Fourier Analysis on Graphs

Matthew Begué

Norbert Wiener Center Department of Mathematics University of Maryland, College Park

Sources

Primary Sources

- [2] David I Shuman, Benjamin Ricaud, and Pierre Vandergheynst, *Vertex-frequency analysis on graphs*, preprint, (2013).
- [3] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval *Wavelets on graphs via spectral graph theory*, Applied and Computational Harmonic Analysis **30** (2011) no. 2, 129-150.

Secondary Sources

[1] Fan RK Chung, *Spectral Graph Theory*, vol. 92, American Mathematical Soc., 1997.

Why study graphs?

- Graph theory has developed into a useful tool in applied mathematics.
- Vertices correspond to different sensors, observations, or data points. Edges represent connections, similarities, or correlations among those points.

2 Graph Fourier Transform and other Time-Frequency Operations

Windowed Graph Fourier Frames

Graph Preliminaries

- Denote a graph by G = G(V, E).
- Vertex set $V = \{x_i\}_{i=1}^N$. $|V| = N < \infty$.
- Edge set, E:

$$E = \{(x, y) : x, y \in V \text{ and } x \sim y\}.$$

- We only consider *undirected graphs* in which the edge set, *E*, is symmetric, that is *x* ∼ *y* ⇒ *y* ∼ *x*.
- We consider a function on a graph G(V, E) to be defined on the vertex set, V. That is, we consider functions f : V → C

- The *degree of x*, denoted *d_x*, to be the number of edges connected to point *x*.
- A graph is *connected* if for any $x, y \in V$ There exists a sequence $\{x_j\}_{j=1}^{K} \subseteq V$ such that $x = x_0$ and $y = x_K$ and $(x_j, x_{j+1}) \in E$ for j = 0, ..., K 1.

Laplace's operator

 In ℝ, Laplace's operator is simply the second derivative: We can express this with the second difference formula

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}.$$

 Suppose we discretize the real line by it's dyadic points, i.e., x = k/2ⁿ for k ∈ Z, n ∈ N.
 Each vertex has an edge connecting it to its two closest neighbors.

$$f''(x) = \lim_{n \to \infty} \frac{f(x + \frac{1}{2^n}) - 2f(x) + f(x - \frac{1}{2^n})}{(\frac{1}{2^n})^2}.$$

This is the sum of all the differences of f(x) with f evaluated at all it's neighbors (and then properly renormalized).

Laplace's operator

 In ℝ, Laplace's operator is simply the second derivative: We can express this with the second difference formula

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}.$$

 Suppose we discretize the real line by it's dyadic points, i.e., x = k/2ⁿ for k ∈ Z, n ∈ N.
 Each vertex has an edge connecting it to its two closest neighbors.

$$f''(x) = \lim_{n \to \infty} \frac{f(x + \frac{1}{2^n}) - 2f(x) + f(x - \frac{1}{2^n})}{(\frac{1}{2^n})^2}.$$

This is the sum of all the differences of f(x) with f evaluated at all it's neighbors (and then properly renormalized).

Graph Laplacian

Definition

The pointwise formulation for the Laplacian acting on a function $f: V \to \mathbb{R}$ is

$$\Delta f(x) = \sum_{y \sim x} f(x) - f(y).$$

 For a finite graph, the Laplacian can be represented as a matrix. Let *D* denote the *N* × *N* degree matrix, *D* = diag(*d_x*). Let *A* denote the *N* × *N* adjacency matrix,

$$\mathsf{A}(i,j) = \left\{egin{array}{cc} 1, & ext{if } x_i \sim x_j \ 0, & ext{otherwise.} \end{array}
ight.$$

Then the unweighted graph Laplacian can be written as

$$L = D - A$$
.

Equivalently,

$$L(i,j) = \begin{cases} d_{x_i} & \text{if } i = j \\ -1 & \text{if } x_i \sim x_j \\ 0 & \text{otherwise.} \end{cases}$$

$$L = D - A$$

- Matrix *L* is called the unweighted Laplacian to distinguish it from the renormalized Laplacian, $\mathcal{L} = D^{-1/2}LD^{1/2}$, used in some of the literature on graphs.
- *L* is a symmetric matrix since both *D* and *A* are symmetric.

Spectrum of the Laplacian

- *L* is a real symmetric matrix and therefore has nonnegative eigenvalues $\{\lambda_k\}_{k=0}^{N-1}$ with associated orthonormal eigenvectors $\{\varphi_k\}_{k=0}^{N-1}$.
- If G is finite and connected, then we have

$$\mathbf{0} = \lambda_{\mathbf{0}} < \lambda_{\mathbf{1}} \leq \lambda_{\mathbf{2}} \leq \cdots \leq \lambda_{N-1}.$$

- The spectrum of the Laplacian, $\sigma(L)$, is fixed but one's choice of eigenvectors $\{\varphi_k\}_{k=0}^{N-1}$ can vary. Throughout the paper, we assume that the choice of eigenvectors are fixed.
- Since *L* is Hermetian $(L = L^*)$, then we can choose the eigenbasis $\{\varphi_k\}_{k=0}^{N-1}$ to be entirely real-valued.
- Let Φ denote the N × N matrix where the kth column is precisely the vector φ_k.
- Easy to show that $\varphi_0 \equiv 1/\sqrt{N}$.

Data Sets - Minnesota Road Network

Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues. Minnesota road graph (2642 vertices)

Data Sets - Sierpinski gasket graph approximation

Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues. Level-8 graph approximation to Sierpinski gasket (9843 vertices)

Data Sets - Sierpinski gasket graph approximation

0.015 0.015 0.015 0.01 0.01 0.005 0.005 0.005 -0.005 -0.01 -0.01 -0.015 -0.015 (d) λ_6 (e) λ₇ (f) λ_8

Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues. Level-8 graph approximation to Sierpinski gasket (9843 vertices)

2 Graph Fourier Transform and other Time-Frequency Operations

3 Windowed Graph Fourier Frames

• In the classical setting, the Fourier transform on \mathbb{R} is given by

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i \xi t} dt = \langle f, e^{2\pi i \xi t} \rangle.$$

This is precisely the expansion of f in terms of the eigenvalues of the eigenfunctions of the Laplace operator.

Analogously, we define the graph Fourier transform of a function,
 f : *V* → ℝ, as the expansion of *f* in terms of the eigenfunctions of the graph Laplacian.

Graph Fourier Transform

Definition

The graph Fourier transform is defined as

$$\hat{f}(\lambda_l) = \langle f, \varphi_l \rangle = \sum_{n=1}^N f(n) \varphi_l^*(n).$$

Notice that the graph Fourier transform is only defined on values of $\sigma(L)$.

The inverse Fourier transform is then given by

$$f(n) = \sum_{l=0}^{N-1} \hat{f}(\lambda_l) \varphi_l(n)$$

If we think of f and \hat{f} as $N \times 1$ vectors, we then these definitions become

$$\hat{f} = \Phi^* f, \quad f = \Phi \hat{f}.$$

Parseval's Identity

With this definition one can show that Parseval's identity holds. That is for any $f, g: V \to \mathbb{R}$ we have

$$\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle.$$

Proof.

This can be seen easily using the matrix notation since Φ is an orthonormal matrix. That is,

$$\langle \hat{f}, \hat{g}
angle = \hat{f}^* \hat{g} = (\Phi^* f)^* \Phi^* g = f^* \Phi \Phi^* g = f^* g = \langle f, g
angle.$$

This immediately gives us Plancherel's identity:

$$\|f\|_{\ell^2}^2 = \sum_{n=1}^N |f(n)|^2 = \sum_{l=0}^{N-1} |\hat{f}(\lambda_l)|^2 = \left\|\hat{f}\right\|_{\ell^2}^2$$

Graph Modulation

• In Euclidean setting, modulation is multiplication of a Laplacian eigenfunction.

Definition

For any k = 0, 1, ..., N - 1 the graph modulation operator M_k , is defined as

 $(M_k f)(n) = \sqrt{N} f(n) \varphi_k(n).$

- Notice that since $\varphi_0 \equiv \frac{1}{\sqrt{N}}$ then M_0 is the identity operator.
- On ℝ, modulation in the time domain = translation in the frequency domain,

$$\widehat{M_{\xi}}f(\omega)=\widehat{f}(\omega-\xi).$$

The graph modulation does *not* exhibit this property due to the discrete nature of the spectral domain.

$$\begin{array}{l} G = \mathsf{SG}_6 \\ \hat{f}(\lambda_l) = \delta_2(l) \implies f = \varphi_2. \end{array}$$

$$G = \text{Minnesota}$$
$$\hat{f}(\lambda_l) = \delta_2(l) \implies f = \varphi_2.$$

Graph Convolution - Motivation and Definition

• Classically, for signals $f, g \in L^2(\mathbb{R})$ we define the convolution as

$$f * g(t) = \int_{\mathbb{R}} f(u)g(t-u) \, du.$$

 However, there is no clear analogue of translation in the graph setting. So we exploit the property

$$(\widehat{f*g})(\xi) = \widehat{f}(\xi)\widehat{g}(\xi),$$

and then take inverse Fourier transform.

Definition

For $f, g: V \to \mathbb{R}$, we define the *graph convolution* of *f* and *g* as

$$f * g(n) = \sum_{l=0}^{N-1} \hat{f}(\lambda_l) \hat{g}(\lambda_l) \varphi_l(n).$$

Center

22. 22. 4 2. 23

Properties of graph convolution

$$f * g(n) = \sum_{l=0}^{N-1} \hat{f}(\lambda_l) \hat{g}(\lambda_l) \varphi_l(n).$$

Proposition

For $\alpha \in \mathbb{R}$, and $f, g, h : V \to \mathbb{R}$ then the graph convolution defined above satisfies the following properties:

$$f * g = \hat{f} \hat{g}.$$

$$a(f * g) = (\alpha f) * g = f * (\alpha g).$$

- Sommutativity: f * g = g * f.
- Distributivity: f * (g + h) = f * g + f * h.
- Solution f * g * h = f * (g * h).

Example

Consider the function $g_0: V \to \mathbb{R}$ by setting $\hat{g}_0(\lambda_l) = 1$ for all l = 0, ..., N - 1. Then,

$$g_0(n)=\sum_{l=0}^{N-1}\varphi_l(n).$$

Then for any signal $f: V \to \mathbb{R}$

$$f(n) = \sum_{l=0}^{N-1} \hat{f}(\lambda_l)\varphi_l(n) = \sum_{l=0}^{N-1} \hat{f}(\lambda_l)\hat{g}_0(\lambda_l)\varphi_l(n)$$

= $f * g_0(n).$

Graph Translation

- For signal $f \in L^2(\mathbb{R})$, the translation operator, T_u , can be thought of as a convolution with δ_u .
- On \mathbb{R} we can calculate $\hat{\delta}_u(k) = \int_{\mathbb{R}} \delta_u(x) e^{-2\pi i k x} dx = e^{2\pi i k u} (= \varphi_k(u)).$
- Then by taking the convolution on $\mathbb R$ we have

$$(T_u f)(t) = (f * \delta_u)(t) = \int_{\mathbb{R}} \hat{f}(k) \hat{\delta}_u(k) \varphi_k(t) \, dk = \int_{\mathbb{R}} \hat{f}(k) \varphi_k^*(u) \varphi_k(t) \, dk$$

Definition

For any $f: V \to \mathbb{R}$ the graph translation operator, T_i , is defined to be

$$(T_i f)(n) = \sqrt{N}(f * \delta_i)(n) = \sqrt{N} \sum_{l=0}^{N-1} \hat{f}(\lambda_l) \varphi_l^*(i) \varphi_l(n).$$

The Harmonic Analysis and Applications

G = Minnesota $f = \mathbb{1}_1$

G = Minnesota $\hat{f}(\lambda_l) = e^{-5\lambda_l}$

$$G = SG_6$$

 $\hat{f}(\lambda_l) = e^{-5\lambda_l}$

G = Minnesota $\hat{f} \equiv 1$

The generalized graph translation possesses many of the nice properties of our usual notion of translation in Euclidean space.

Proposition

For any $f, g: V \to \mathbb{R}$ and $i, j \in \{1, 2, ..., N\}$ then • $T_i(f * g) = (T_i f) * g = f * (T_i g).$ • $T_i T_j f = T_j T_i f.$

Corollary

Given a graph, G, with real valued eigenvectors. For any $i, n \in \{1, ..., N\}$ and for any function $f : V \to \mathbb{R}$ we have

 $T_if(n)=T_nf(i).$

Corollary

Given a graph, G, with real valued eigenvectors. Let α be a multiindex, i.e. $\alpha = (\alpha_1, \alpha_2, ..., \alpha_K)$ where $\alpha_j \in \{1, ..., N\}$ for $1 \le j \le K$ and let $\alpha_0 \in \{1, ..., N\}$. We let T_{α} denote the composition $T_{\alpha_1} \circ T_{\alpha_2} \circ \cdots \circ T_{\alpha_K}$. Then for any $f : V \to \mathbb{R}$, we have

$$T_{\alpha}f(\alpha_{0})=T_{\beta}f(\beta_{0}),$$

where $\beta = (\beta_1, ..., \beta_K)$ and $(\beta_0, \beta_1, \beta_2, ..., \beta_K)$ is any permutation of $(\alpha_0, \alpha_1, ..., \alpha_K)$.

- In general, the set of translation operators {*T_i*}^N_{i=1} do not form a group like in the classical Euclidean setting.
- $T_i T_j \neq T_{i+j}$.
- If Φ is the DFT matrix, then $T_i T_j = T_{i+j \pmod{N}}$.
- In general, Can we even hope for T_iT_j = T_{i●j} for some semigroup operation, ●: {1, ..., N} × {1, ..., N} → {1, ..., N}?

- In general, the set of translation operators {*T_i*}^N_{i=1} do not form a group like in the classical Euclidean setting.
- $T_i T_j \neq T_{i+j}$.
- If Φ is the DFT matrix, then $T_i T_j = T_{i+j \pmod{N}}$.
- In general, Can we even hope for $T_i T_j = T_{i \bullet j}$ for some semigroup operation, : $\{1, ..., N\} \times \{1, ..., N\} \rightarrow \{1, ..., N\}$?

Theorem (B. & O.)

Given a graph, G, with eigenvector matrix $\Phi = [\varphi_0| \cdots |\varphi_{N-1}]$. Graph translation on G is a semigroup, i.e. $T_i T_j = T_{i \bullet j}$ for some semigroup operator $\bullet : \{1, ..., N\} \times \{1, ..., N\} \rightarrow \{1, ..., N\}$, only if $\Phi = (1/\sqrt{N})H$, where H is a Hadamard matrix.

• H is a Hadamard matrix only if *N* = 1, 2, or 4*k*. Sufficiency is open conjecture.

Theorem (Barik, Fallat, Kirkland)

If G has a normalized Hadamard eigenvector matrix, $\Phi = (1/\sqrt{N})H$, then G must be k-regular and all eigenvalues must be even integers.

- The translation operator is not isometric.
- $\bullet \|T_if\|_{\ell^2} \neq \|f\|$
- We do have the following estimates on the operator *T_i*:

$$|\hat{f}(0)| \le \|T_i f\|_{\ell^2} \le \sqrt{N} \max_{l \in \{0,1,\dots,N-1\}} \|\varphi_l\|_{\infty} \|f\|_{\ell^2}$$

 Additionally T_i is need not be injective, and therefore not invertible.

2 Graph Fourier Transform and other Time-Frequency Operations

• Given a window function $g: V \to \mathbb{R}$, we define a windowed graph Fourier atom by

$$g_{i,k}(n) := (M_k T_i g)(n) = N\varphi_k(n) \sum_{l=0}^{N-1} \hat{g}(\lambda_l) \varphi_l^*(i) \varphi_l(n).$$

The windowed graph Fourier transform of function f : V → ℝ is defined by

$$Sf(i,k) := \langle f, g_{i,k} \rangle.$$

Windowed Graph Fourier Frames

Theorem

If $\hat{g}(0) \neq 0$, then $\{g_{i,k}\}_{i=1,2,...,N;k=0,1,...,N-1}$ is a frame. That is for all $f: V \to \mathbb{R}$, $A \|f\|_{\ell^2}^2 \leq \sum_{i=1}^N \sum_{k=0}^{N-1} |\langle f, g_{i,k} \rangle|^2 \leq B \|f\|_{\ell^2}^2$

where

$$A := \min_{n=1,2,\ldots,N} \{ N \| T_n g \|_{\ell^2}^2 \}, \quad B := \max_{n=1,2,\ldots,N} \{ N \| T_n g \|_{\ell^2}^2 \}$$

And we have the estimate:

$$0 < N|\hat{g}(0)|^2 \le A \le B \le N^2 \max_{l=0,1,...,N-2} \|\varphi_l\|_{\infty}^2 \|g\|_{\ell^2}^2$$

Theorem

Provided the window, g, has non-zero mean, i.e. $\hat{g}(0) \neq 0$, then for any $f: V \to \mathbb{R}$,

$$f(n) = \frac{1}{N \|T_n g\|_{\ell^2}^2} \sum_{i=1}^N \sum_{k=0}^{N-1} Sf(i,k)g_{i,k}(n).$$

Proof requires basic algebraic manipulations and results given on the graph translation operators.

Other ways to represent/approximate functions

- Polynomials on graphs
 - Polynomial is defined to be a function, f, for which $\Delta^n f = 0$ for finite n.
 - Trivial for finite graphs. Not trivial for some infinite graphs.
- Sampling
 - Also trivial for finite graphs
- Band limiting functions

Further questions/topics

What is the boundary of a graph?

- If a graph boundary, ∂V ⊆ V, is defined, this allows us to compute Dirichlet eigenvalues.
 - The Laplacian as we've defined it here corresponds to functions on graphs with Neumann boundary conditions.
- One good definition of boundary vertices are those vertices that user has special control over
 - Connections with Schrödinger Eigenmaps
- Other ways to "extract" a boundary
 - Largest radius via shortest path metric or effective resistance metric.
 - Some techniques work well on certain graphs, poorly on others.

Thank you!

- Fan RK Chung, *Spectral Graph Theory*, vol. 92, American Mathematical Soc., 1997.
- Pierre Vandergheynst David I Shuman, Benjamin Ricaud, Vertex-frequency analysis on graphs, preprint (2013).
- David K Hammond, Pierre Vandergheynst, and Rémi Gribonval, Wavelets on graphs via spectral graph theory, Applied and Computational Harmonic Analysis 30 (2011), no. 2, 129–150.

