NMR Measurement of T1-T2 Spectra with Partial Measurements using Compressive Sensing

Alex Cloninger

Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu

< < >> < <</p>

2 Traditional Inverse Laplace Transform Inversion

Using Compressive Sensing to Speed Up Data Collection

Basics of Nuclear Magnetic Resonance Traditional Inverse Laplace Transform Inversion

- 2 Traditional Inverse Laplace Transform Inversion
- Using Compressive Sensing to Speed Up Data Collection

Results

Basics of Nuclear Magnetic Resonance

- We will consider multidimensional correlations as measured by NMR
- Specifically look at T1-T2 relaxation properties
 - Relaxation measures how fast magnetic spins "forget" orientation and return to equalibrium
 - T1 is decay constant for z-component of nuclear spin
 - T2 is decay constant for xy-component perpendicular to magnetic field

< □ > < @ > < E > < E</pre>

- Analysis of multidimensional correlations requires multidimensional inverse Laplace transform
- Due to ill-conditioning of 2D ILT, require a large number of measurements
- Problem is getting T1-T2 map is incredibly slow

Spin-Echo Pulse

Figure: Animation of Spin-Echo Pulse

Basics of Nuclear Magnetic Resonance

Traditional Inverse Laplace Transform Inversion Using CS for Speed Up Results

T1-T2 Correlations

Math Behind NMR

 Echo measurements are related to T1-T2 correlations via Laplace Transform

$$M(\tau_1,\tau_2) = \int \int (1-2e^{-\tau_1/T_1})e^{-\tau_2/T_2}\mathcal{F}(T_1,T_2)dT_1dT_2 + E(\tau_1,\tau_2)$$

We'll consider more general 2D Fredholm Integral

$$M(\tau_1,\tau_2) = \int \int k_1(\tau_1,T_1)k_2(\tau_2,T_2)\mathcal{F}(T_1,T_2)dT_1dT_2 + E(\tau_1,\tau_2)$$

where $E(\tau_1, \tau_2) \sim \mathcal{N}(\mathbf{0}, \epsilon)$

Discretize to

$$\mathbf{M}=\mathbf{K_1FK_2'}+\mathbf{E}$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Problems with Inverse Laplace Transform

- $k_1(\tau 1, T_1)$ and $k_2(\tau_2, T_2)$ are smooth continuous
 - Means K₁ and K₂ are ill-conditioned
 - Makes inversion difficult

2 Traditional Inverse Laplace Transform Inversion

Using Compressive Sensing to Speed Up Data Collection

Algorithm for Approximation of $\mathcal{F}(T_1, T_2)$

Definition (Objective Function for Recovery)

Wish to find minimizer to

$$\min_{F>0} \|M - K_1 F K_2^*\|_2 + \alpha \|F\|_2$$

- Because inversion unstable, α||F||₂ term smooths solution
 - Called Tikhonov regularization with parameter α
- Possible to determine choice of α that minimizes bias
- Computationally unwieldy

Outline of Preexisting Algorithm

- Reduce the dimension of the problem in order to make the minimization manageable
- In the second second
- Having solved the minimization problem, determine a more optimal alpha to use in the regularization problem
- Loop between Steps 2 & 3 until convergence upon the optimal alpha

Step 1: Dimension Reduction

- Assume *M* is $N_1 \times N_2$ data matrix
- To reduce the dimension of the problem, let

$$K_1 = U_1 \Sigma_1 V_1^*, \quad K_2 = U_2 \Sigma_2 V_2^*$$

where $\Sigma_1 \in \mathbb{R}^{s_1 \times s_1}$ and $\Sigma_2 \in \mathbb{R}^{s_2 \times s_2}$.

- Choose s₁, s₂ to account for 99% of the energy

Step 1: Dimension Reduction

• Change objective function by

$$\begin{split} \min_{F \ge 0} \| U_1^* (M - K_1 F K_2^*) U_2 \|_2 + \alpha \| F \|_2 \\ &= \min_{F \ge 0} \| U_1^* M U_2 - \Sigma_1 V_1^* F V_2 \Sigma_2 \|_2 + \alpha \| F \|_2 \\ &= \min_{F \ge 0} \| \widetilde{M} - \widetilde{K}_1 F \widetilde{K}_2^* \|_2 + \alpha \| F \|_2. \end{split}$$

•
$$\widetilde{K}_i = \Sigma_i V_i^*$$

• $\widetilde{M} = U_1^* M U_2 \in \mathbb{R}^{s_1 \times s_2}$

• Note that now minimization only depends on \widetilde{M}

Step 2: Tikhonov Regularization

Now need to solve minimization with compressed data M

$$\min_{F \ge 0} \|\widetilde{M} - \widetilde{K}_1 F \widetilde{K}_2^*\|_2 + \alpha \|F\|_2.$$

Reform problem into unconstraned optimization for

$$f = \max(0, (\widetilde{K_1} \otimes \widetilde{K_2})'c), \ c \in \mathbb{R}^{s_1 \times s_2}$$

Solve new unconstrained problem using Newton's method

Step 3: Choosing Optimal Alpha

There are multiple ways to choose the optimal alpha:

Choose new alpha to be

$$\alpha_{new} = \frac{\sqrt{s_1 s_2}}{\|c\|}$$

2 After determining F_{α} for fixed α , calculate the "fit error"

$$\chi(\alpha) = \frac{\|\boldsymbol{M} - \boldsymbol{K}_1 \boldsymbol{F}_\alpha \boldsymbol{K}_2^*\|_F}{\sqrt{N_1 N_2 - 1}},$$

which is the standard deviation of the noise in reconstruction.

• Choose
$$\alpha$$
 such that $\frac{d \log \chi}{d \log \alpha} = .1$

- 2 Traditional Inverse Laplace Transform Inversion
- Using Compressive Sensing to Speed Up Data Collection

Intuition Behind Compressive Sensing

- Collected N₁ × N₂ data points in *M*, then "compressed" to s₁ × s₂ matrix *M*.
 - In practice, $\frac{s_1 s_2}{N_1 N_2} \approx 1\%$

Key Question

Why collect large amounts of data only to throw away over 99% of it?

- At end of day, only \widetilde{M} matters in minimization problem
 - If we had way of measuring \widetilde{M} directly, speedup would be massive

Basic ideas

- Since post-sensing compression is inefficient, why not compress while sensing to boost efficiency?
- Key is that observations in traditional sensing are of form

$$M_{i,j} = \langle M, \delta_{i,j} \rangle.$$

- Question: which functions should replace δ_{i,j} in order to minimize the number of samples needed for reconstruction?
- Answer: they should not match image structures; they should mimic the behavior of random noise.

Incoherent Measurements of M

• Remember that $M = U_1 \widetilde{M} U'_2$, so

$$egin{array}{rcl} \mathcal{M}_{i,j} &=& u_i \widetilde{\mathcal{M}} v_j' \ &=& \langle \widetilde{\mathcal{M}}, u_i' v_j
angle \end{array}$$

where u_i is the *i*th row of U_1 and v_j is the *j*th row of U_2

- By structure of U_1 and U_2 , rows u_i and v_i are very *incoherent*
 - Incoherent basically means energy is spread out over all elements rather than concentrated
- Because of this, may be possible to observe small number of entries and recover \widetilde{M}
 - Even if number of measurements greater than size of \widetilde{M} , still could be much less than $N_1 N_2$

Random Sensing

- Consider observing a small number of elements of M randomly
 - We will call set of elements observed $\boldsymbol{\Omega}$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Fewer measurements directly reduces time spent collecting

Singular Values and Rank of M

- Measurements of \widetilde{M} are underdetermined and noisy.
 - Need a way to bring in more a priori knowledge of \widetilde{M}
- Because of ill-conditioned K_1 and K_2 , singular values of \widetilde{M} decay quickly
 - Can be closely approximated by only first $r \ll \min(s_1, s_2)$ singular values

Possible to recover *M* as solution to

arg min rank(X)
such that
$$u_i X v'_j = M_{i,j}$$
, $(i,j) \in \Omega$

Problems and Reformulation

Two problems:

• Rank minimization is computationally infeasible

Definition (Nuclear Norm)

Let $\sigma_i(M)$ be the *i*th largest singular value of *M*. If rank(*M*) = *r*, then

$$\|\boldsymbol{M}\|_* := \sum_{i=1}^r \sigma_i(\boldsymbol{M})$$

Measurements aren't perfect (there is noise)

Definition (Sampling Operator)

For a set of measurements $\{\phi_i\}_{i\in J}$, then for $\Omega \subset J$ the sampling operator is

$$egin{aligned} \mathcal{R}_{\Omega} : \mathbb{C}^{s_1 imes s_2} &
ightarrow \mathbb{C}^m, \ (\mathcal{R}_{\Omega}(X))_j &= \langle \phi_j, X
angle, \ j \in \Omega. \end{aligned}$$

Center plications

< ロ > < 同 > < 回 > < 回 >

Problems and Reformulation

Recovery Algorithm

Let $y = \mathcal{R}_{\Omega}(\widetilde{M}) + e$, where $||e||_2 < \epsilon$. Wish to recover \widetilde{M} by solving

 $\begin{array}{ll} \arg\min_{X\in\mathbb{R}^{s_1\times s_2}} & \|X\|_*\\ \text{such that} & \|\mathcal{R}_{\Omega}(X)-y\|_2 < \epsilon \end{array}$

(P*)

(1)

Need to establish that (P*) with these measurements will recover M

Definition

A Parseval tight frame for a *d* dimensional Hilbert space \mathcal{H} is a collection of elements $\{\phi_j\}_{j\in J} \subset \mathcal{H}$ such that

$$\sum_{i \in J} |\langle f, \phi_j \rangle|^2 = ||f||^2, \quad \forall f \in H.$$

Reconstruction and Noise Bounds

Because u_i and v_j are rows of U₁ and U₂ (who's columns are orthogonal), these measurements form a *tight frame*

Definition

A Fourier-type Parseval tight frame with incoherence μ is a Parseval tight frame $\{\phi_j\}_{j \in J}$ on $\mathbb{C}^{d \times d}$ with operator norm satisfying

$$\|\phi_j\|^2 \le \nu \frac{d}{|J|}, \quad \forall j \in J.$$
(2)

< □ > < □ > < □ > < □ >

- This definition was introduced by David Gross for orthonormal basis
- Can be thought of as singular values bounded in L^∞ norm

Theorem (Cloninger)

Let the measurements in (P^*) be a Fourier-type Parseval tight frame of size |J|, and the true matrix of interest be denoted \widetilde{M}_0 . If the number of measurements m satisfies

 $m \ge C \nu n r \log^5 n \log |J|,$

where ν measures the incoherence of the measurements and $n = \max(s_1, s_2)$, then the result of (*P**), denoted \widehat{M} , will satisfy

$$\|\widetilde{M}_0 - \widehat{M}\|_F \leq C_1 \frac{\|\widetilde{M}_0 - \widetilde{M}_{0,r}\|_*}{\sqrt{r}} + C_2 \sqrt{\frac{|J|}{m}} \epsilon,$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where $\widetilde{M}_{0,r}$ is the best rank r approximation of \widetilde{M}_0 .

Noise in Practice

• Keep in mind, ϵ is the measure of noise between the ideal matrix \widetilde{M}_0 and the compressed data \widetilde{M}

$$\|\widetilde{M}_0 - \widetilde{M}\|_F \le \epsilon$$

• C_2 is a very small constant, and in practice $\sqrt{\frac{N_1N_2}{m}} \le \sqrt{5}$

Proof of Theorem

Definition

Let $\mathcal{R}_{\Omega} : \mathbb{R}^{s_1 \times s_2} \to \mathbb{R}^m$ be a linear operator of measurements. \mathcal{A} satisfies the *restricted isometry property* (RIP) of order *r* if there exists some small δ_r such that

$$(1-\delta_r)\|X\|_{ extsf{F}} \leq \|\mathcal{R}_\Omega(X)\|_2 \leq (1+\delta_r)\|X\|_{ extsf{F}}$$

for all matrices X of rank r.

Theorem (Candès, Fazel)

Let X_0 be an arbitrary matrix in $\mathbb{C}^{m \times n}$ and assume $\delta_{5r} < 1/10$. If the measurements satisfy RIP, then \widehat{X} obtained from solving (P*) obeys

$$\|\widehat{X} - X_0\|_F \leq C_0 \frac{\|X_0 - X_{0,r}\|_*}{\sqrt{r}} + C_1 \epsilon,$$

where C_0 , C_1 are small constants depending only on the isometry constant.

Center plications

Proof of Theorem

Lemma

Let \mathcal{R}_{Ω} be defined as before. Fix some $0 < \delta < 1$. Let m satisfy

$$m \ge C\nu rn\log^5 n \cdot \log|J|,\tag{3}$$

where *C* only depends on δ like $C = O(1/\delta^2)$. Then with high probability, $\sqrt{\frac{|J|}{m}} \mathcal{R}_{\Omega}$ satisfies the RIP of rank *r* with isometry constant δ . Furthermore, the probability of failure is exponentially small in $\delta^2 C$.

Since, $\sqrt{\frac{|J|}{m}} \mathcal{R}_{\Omega}$ satisfies the RIP, can reform (P*) to say

arg min
$$\|X\|_{*}$$

such that $\|\sqrt{\frac{|J|}{m}}\mathcal{R}_{\Omega}(X) - \sqrt{\frac{|J|}{m}}y\|_{2} < \sqrt{\frac{|J|}{m}}\epsilon$

Outline of Proof

Can restate RIP as

$$\epsilon_r(\mathcal{A}) = \sup_{X \in U_2} |\langle X, (\mathcal{A}^* \mathcal{A} - \mathcal{I}) X \rangle| \leq 2\delta - \delta^2$$

where $U_2 = \{X \in \mathbb{C}^{s_1 \times s_2} : \|X\|_F \le 1, \|X\|_* \le \sqrt{r} \|X\|_F\}$

Notation:

Norm:
$$\|\mathcal{M}\|_{(r)} = \sup_{X \in U_2} |\langle X, \mathcal{M}X \rangle|;$$
 Simplify Terms: $\mathcal{A} = \sqrt{\frac{|J|}{m}} \mathcal{R}_{\Omega}$

イロト イポト イヨト イヨト

크

Outline of Proof

Lemma

Let $\{V_i\}_{i=1}^m \subset \mathbb{C}^{s_1 \times s_2}$ have uniformly bounded norm, $||V_i|| \leq K$. Let $n = \max(s_1, s_2)$ and let $\{\epsilon_i\}_{i=1}^m$ be iid uniform ± 1 random variables. Then

$$\mathbb{E}_{\epsilon} \left\| \sum_{i=1}^{m} \epsilon_{i} V_{i}^{*} V_{i} \right\|_{(r)} \leq C_{1} \left\| \sum_{i=1}^{m} V_{i}^{*} V_{i} \right\|_{(r)}^{1/2}$$

where $C_1 = C_0 \sqrt{r} K \log^{5/2} n \log^{1/2} m$ and C_0 is a universal constant.

For our purposes, $V_i = \sqrt{\frac{|J|}{n}}\phi_i$. Then

$$\begin{split} \mathbb{E}\epsilon_{r}(\mathcal{A}) &\leq 2C_{1}\frac{n}{m}\mathbb{E}_{\Omega}\left\|\sum\sqrt{\frac{|J|}{n}}\phi_{i}^{*}\phi_{i}\sqrt{\frac{|J|}{n}}\right\|_{(r)}^{1/2} \\ &= 2C_{1}\sqrt{\frac{n}{m}}\left(\mathbb{E}\|\mathcal{A}^{*}\mathcal{A}\|\right)^{1/2} \\ &\leq 2C_{1}\sqrt{\frac{n}{m}}(\mathbb{E}\epsilon_{r}(\mathcal{A})+1)^{1/2}. \end{split}$$

Outline of Proof

Fix some $\lambda \geq 1$ and choose

$$m \geq C\lambda\mu rn\log^5 n \cdot \log|J|$$

 $\geq \lambda n(2C_1)^2$

This makes $\mathbb{E}\epsilon_r(\mathcal{A}) \leq \frac{1}{\lambda} + \frac{1}{\sqrt{\lambda}}$. We can now use result by Talagrand.

Theorem

Let $\{\mathcal{Y}_i\}_{i=1}^m$ be independent symmetric random variables on some Banach space such that $\|\mathcal{Y}_i\| \leq R$. Let $\mathcal{Y} = \sum_{i=1}^m \mathcal{Y}_i$. Then for any integers $l \geq q$ and any t > 0

$$\mathsf{Pr}(\|\mathcal{Y}\| \geq 8q\mathbb{E}\|\mathcal{Y}\| + 2RI + t\mathbb{E}\|\mathcal{Y}\|) \leq (K/q)^{I} + 2e^{-t^{2}/256q},$$

where K is a universal constant.

Use theorem to establish

$$\mathsf{Pr}(\|\epsilon_r(\mathcal{A})\| \ge \epsilon) \le e^{-C\epsilon^2 \lambda}$$

(4)

Revised Algorithm

- Randomly subsample data matrix M at indices Ω
- Reconstruct *M* by solving

arg min $\|X\|_*$ such that $\|\mathcal{R}_{\Omega}(X) - y\|_2 < \epsilon$

- Icon Holding alpha fixed, solve the Tikhonov regularization problem
- Having solved the minimization problem, determine a more optimal alpha to use in the regularization problem
- Loop between Steps 2 & 3 until convergence upon the optimal alpha

- 2 Traditional Inverse Laplace Transform Inversion
- Using Compressive Sensing to Speed Up Data Collection

Recovery from Small Number of Entries

Error Analysis

<□> < @> < @> < @> < @> < @> < @</p>

Simple T1-T2 Map with 30dB SNR

Simple T1-T2 Map with 15dB SNR

Correlated T1-T2 Map with 30dB SNR

Two Peak T1-T2 Map with 35dB SNR

Figure: (T-L) Original Algorithm, (T-R) 20% Measurements, (B-L) 1D ILT of T1, (B-R) 1D ILT of T2

for Harmonic Analysis and Applications

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Two Peak T1-T2 Map with 35dB SNR

Two Peak Skewing

- Only keeping largest singular values causes "fattening" of peaks
 - Necessary for computational efficiency of any 2D ILT algorithm
- Can be shown by taking 1D ILT of M, U₁U'₁MU₂U'₂, and reconstructions of M using CS

Preliminary Real Data

Figure: (L) Original Algorithm, (R) 20% Measurements

- Results recover measurement matrix *M* almost perfectly
- While small noise is added in compressive sensing reconstruction, it is dwarfed by algorithmic errors
- Next step is to implement on machine and run thorough testing

