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Basics of Nuclear Magnetic Resonance

We will consider multidimensional correlations as measured by
NMR
Specifically look at T1-T2 relaxation properties

Relaxation measures how fast magnetic spins ”forget” orientation
and return to equalibrium
T1 is decay constant for z-component of nuclear spin
T2 is decay constant for xy-component perpendicular to magnetic
field

Analysis of multidimensional correlations requires
multidimensional inverse Laplace transform
Due to ill-conditioning of 2D ILT, require a large number of
measurements
Problem is getting T1-T2 map is incredibly slow
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Spin-Echo Pulse

Figure: Animation of Spin-Echo Pulse
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T1-T2 Correlations
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Math Behind NMR

Echo measurements are related to T1-T2 correlations via
Laplace Transform

M(τ1, τ2) =

∫ ∫
(1− 2e−τ1/T1 )e−τ2/T2F(T1,T2)dT1dT2 + E(τ1, τ2)

We’ll consider more general 2D Fredholm Integral

M(τ1, τ2) =

∫ ∫
k1(τ1,T1)k2(τ2,T2)F(T1,T2)dT1dT2 + E(τ1, τ2)

where E(τ1, τ2) ∼ N (0, ε)
Discretize to

M = K1FK′2 + E
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Problems with Inverse Laplace Transform

k1(τ1,T1) and k2(τ2,T2) are smooth continuous
Means K1 and K2 are ill-conditioned
Makes inversion difficult
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Algorithm for Approximation of F(T1, T2)

Definition (Objective Function for Recovery)

Wish to find minimizer to

min
F≥0
‖M − K1FK ∗2 ‖2 + α‖F‖2

Because inversion unstable, α‖F‖2 term smooths solution
Called Tikhonov regularization with parameter α

Possible to determine choice of α that minimizes bias
Computationally unwieldy
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Outline of Preexisting Algorithm

1 Reduce the dimension of the problem in order to make the
minimization manageable

2 Holding alpha fixed, solve the Tikhonov regularization problem
3 Having solved the minimization problem, determine a more

optimal alpha to use in the regularization problem
4 Loop between Steps 2 & 3 until convergence upon the optimal

alpha
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Step 1: Dimension Reduction

Assume M is N1 × N2 data matrix
To reduce the dimension of the problem, let

K1 = U1Σ1V ∗1 , K2 = U2Σ2V ∗2

where Σ1 ∈ Rs1×s1 and Σ2 ∈ Rs2×s2 .
Choose s1, s2 to account for 99% of the energy
Because of fast decay of kernels, s1 � N1 and s2 � N2.
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Step 1: Dimension Reduction

Change objective function by

min
F≥0
‖U∗1 (M − K1FK ∗2 )U2‖2 + α‖F‖2

= min
F≥0
‖U∗1 MU2 − Σ1V ∗1 FV2Σ2‖2 + α‖F‖2

= min
F≥0
‖M̃ − K̃1FK̃ ∗2 ‖2 + α‖F‖2.

eKi = ΣiV ∗ieM = U∗1 MU2 ∈ Rs1×s2

Note that now minimization only depends on M̃
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Step 2: Tikhonov Regularization

Now need to solve minimization with compressed data M̃

min
F≥0
‖M̃ − K̃1FK̃ ∗2 ‖2 + α‖F‖2.

Reform problem into unconstraned optimization for

f = max(0, (K̃1 ⊗ K̃2)′c), c ∈ Rs1×s2 .

Solve new unconstrained problem using Newton’s method
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Step 3: Choosing Optimal Alpha
There are multiple ways to choose the optimal alpha:

1 Choose new alpha to be

αnew =

√
s1s2

‖c‖

2 After determining Fα for fixed α, calculate the “fit error”

χ(α) =
‖M − K1FαK ∗2 ‖F√

N1N2 − 1
,

which is the standard deviation of the noise in reconstruction.
Choose α such that d logχ

d logα = .1
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Intuition Behind Compressive Sensing

Collected N1 ×N2 data points in M, then “compressed” to s1 × s2

matrix M̃.
In practice, s1s2

N1N2
≈ 1%

Key Question

Why collect large amounts of data only to throw away over 99% of it?

At end of day, only M̃ matters in minimization problem
If we had way of measuring eM directly, speedup would be massive
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Basic ideas

Since post-sensing compression is inefficient, why not compress
while sensing to boost efficiency?
Key is that observations in traditional sensing are of form

Mi,j = 〈M, δi,j〉.

Question: which functions should replace δi,j in order to
minimize the number of samples needed for reconstruction?
Answer: they should not match image structures; they should
mimic the behavior of random noise.
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Incoherent Measurements of M̃

Remember that M = U1M̃U ′2, so

Mi,j = uiM̃v ′j

= 〈M̃,u′i vj〉.

where ui is the i th row of U1 and vj is the j th row of U2

By structure of U1 and U2, rows ui and vi are very incoherent
Incoherent basically means energy is spread out over all elements
rather than concentrated

Because of this, may be possible to observe small number of
entries and recover M̃

Even if number of measurements greater than size of eM, still could
be much less than N1N2
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Random Sensing

Consider observing a small number of elements of M randomly

We will call set of elements observed Ω

Fewer measurements directly reduces time spent collecting

Problem is using these measurements to reconstruct eM
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Singular Values and Rank of M̃

Measurements of eM are underdetermined and noisy.

Need a way to bring in more a priori knowledge of eM
Because of ill-conditioned K1 and K2, singular values of eM decay quickly

Can be closely approximated by only first r � min(s1, s2) singular
values

Possible to recover M as solution to

arg min
X

rank(X )

such that uiXv ′j = Mi,j , (i , j) ∈ Ω
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Problems and Reformulation

Two problems:

Rank minimization is computationally infeasible

Definition (Nuclear Norm)

Let σi (M) be the i th largest singular value of M. If rank(M) = r , then

‖M‖∗ :=
rX

i=1

σi (M)

Measurements aren’t perfect (there is noise)

Definition (Sampling Operator)

For a set of measurements {φi}i∈J , then for Ω ⊂ J the sampling operator is

RΩ : Cs1×s2 → Cm,

(RΩ(X ))j = 〈φj ,X 〉, j ∈ Ω
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Problems and Reformulation

Recovery Algorithm

Let y = RΩ( eM) + e, where ‖e‖2 < ε. Wish to recover eM by solving

arg min
X∈Rs1×s2

‖X‖∗

such that ‖RΩ(X )− y‖2 < ε
(P*)

Need to establish that (P*) with these measurements will recover eM
Definition

A Parseval tight frame for a d dimensional Hilbert space H is a collection of
elements {φj}j∈J ⊂ H such thatX

j∈J

|〈f , φj〉|2 = ‖f‖2, ∀f ∈ H. (1)
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Reconstruction and Noise Bounds

Because ui and vj are rows of U1 and U2 (who’s columns are
orthogonal), these measurements form a tight frame

Definition
A Fourier-type Parseval tight frame with incoherence µ is a Parseval
tight frame {φj}j∈J on Cd×d with operator norm satisfying

‖φj‖2 ≤ ν d
|J|
, ∀j ∈ J. (2)

This definition was introduced by David Gross for orthonormal
basis
Can be thought of as singular values bounded in L∞ norm
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Theorem (Cloninger)

Let the measurements in (P*) be a Fourier-type Parseval tight frame
of size |J|, and the true matrix of interest be denoted M̃0. If the
number of measurements m satisfies

m ≥ Cνnr log5 n log |J|,

where ν measures the incoherence of the measurements and
n = max(s1, s2), then the result of (P*), denoted M̂, will satisfy

‖M̃0 − M̂‖F ≤ C1
‖M̃0 − M̃0,r‖∗√

r
+ C2

√
|J|
m
ε,

where M̃0,r is the best rank r approximation of M̃0.
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Noise in Practice

Keep in mind, ε is the measure of noise between the ideal matrix
M̃0 and the compressed data M̃

‖M̃0 − M̃‖F ≤ ε

C2 is a very small constant, and in practice
√

N1N2
m ≤

√
5
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Proof of Theorem

Definition

Let RΩ : Rs1×s2 → Rm be a linear operator of measurements. A satisfies the
restricted isometry property (RIP) of order r if there exists some small δr such
that

(1− δr )‖X‖F ≤ ‖RΩ(X )‖2 ≤ (1 + δr )‖X‖F

for all matrices X of rank r .

Theorem (Candès, Fazel)

Let X0 be an arbitrary matrix in Cm×n and assume δ5r < 1/10. If the
measurements satisfy RIP, then bX obtained from solving (P*) obeys

‖bX − X0‖F ≤ C0
‖X0 − X0,r‖∗√

r
+ C1ε,

where C0,C1 are small constants depending only on the isometry constant.
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Proof of Theorem

Lemma
Let RΩ be defined as before. Fix some 0 < δ < 1. Let m satisfy

m ≥ Cνrn log5 n · log |J|, (3)

where C only depends on δ like C = O
(
1/δ2

)
. Then with high

probability,
√
|J|
m RΩ satisfies the RIP of rank r with isometry constant

δ. Furthermore, the probability of failure is exponentially small in δ2C.

Since,
√
|J|
m RΩ satisfies the RIP, can reform (P*) to say

arg min ‖X‖∗
such that ‖

√
|J|
m RΩ(X )−

√
|J|
m y‖2 <

√
|J|
m ε
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Outline of Proof

Can restate RIP as

εr (A) = sup
X∈U2

|〈X , (A∗A− I)X〉| ≤ 2δ − δ2

where U2 = {X ∈ Cs1×s2 : ‖X‖F ≤ 1, ‖X‖∗ ≤
√

r‖X‖F}
Notation:

Norm: ‖M‖(r) = sup
X∈U2

|〈X ,MX〉|; Simplify Terms: A =
q
|J|
m RΩ

Eεr (A) = E ‖A∗A− I‖(r)

≤ EΩEε
‚‚‚‚X εi (φ

∗
i φi − (φ′i )

∗φ′i )
|J|
m

‚‚‚‚
(r)

≤ 2
n
m

EΩEε

‚‚‚‚‚X εi

r
|J|
n
φ∗i φi

r
|J|
n

‚‚‚‚‚
(r)
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Outline of Proof

Lemma

Let {Vi}m
i=1 ⊂ Cs1×s2 have uniformly bounded norm, ‖Vi‖ ≤ K . Let n = max(s1, s2)

and let {εi}m
i=1 be iid uniform ±1 random variables. Then

Eε

‚‚‚‚‚
mX

i=1

εi V∗i Vi

‚‚‚‚‚
(r)

≤ C1

‚‚‚‚‚
mX

i=1

V∗i Vi

‚‚‚‚‚
1/2

(r)

where C1 = C0
√

rK log5/2 n log1/2 m and C0 is a universal constant.

For our purposes, Vi =
q
|J|
n φi . Then

Eεr (A) ≤ 2C1
n
m

EΩ

‚‚‚‚‚X
r
|J|
n
φ∗i φi

r
|J|
n

‚‚‚‚‚
1/2

(r)

= 2C1

r
n
m

(E‖A∗A‖)1/2

≤ 2C1

r
n
m

(Eεr (A) + 1)1/2.
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Outline of Proof

Fix some λ ≥ 1 and choose

m ≥ Cλµrn log5 n · log |J|
≥ λn(2C1)2

This makes Eεr (A) ≤ 1
λ

+ 1√
λ

.
We can now use result by Talagrand.

Theorem

Let {Yi}m
i=1 be independent symmetric random variables on some Banach space such

that ‖Yi‖ ≤ R. Let Y =
mP

i=1
Yi . Then for any integers l ≥ q and any t > 0

Pr(‖Y‖ ≥ 8qE‖Y‖+ 2Rl + tE‖Y‖) ≤ (K/q)l + 2e−t2/256q , (4)

where K is a universal constant.

Use theorem to establish

Pr(‖εr (A)‖ ≥ ε) ≤ e−Cε2λ
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Revised Algorithm

1 Randomly subsample data matrix M at indices Ω

2 Reconstruct M̃ by solving

arg min ‖X‖∗
such that ‖RΩ(X )− y‖2 < ε

3 Holding alpha fixed, solve the Tikhonov regularization problem
4 Having solved the minimization problem, determine a more

optimal alpha to use in the regularization problem
5 Loop between Steps 2 & 3 until convergence upon the optimal

alpha
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Recovery from Small Number of Entries
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Error Analysis
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Simple T1-T2 Map with 30dB SNR

Figure: (T-L) T1-T2 Map, (T-R) Original Algorithm, (B-L) 30% Measurements,
(B-R) 10% Measurements
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Simple T1-T2 Map with 15dB SNR

Figure: (T-L) T1-T2 Map, (T-R) Original Algorithm, (B-L) 30% Measurements,
(B-R) 10% Measurements
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Correlated T1-T2 Map with 30dB SNR

Figure: (T-L) T1-T2 Map, (T-R) Original Algorithm, (B-L) 30% Measurements,
(B-R) 10% Measurements
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Two Peak T1-T2 Map with 35dB SNR

Figure: (T-L) Original Algorithm, (T-R) 20% Measurements, (B-L) 1D ILT of T1,
(B-R) 1D ILT of T2



Basics of Nuclear Magnetic Resonance
Traditional Inverse Laplace Transform Inversion

Using CS for Speed Up
Results

Two Peak T1-T2 Map with 35dB SNR

Figure: (T-L) T1-T2 Map, (T-R) Original Algorithm, (B-L) 30% Measurements,
(B-R) 20% Measurements
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Two Peak Skewing

Only keeping largest singular values causes “fattening” of peaks
Necessary for computational efficiency of any 2D ILT algorithm

Can be shown by taking 1D ILT of M, U1U ′1MU2U ′2, and
reconstructions of M using CS
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Preliminary Real Data

Figure: (L) Original Algorithm, (R) 20% Measurements
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Conclusion

Results recover measurement matrix M almost perfectly
While small noise is added in compressive sensing
reconstruction, it is dwarfed by algorithmic errors
Next step is to implement on machine and run thorough testing
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