling masks 
~ Inpainting? 
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Results 
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k = 32, c = 4 PSNR = 29.8081 dB 
MSSIM = 0.7461 
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Results 
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k = 32, c = 4 
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Thank you! 
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