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Suppose G is a locally compact abelian group. Let Γ := Ĝ, the dual group
of G. We call γ ∈ Γ a character.
For f ∈ L1(G), let f̂ : Γ→ C denote the Fourier transform of f :

f̂ (γ) :=

∫
G

f (x)γ(x)dµ(x),

where µ is the Haar measure on G.
Let

A(Γ) :=

{
f̂ | f ∈ L1(G)

}
be the space of absolutely convergent Fourier transforms on Γ. This is a
Banach algebra under pointwise multiplication and is contained in C0(Γ).
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The space of pseudomeasures on Γ, denoted A′(Γ), is the Banach dual of

A(Γ). Alternatively, we may set A′(Γ) :=

{
F̂ | F ∈ L∞(G)

}
.

The duality between A(Γ) and A′(Γ) is as follows: for all T ∈ A′(Γ) and all
φ ∈ A(Γ), we define

〈T , φ〉 = 〈T̂ , φ̂〉.

A closed set Λ ⊂ Γ is said to be a set of spectral synthesis, S-set for
short, if: ∀ T ∈ A′(Γ), ∀φ ∈ A(Γ):

supp(T ) ⊂ Λ

φ = 0 on Λ

}
=⇒ 〈T , φ〉 = 0.

This is the classical formulation. Related notions have been developed,
for example when discussing spectral synthesis on manifolds or on
Banach algebras.
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The following notion appears in the works of Beurling on balayage, dating
as early as the 1940’s.

Definition

We say a closed subset Λ ⊂ Γ is an B-Set if: ∀ µ ∈ M(G), ∀f ∈ Cb(G):

supp(f̂ ) ⊂ Λ

µ̂ = 0 on Λ

}
=⇒ 〈f̂ , µ̂〉 = 0.

Theorem
(JJB, JMM) For every Λ ⊂ Γ, Λ is an S-set iff it is a B-set.
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The study of spectral synthesis is closely related to both the ideal
structure of A(Γ), and the theory of Fourier series for L∞ functions.

For Λ ⊂ Γ closed, we set

j(Λ) := {φ ∈ A(Γ) | supp(φ) ∩ Λ = ∅}.
k(Λ) := {φ ∈ A(Γ) | φ|Λ ≡ 0}.

j(Λ) is the smallest closed ideal containing all the elements of A(Γ)
vanishing on Λ, and k(Λ) is the largest such closed ideal.
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How to formulate a notion of Fourier series for F ∈ L∞(G)?

Definition
Let G be a locally compact abelian group with dual group Γ. For a
translation-invariant, weak-∗ closed subspace J ⊂ L∞(G), we define the
spectrum of J to be:

sp(J ) := {γ ∈ Γ | (γ, ·) ∈ J }.

Let Jsp be the weak-∗ closure of the span of spJ . We say the elements of J
are synthesizable if J = Jsp.
In particular, F ∈ L∞(G) is synthesizable if F ∈ J F

sp, where J F is generated by
the translates of F .

In short, F ∈ L∞(G) is synthesizable if it can be written as a weak-∗
convergent linear combination of characters in the spectrum of F . This
generalizes the notion of Fourier series.
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Theorem
TFAE for Λ ⊂ Γ closed:

1 Λ is an S-set.
2 j(Λ) = k(Λ).
3 Λ = sp(J ) for a unique translation-invariant subspace J ⊂ L∞(G).

The equivalence (1)⇔ (2) relates the spectral synthesis problem to the
ideal structure of A(Γ).

The equivalence (1)⇔ (3) relates the spectral synthesis problem to the
study of Fourier series for L∞ functions.
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Examples of S-sets include:
1 ∅; this is a direct consequence of Wiener’s Lemma for the inversion of

Fourier series.
2 The Cantor set in R (Herz).
3 S1 ⊂ R2 (Herz).
4 {γ} ⊂ Γ, for any Γ.
5 All closed Λ ⊂ Γ for Γ discrete.
6 Star-shaped sets in Rd .
7 Λ ⊂ Γ such that Λ + Λ ⊂ Λ and such that 0 ∈ Λ◦.

In 1948, L. Schwartz proved that S2 ⊂ R3, the unit sphere in three
dimensions, is not a set of spectral synthesis.

It was later shown by Malliavin that every non-discrete Γ contains a
closed set which is not of spectral synthesis.
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Open Question: Is the union of two sets of spectral synthesis itself of
spectral synthesis?

For certain related but weaker notions of spectral synthesis, this has
been shown.

There is active work on spectral synthesis in the context of algebraic
groups (Szèkelyhidi), operator algebras (Ludwig, Turowska et al.) and
manifolds in Rd . We shall focus on this last subject for the remainder of
the talk.
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Schwartz’s example of a set that is not of spectral synthesis is a manifold
in R3.

What role does differential geometry play in whether or not a manifold will
be of spectral synthesis? A big one, as it turns out.

In the context of studying the spectral synthesis properties of manifolds in
Euclidean space, it is interesting to study a slightly weaker notion of
spectral synthesis, which we shall call weak spectral synthesis.
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Definition

A closed set Λ ⊂ Rd is a set of weak spectral synthesis if for every f ∈ A(Rd )
vanishing on Λ, there exists a sequence {φn}∞n=1 ⊂ S(Rd ) of Schwartz
functions vanishing on Λ that converges to f in the A(Rd ) norm.

Why call this “spectral synthesis?”

Theorem
(JJB, JMM)
Λ ⊂ R is an S-set if and only if for every f ∈ A(R) vanishing on Λ, there exists
a sequence {φn}∞n=1 ⊂ S(R) of Schwartz functions vanishing on a
neighborhood of Λ that converges to f in the A(R) norm.
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With this slightly weaker formulation of spectral synthesis, things get very
interesting. It has been shown by Varopoulos that Sd−1 ⊂ Rd is a set of
weak spectral synthesis for all d ≥ 1.

There are generalizations of Malliavin’s theorem, showing the existence
of subsets of Rd that are not of weak spectral synthesis, for all d ≥ 1.
These sets lack obvious structure and regularity, and are not manifolds.

It is thus natural to ask: is every smooth manifold in Rd a set of weak
spectral synthesis?
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No. Domar made substantial contributions to understanding what
conditions on a manifold ensure it is a set of weak spectral synthesis.
Let us first examine the case of curves, which is some sense the simplest
class of manifolds. The notion of curvature plays a crucial role here:

Definition

For a C2 plane curve γ = (γ1, γ2) : [a,b]→ R2, the planar curvature at
s ∈ [a,b] is given by the formula

κ(s) :=
γ

′

1(s)γ
′′

2 (s)− γ′′

1 (s)γ
′

2(s)

((γ
′
1(s))2 + (γ

′
2(s))2)

3
2
.

Theorem

(Domar) Suppose Λ ⊂ R2 is the graph of a simple C2 curve that is of
non-vanishing planar curvature everywhere. Then Λ is a set of weak spectral
synthesis.
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Let us first examine the case of curves, which is some sense the simplest
class of manifolds. The notion of curvature plays a crucial role here:

Definition

For a C2 plane curve γ = (γ1, γ2) : [a,b]→ R2, the planar curvature at
s ∈ [a,b] is given by the formula

κ(s) :=
γ

′

1(s)γ
′′

2 (s)− γ′′

1 (s)γ
′

2(s)

((γ
′
1(s))2 + (γ

′
2(s))2)

3
2
.

Theorem

(Domar) Suppose Λ ⊂ R2 is the graph of a simple C2 curve that is of
non-vanishing planar curvature everywhere. Then Λ is a set of weak spectral
synthesis.

() 13 / 18



The notion of planar curvature only makes sense in R2. For Rd ,d ≥ 3,
the notion of torsion generalizes this notion.

Definition

For a C3 curve γ = (γ1, γ2, γ3) : [a,b]→ R3, the torsion at s ∈ [a,b] is τ(s),
given by the formula

τ :=
γ

(3)
1 (γ′2γ

′′
3 − γ′′2 γ′3)− γ(3)

2 (γ′′1 γ
′
3 − γ′′1 γ′′3 ) + γ

(3)
3 (γ′1γ

′′
2 − γ′′1 γ′2)

(γ′2γ
′′
3 − γ′′2 γ′3)2 + (γ′′1 γ

′
3 − γ′1γ′′3 )2 + (γ′1γ

′′
2 − γ′′1 γ′2)2 .

Using a substantially modified technique, Domar also proved the
following:

Theorem

(Domar) Suppose Λ ⊂ R3 is the graph of a simple C3 curve with non-vanishing
torsion. Then Λ is of weak spectral synthesis.
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It is worth noting that the geometric condition on the curvature is
necessary:

Theorem

(Domar) There exists a C∞ planar curve whose graph Λ ⊂ R2 is not of
spectral synthesis.
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For curves in Rd ,d = 2,3, the properties of its derivative matrix gave
sufficient conditions for weak spectral synthesis. In the case of
hypersurfaces, an additional notion is required.

Definition

A closed set Λ ⊂ Rd is said to have the restricted cone property at a point
x0 ∈ Rd if there exists a neighborhood U0 of x0 and a cone K defined by:

K :=

{
x ∈ Rd

∣∣∣∣ (1− δ)‖x‖ ≤ 〈x , z〉 ≤ δ
}
,

where 0 < δ < 1, z ∈ Sd−1, such that:

x − K ⊂ Λ,

for every x ∈ Λ ∩ U0.
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Intuitively, a closed set Λ has the restricted cone property if for every point
in x0 ∈ Λ, we can put a cone that is either long and thin or short and wide,
with vertex at x0, entirely into the set Λ.

Theorem

(Domar) Assume d ≥ 2 and that M is a (d − 1)-dimensional C∞ manifold
without multiple points and with non-vanishing Gaussian curvature. Suppose
Λ ⊂ M is compact. If Λ has the restricted cone property, then it is a set of
weak spectral synthesis.

This result was strengthened by Müller to prove more subtle spectral
synthetic results for hypersurfaces. His technique also relies on the
restricted cone property.
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Thank you for your time!
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