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Why study graphs?

Graph theory has developed into a useful tool in applied
mathematics.
Vertices correspond to different sensors, observations, or data
points. Edges represent connections, similarities, or correlations
among those points.
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Graph Preliminaries

Denote a graph by G = G(V ,E).
Vertex set V = {xi}N

i=1. |V | = N <∞.
Edge set, E :

E = {(x , y) : x , y ∈ V and x ∼ y}.

We only consider undirected graphs in which the edge set, E , is
symmetric, that is x ∼ y =⇒ y ∼ x .
We consider a function on a graph G(V ,E) to be defined on the
vertex set, V . That is, we consider functions f : V → C



Graph Preliminaries, cont.

The degree of x , denoted dx , to be the number of edges
connected to point x .
A graph is connected if for any x , y ∈ V There exists a sequence
{xj}K

j=1 ⊆ V such that x = x0 and y = xK and (xj , xj+1) ∈ E for
j = 0, ...,K − 1.



Laplace’s operator

In R, Laplace’s operator is simply the second derivative:
We can express this with the second difference formula

f ′′(x) = lim
h→0

f (x + h)− 2f (x) + f (x − h)

h2 .

Suppose we discretize the real line by it’s dyadic points, i.e.,
x = k/2n for k ∈ Z, n ∈ N.
Each vertex has an edge connecting it to its two closest
neighbors.

f ′′(x) = lim
n→∞

f (x + 1
2n )− 2f (x) + f (x − 1

2n )

( 1
2n )2

.

This is the sum of all the differences of f (x) with f evaluated at all
it’s neighbors (and then properly renormalized).
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Graph Laplacian

Definition
The pointwise formulation for the Laplacian acting on a function
f : V → R is

∆f (x) =
∑
y∼x

f (x)− f (y).

For a finite graph, the Laplacian can be represented as a matrix.
Let D denote the N × N degree matrix, D = diag(dx ).
Let A denote the N × N adjacency matrix,

A(i , j) =

{
1, if xi ∼ xj
0, otherwise.

Then the unweighted graph Laplacian can be written as

L = D − A.

Equivalently,

L(i , j) =

 dxi if i = j
−1 if xi ∼ xj
0 otherwise.



Graph Laplacian

L = D − A

Matrix L is called the unweighted Laplacian to distinguish it from
the renormalized Laplacian, L = D−1/2LD1/2, used in some of
the literature on graphs.
L is a symmetric matrix since both D and A are symmetric.



Spectrum of the Laplacian

L is a real symmetric matrix and therefore has nonnegative
eigenvalues {λk}N−1

k=0 with associated orthonormal eigenvectors
{ϕk}N−1

k=0 .
If G is finite and connected, then we have

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1.

The spectrum of the Laplacian, σ(L), is fixed but one’s choice of
eigenvectors {ϕk}N−1

k=0 can vary. Throughout the paper, we
assume that the choice of eigenvectors are fixed.
Since L is Hermetian (L = L∗), then we can choose the
eigenbasis {ϕk}N−1

k=0 to be entirely real-valued.
Let Φ denote the N × N matrix where the k th column is precisely
the vector ϕk .
Easy to show that ϕ0 ≡ 1/

√
N.



Data Sets - Minnesota Road Network

−98 −97 −96 −95 −94 −93 −92 −91 −90 −89
43

44

45

46

47

48

49

50

(a) λ3

−98 −97 −96 −95 −94 −93 −92 −91 −90 −89
43

44

45

46

47

48

49

50

(b) λ4

−98 −97 −96 −95 −94 −93 −92 −91 −90 −89
43

44

45

46

47

48

49

50

(c) λ5

−98 −97 −96 −95 −94 −93 −92 −91 −90 −89
43

44

45

46

47

48

49

50

(d) λ6

−98 −97 −96 −95 −94 −93 −92 −91 −90 −89
43

44

45

46

47

48

49

50

(e) λ7

−98 −97 −96 −95 −94 −93 −92 −91 −90 −89
43

44

45

46

47

48

49

50

(f) λ8

Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues.
Minnesota road graph (2642 vertices)



Data Sets - Sierpinski gasket graph approximation
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Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues.
Level-8 graph approximation to Sierpinski gasket (9843 vertices)



Data Sets - Sierpinski gasket graph approximation
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Figure : Eigenfunctions corresponding to the first six nonzero eigenvalues.
Level-8 graph approximation to Sierpinski gasket (9843 vertices)
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Motivation

In the classical setting, the Fourier transform on R is given by

f̂ (ξ) =

∫
R

f (t)e−2πiξt dt = 〈f ,e2πiξt〉.

This is precisely the expansion of f in terms of the eigenvalues of
the eigenfunctions of the Laplace operator.
Analogously, we define the graph Fourier transform of a function,
f : V → R, as the expansion of f in terms of the eigenfunctions of
the graph Laplacian.



Graph Fourier Transform

Definition
The graph Fourier transform is defined as

f̂ (λl ) = 〈f , ϕl〉 =
N∑

n=1

f (n)ϕ∗l (n).

Notice that the graph Fourier transform is only defined on values of
σ(L).
The inverse Fourier transform is then given by

f (n) =
N−1∑
l=0

f̂ (λl )ϕl (n).

If we think of f and f̂ as N × 1 vectors, we then these definitions
become

f̂ = Φ∗f , f = Φf̂ .



Parseval’s Identity

With this definition one can show that Parseval’s identity holds. That
is for any f ,g : V → R we have

〈f ,g〉 = 〈f̂ , ĝ〉.

Proof.
This can be seen easily using the matrix notation since Φ is an
orthonormal matrix. That is,

〈f̂ , ĝ〉 = f̂ ∗ĝ = (Φ∗f )∗Φ∗g = f ∗ΦΦ∗g = f ∗g = 〈f ,g〉.

This immediately gives us Plancherel’s identity:

‖f‖2
`2 =

N∑
n=1

|f (n)|2 =
N−1∑
l=0

|̂f (λl )|2 =
∥∥∥f̂
∥∥∥2

`2
.



Graph Modulation

In Euclidean setting, modulation is multiplication of a Laplacian
eigenfunction.

Definition
For any k = 0,1, ...,N − 1 the graph modulation operator Mk , is
defined as

(Mk f )(n) =
√

Nf (n)ϕk (n).

Notice that since ϕ0 ≡ 1√
N

then M0 is the identity operator.

On R, modulation in the time domain = translation in the
frequency domain,

M̂ξf (ω) = f̂ (ω − ξ).

The graph modulation does not exhibit this property due to the
discrete nature of the spectral domain.



Example - Movie

G =SG6
f̂ (λl ) = δ2(l) =⇒ f = ϕ2.
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Example - Movie

G =Minnesota
f̂ (λl ) = δ2(l) =⇒ f = ϕ2.
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Graph Convolution - Motivation and Definition

Classically, for signals f ,g ∈ L2(R) we define the convolution as

f ∗ g(t) =

∫
R

f (u)g(t − u) du.

However, there is no clear analogue of translation in the graph
setting. So we exploit the property

( ̂f ∗ g)(ξ) = f̂ (ξ)ĝ(ξ),

and then take inverse Fourier transform.

Definition
For f ,g : V → R, we define the graph convolution of f and g as

f ∗ g(n) =
N−1∑
l=0

f̂ (λl )ĝ(λl )ϕl (n).



Properties of graph convolution

f ∗ g(n) =
N−1∑
l=0

f̂ (λl )ĝ(λl )ϕl (n).

Proposition

For α ∈ R, and f ,g,h : V → R then the graph convolution defined
above satisfies the following properties:

1 ̂f ∗ g = f̂ ĝ.
2 α(f ∗ g) = (αf ) ∗ g = f ∗ (αg).
3 Commutativity: f ∗ g = g ∗ f .
4 Distributivity: f ∗ (g + h) = f ∗ g + f ∗ h.
5 Associativity: (f ∗ g) ∗ h = f ∗ (g ∗ h).



Example
Consider the function g0 : V → R by setting ĝ0(λl ) = 1 for all
l = 0, ...,N − 1. Then,

g0(n) =
N−1∑
l=0

ϕl (n).

Then for any signal f : V → R

f (n) =
N−1∑
l=0

f̂ (λl )ϕl (n) =
N−1∑
l=0

f̂ (λl )ĝ0(λl )ϕl (n)

= f ∗ g0(n).
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Graph Translation

For signal f ∈ L2(R), the translation operator, Tu, can be thought
of as a convolution with δu.
On R we can calculate
δ̂u(k) =

∫
R δu(x)e−2πikx dx = e2πiku(= ϕk (u)).

Then by taking the convolution on R we have

(Tuf )(t) = (f∗δu)(t) =

∫
R

f̂ (k)δ̂u(k)ϕk (t) dk =

∫
R

f̂ (k)ϕ∗k (u)ϕk (t) dk

Definition
For any f : V → R the graph translation operator, Ti , is defined to be

(Ti f )(n) =
√

N(f ∗ δi )(n) =
√

N
N−1∑
l=0

f̂ (λl )ϕ
∗
l (i)ϕl (n).



Example - Movie

G =Minnesota
f = 11
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Example - Movie

G =Minnesota
f̂ (λl ) = e−5λl
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Example - Movie

G =SG6
f̂ (λl ) = e−5λl
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Example - Movie

G =Minnesota
f̂ ≡ 1
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Properties of Translation operator

The generalized graph translation possesses many of the nice
properties of our usual notion of translation in Euclidean space.

Proposition

For any f ,g : V → R and i , j ∈ {1,2, ...,N} then
1 Ti (f ∗ g) = (Ti f ) ∗ g = f ∗ (Tig).
2 TiTj f = TjTi f .



Properties of Translation operator

Corollary

Given a graph, G, with real valued eigenvectors. For any
i ,n ∈ {1, ...,N} and for any function f : V → R we have

Ti f (n) = Tnf (i).

Corollary

Given a graph, G, with real valued eigenvectors. Let α be a
multiindex, i.e. α = (α1, α2, ..., αK ) where αj ∈ {1, ...,N} for 1 ≤ j ≤ K
and let α0 ∈ {1, ...,N}. We let Tα denote the composition
Tα1 ◦ Tα2 ◦ · · · ◦ TαK . Then for any f : V → R, we have

Tαf (α0) = Tβ f (β0),

where β = (β1, ..., βK ) and (β0, β1, β2, ..., βK ) is any permutation of
(α0, α1, ..., αK ).



Not-so-nice Properties of Translation operator

In general, the set of translation operators {Ti}N
i=1 do not form a

group like in the classical Euclidean setting.
TiTj 6= Ti+j .
If Φ is the DFT matrix, then TiTj = Ti+j (mod N).
In general, Can we even hope for TiTj = Ti•j for some semigroup
operation, • : {1, ...,N} × {1, ...,N} → {1, ...,N}?
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When is graph translation a semigroup operation?

Theorem (B. & O.)

Given a graph, G, with eigenvector matrix Φ = [ϕ0| · · · |ϕN−1]. Graph
translation on G is a semigroup, i.e. TiTj = Ti•j for some semigroup
operator • : {1, ...,N} × {1, ...,N} → {1, ...,N}, only if Φ = (1/

√
N)H,

where H is a Hadamard matrix.

H is a Hadamard matrix only if N = 1,2, or 4k . Sufficiency is
open conjecture.

Theorem (Barik, Fallat, Kirkland)

If G has a normalized Hadamard eigenvector matrix, Φ = (1/
√

N)H,
then G must be k-regular and all eigenvalues must be even integers.



Not-so-nice Properties of Translation operator

The translation operator is not isometric.
‖Ti f‖`2 6= ‖f‖
We do have the following estimates on the operator Ti :

|̂f (0)| ≤ ‖Ti f‖`2 ≤
√

N max
l∈{0,1,...,N−1}

‖ϕl‖∞ ‖f‖`2

Additionally Ti is need not be injective, and therefore not
invertible.
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Windowed Graph Fourier Transform

Given a window function g : V → R, we define a windowed graph
Fourier atom by

gi,k (n) := (Mk Tig)(n) = Nϕk (n)
N−1∑
l=0

ĝ(λl )ϕ
∗
l (i)ϕl (n).

The windowed graph Fourier transform of function f : V → R is
defined by

Sf (i , k) := 〈f ,gi,k 〉.



Windowed Graph Fourier Frames

Theorem

If ĝ(0) 6= 0, then {gi,k}i=1,2,...,N;k=0,1,...,N−1 is a frame. That is for all
f : V → R,

A ‖f‖2
`2 ≤

N∑
i=1

N−1∑
k=0

|〈f ,gi,k 〉|2 ≤ B ‖f‖2
`2

where

A := min
n=1,2,...,N

{N ‖Tng‖2
`2}, B := max

n=1,2,...,N
{N ‖Tng‖2

`2}

And we have the estimate:

0 < N|ĝ(0)|2 ≤ A ≤ B ≤ N2 max
l=0,1,...,N−2

‖ϕl‖2
∞ ‖g‖

2
`2 .



Reconstruction Formula

Theorem

Provided the window, g, has non-zero mean, i.e. ĝ(0) 6= 0, then for
any f : V → R,

f (n) =
1

N ‖Tng‖2
`2

N∑
i=1

N−1∑
k=0

Sf (i , k)gi,k (n).

Proof requires basic algebraic manipulations and results given on the
graph translation operators.



Further questions/topics

Other ways to represent/approximate functions
Polynomials on graphs

Polynomial is defined to be a function, f , for which ∆nf = 0 for finite
n.
Trivial for finite graphs. Not trivial for some infinite graphs.

Sampling
Also trivial for finite graphs

Band limiting functions



Further questions/topics

What is the boundary of a graph?
If a graph boundary, ∂V ⊆ V , is defined, this allows us to
compute Dirichlet eigenvalues.

The Laplacian as we’ve defined it here corresponds to functions on
graphs with Neumann boundary conditions.

One good definition of boundary vertices are those vertices that
user has special control over

Connections with Schrödinger Eigenmaps

Other ways to “extract” a boundary
Largest radius via shortest path metric or effective resistance
metric.
Some techniques work well on certain graphs, poorly on others.
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