
ABSTRACT

Title of dissertation: HARMONIC ANALYSIS INSPIRED
DATA FUSION FOR APPLICATIONS
IN REMOTE SENSING

Timothy J. Doster, Doctor of Philosophy, 2014

Dissertation directed by: Professor John J. Benedetto
Department of Mathematics

Professor Wojciech Czaja
Department of Mathematics

This thesis will address the fusion of multiple data sources arising in remote

sensing, such as hyperspectral and LIDAR. Fusing of multiple data sources provides

better data representation and classification results than any of the independent

data sources would alone. We begin our investigation with the well-studied Lapla-

cian Eigenmap (LE) algorithm. This algorithm offers a rich template to which fusion

concepts can be added. For each phase of the LE algorithm (graph, operator, and

feature space) we develop and test different data fusion techniques. We also investi-

gate how partially labeled data and approximate LE preimages can used to achieve

data fusion. Lastly, we study several numerical acceleration techniques that can be

used to augment the developed algorithms, namely the Nyström extension, Random

Projections, and Approximate Neighborhood constructions. The Nyström extension

is studied in detail and the application of Frame Theory and Σ∆ Quantization is

proposed to enrich the Nyström extension.

HARMONIC ANALYSIS INSPIRED DATA FUSION FOR
APPLICATIONS IN REMOTE SENSING

by

Timothy J. Doster

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2014

Advisory Committee:
Professor John J. Benedetto, Chair
Professor Wojciech Czaja, Co-Chair
Professor Radu V. Balan
Professor Ramani Duraiswami
Professor Kasso A. Okoudjou

c© Copyright by
Timothy J. Doster

2014

Dedication

To my loving and brilliant wife Karen. You saw me through this thesis as well

as graduate school, without your support I don’t think I would have made it.

ii

Acknowledgments

First, I would to thank my advisors John and Wojtek, without your guidance

over the past five years I would not be at this position today. I had not even

considered Harmonic Analysis or the Norbert Wiener Center until I received an

email from you during my first year at Maryland proposing an independent study.

Since that day you have both been actively interested in my education, research,

well being, and personal life.

Wojtek, thank you for starting out every meeting by asking how I was doing.

It was wonderful to see that you not only cared about my mathematical output but

that my life was in a good place. Thank you for providing me funding for much of

my time here at Maryland, it was not only a relief to avoid teaching but a pleasure

to get to study so many interesting problems. Lastly, thanks for your encouraging

words as I hit wall after wall writing my thesis; I think it went something like this,

“If you don’t finish, they won’t hire you, and they will never hire you, so you must

finish, go finish now.”

John, thank you for always checking in on me in the lab in the morning (or

were you just looking for the coffee?). I learned so much in your classes, from

abstract harmonic analysis to the finer points of billiards, that I will leave Maryland

with not only deep understanding of my thesis problem but a broad understanding

of the greater subject.

I would also like to acknowledge my other committee members Kasso, Radu,

and Ramani. I had the privilege to have a class taught by each of you and then was

iii

lucky enough to coordinate it so you could all be on my committee. Thank you for

reviewing my thesis, and for all you taught me in the classroom.

Aside from the many wonderful classes taught by my committee members, I

would like to acknowledge the formative instruction I received in scientific computing

from Professors O’Leary and Elman, pattern recognition from Professor Chellappa,

and in applied harmonic analysis from Professor Easley.

I don’t think I, or anyone else in the AMSC program at Maryland, can fully

thank Alverda for guiding us toward graduation. Seeing her search the building for

me before my defense to give me the very important paper work I needed to actually

graduate reminded me what great person she is.

Meeting not only Alverda, but Konstantina, the then director of the AMSC

program, sealed the deal for me coming to Maryland. Thank you Konstantina for

your kind words, and for always remembering your students.

I would have never succeeded at Maryland without excellent teachers and

advisors at my undergrad, RIT; thank you Professors Wiandt, Messinger, Basener,

Barth-Hart, and Ross.

I was fortunate enough to spend three excellent summers at Naval Research

Lab learning to transform theory to practice, thank you Al, Eric, and Brian for the

opportunity.

Collaboration is the heart of great research. I would like to acknowledge all of

my fellow students in the Norbert Wiener Center. Thank you for all the thoughts,

ideas, and help procrastinating: Alex, Kevin D., Kevin H., Matt B., Matt G., Chae,

Travis, Julia, Alfredo, Xuemei, Vinodh, Paul, Clare, Mark, Tom, Ben, Arial, Dan,

iv

Karamatou, and James. And to my fellow class of 2009, we might have never talked

about the wonders of harmonic analysis, but we still had a great time: Bryant,

Michelle, Victoria, Arijit, Brianna, and Tyler.

Finally I would like to thank my family, my mother and father, uncle, brother

and wife. You supported me through my studies, this is as much for you as it is for

me.

v

Table of Contents

List of Tables viii

List of Figures ix

List of Abbreviations and Notations xi

1 Introduction 1
1.1 Summary of Results . 2
1.2 Dissertation Organization . 4

2 Introduction to Remote Sensing 5
2.1 Hyperspectral Sensors and Imaging 8

2.1.1 Pavia University . 13
2.1.2 Pavia Centre . 15
2.1.3 Indian Pines . 17
2.1.4 Urban . 19

2.2 LIDAR . 19
2.2.1 University of Houston . 21
2.2.2 MUUFL Gulfport . 23

3 Introduction to Dimension Reduction 25
3.1 Principle Component Analysis (PCA) 27
3.2 Spectral Graph and Operator Theory 31

3.2.1 Unweighted Graphs . 31
3.2.2 Weighted Graphs . 35
3.2.3 Heat Kernel . 37
3.2.4 Laplace-Beltrami Operator . 38

3.3 Laplacian Eigenmaps (LE) . 38
3.3.1 Convergence Results for Laplacian Eigenmaps 41

3.4 Schrödinger Eigenmaps . 44
3.4.1 A Toy Example To Illustrate The Use Of Potentials 47
3.4.2 A Brief Discussion on Intrinsic Dimension, Heat Kernel Pa-

rameter, and k-Nearest Neighborhood Construction 49

4 The Preimage Problem 51
4.1 Kernel PCA Preimage . 51
4.2 Laplacian Eigenmap Preimage . 54

5 Numerical Acceleration Methods for Dimension Reduction 61
5.1 Random Projections . 63
5.2 Approximate Nearest Neighbors . 65

vi

6 Data Fusion 70
6.1 Spatial-Spectral Fusion . 72

6.1.1 Laplacian Eigenmap Analysis of Hyperspectral Data 73
6.1.2 Spatial Laplacian Eigenmap Analysis of Hyperspectral Data . 77
6.1.3 Feature Space Stacking . 79
6.1.4 Distance Modification . 81
6.1.5 Graph Based . 87
6.1.6 Operator Based . 89
6.1.7 Combining Graph and Operator Fusion 93

6.2 Fusing Hyperspectral and LIDAR Data 98
6.2.1 Minimum Path Gradient Distance Algorithm 99
6.2.2 Feature Space Rotation . 102
6.2.3 Image Classification . 104
6.2.4 Endmember Extraction . 105

6.3 HSI-HSI Fusion . 109
6.3.1 Partial Overlap . 110
6.3.2 Without Point Registration 115

6.4 A Priori Knowledge Fusion . 123
6.5 Extensions to Other Remote Sensing Problems and Future Work . . . 126

7 Nyström Method 129
7.1 Landmark Selection Methods and Error Bounds 135
7.2 Frames and the Σ∆ Quantization . 144

7.2.1 Frame Theory . 144
7.2.2 ∆Σ Quantization . 146
7.2.3 Frames and Σ∆ Quantization Applied to the Nyström Method 150

Bibliography 154

vii

List of Tables

2.1 Pavia University Ground Truth . 15
2.2 Pavia Centre Ground Truth . 17
2.3 Indian Pines Ground Truth . 18
2.4 University of Houston Ground Truth 23

4.1 Newton’s Method vs Constrained Quadratic Programming 57
4.2 Preimage Denoising SNR . 59

6.1 Spatial and Spectral Laplacian Eigenmaps Classification Results . . . 78
6.2 Stacked Feature Space Fusion Classification Results 80
6.3 Indian Pines Classification Results for 4-Connectivity Super Pixels . . 83
6.4 Indian Pines Classification Results for 8-Connectivity Super Pixels . . 84
6.5 Pavia University Classification Results for 4-Connectivity Super Pixels 85
6.6 Pavia University Classification Results for 8-Connectivity Super Pixels 85
6.7 Mixing Spectral Neighborhoods with Spatial Weights 88
6.8 Operator Fusion Classification Results 91
6.9 Fusion Metrics Classification Results 95
6.10 Summary of Classification Results for Houston Data Set 106
6.11 Classification and CM Results for Urban - Experiment #1 113
6.12 Classification and CM Results for Indian Pines - Experiment #1 . . . 114
6.13 Classification and CM Results for Urban - Experiment #2 114
6.14 Classification Results and CM for Indian Pines - Experiment #2 . . . 115
6.15 Data Fusion without Point Registration Classification Results 123

viii

List of Figures

2.1 Light Spectrum . 7
2.2 Sensor Collecting Data Diagram . 9
2.3 Hyperspectral Band Correlations . 11
2.4 Collection of Hyperspectral Bands . 12
2.5 False Color Rendering of Hyperspectral Images 12
2.6 Pavia University Image . 14
2.7 Pavia Centre Image . 16
2.8 Indian Pines Image . 18
2.9 Urban Image . 19
2.10 LIDAR Diagram . 21
2.11 University of Houston Image . 22
2.12 MUUFL Gulfport Image . 24

3.1 Dimension Reduction of the Helix . 28
3.2 SE Toy Problem . 48

4.1 MNIST Digits . 58

5.1 Effect of Random Projections on Classification Accuracy 64
5.2 Approximate kNN Algorithm Time Complexity vs. Overlap Size . . . 68

6.1 Several eigenimages from Pavia University scene. 75
6.2 Several eigenimages from Pavia Centre scene. 76
6.3 Several eigenimages from Indian Pines scene. 76
6.4 Class Maps for Spectral Laplacian Eigenmaps 77
6.5 Class Maps for Spatial Laplacian Eigenmaps Maps 79
6.6 Class Maps for Super Pixels on Indian Pines 84
6.7 Class Maps for Super Pixels on Pavia University 86
6.8 Class Maps for Spectral Neighborhood Construction with Spatial Kernel 89
6.9 Pavia University class maps using spectral neighborhood construction

and Fusion Operators kernel matrix construction. 92
6.10 Pavia Centre class maps using spectral neighborhood construction

and Fusion Operators kernel matrix construction. 92
6.11 Indian Pines class maps using spectral neighborhood construction and

Fusion Operators kernel matrix construction. 93
6.12 Pavia University class maps using fusion metric neighborhood con-

struction. 96
6.13 Pavia Centre class maps using fusion metric neighborhood construction. 97
6.14 Pavia University class maps using fusion metric neighborhood con-

struction. 98
6.15 Feature Space Rotation . 104
6.16 Class map obtained using Feature Space Fusion 105
6.17 Class map obtained using Graph Fusion 105

ix

6.18 Abundance Maps for MUUFL Gulfport 109
6.19 Feature Space Rotation Fusion for Partial Overlap Diagram 111
6.20 Fusion without Point Registration Diagram 119
6.21 Eigenimages for No Registration #1 120
6.22 Eigenimages for No Registration #2 120
6.23 Eigenvectors for Graph Matching . 120
6.24 Unrotated vs Rotated for Feature Space Rotation Fusion 122
6.25 Schrödinger Eigenmap Barrier Potential 124
6.26 Schrödinger Eigenmap Cluster Potentials Example 125

7.1 Helix Example: Known Distribution Landmark Choice 142
7.2 Helix Example: Uniform Random Landmark Choice 143
7.3 Helix Example: Bad Landmark Choice 143

x

List of Abbreviations and Notations

m meters
Hz Hertz
nm nanometers
HS Hyperspectral
MS Multispectral
HSI Hyperspectral Image
MSI Multispectral Image
IR Infra-red
UV Ultraviolet
E[·] Expected value
CX The covariance matrix for X
AT Transpose of matrix A
〈·, ·〉 Innerproduct
Z Integers
R Real numbers
1 A vector of all 1’s
H Hilbert Space
CD Functions with D continuous derivatives
M Manifold
DR Dimension Reduction
PCA Principle Component Analysis
KPCA Kernel Principle Component Analysis
LE Laplacian Eigenmaps
SE Shrödinger Eigenmaps
G = (V,E) A Graph G, Vertex set V , and edge set E
D Degrees Matrix
ω(·, ·) Weighting function
W Weights Matrix
L Graph Laplacian
L Normalized Graph Laplacian
ID The D ×D Identity matrix
IM×N The M ×N Identity Matrix
D A Dictionary
A An Alphabet
F Frame
F Frame Analysis Operator
S Frame Operator
MPGD Minimum Path Gradient Distance

xi

Chapter 1

Introduction

The problem being studied in this thesis is how to combine output from dif-

ferent sensors into a common product. Such a technique is desirable because, even

though two sensors might measure the same area, they might collect very different

types of information. Making direct measurements between the data sets would be

difficult, if, for example, they each recorded a different number of channels. Thus,

we will look to the field of harmonic analysis for ways to express the independently

acquired data sources in a common representation. We will mainly use dimension

reduction algorithms, particularly Laplacian Eigenmaps (LE), to find this common

representation. Dimension reduction algorithms, aside from reducing high dimen-

sional data to a lower dimensional representation without sacrificing pairwise infor-

mation, are also excellent at extracting dominant features from data sets. These

dominant features can then be combined by the data fusion techniques presented

herein.

The data sources that we have chosen to use, not only for testing our algorithms

but also for designing them, come from the field of remote sensing. Remote sensing

is the study of distant objects via the objects’ spectral properties. Both passive

(e.g., hyperspectral cameras) and active (e.g., LIDAR sensors) technologies can

obtain substantial amounts of information about a distant object. This remote

1

sensing information is a perfect source of data to study because of its abundance

of practical uses and varied technologies that produce the data. For example, even

in the subdomain of hyperspectral sensors, there are dozens of different types of

sensors, each acquiring a unique collection of discrete spectra at different spatial

resolutions, view angles, distances from the earth, and times.

1.1 Summary of Results

In the study of data fusion with harmonic analysis we develop several tech-

niques for fusing different types of data, spatial and hyperspectral, LIDAR and

hyperspectral, and finally hyperspectral and hyperspectral.

We first provide an approximate preimage algorithm for Laplacian Eigenmaps,

where in the past only results for Kernel PCA (KPCA) existed. We accomplish this

by building upon the results for KPCA and using the Nyström out of sample ex-

tension and inequality constrained quadratic programming to find the approximate

preimage.

Next, we develop a Σ∆ Quantization landmark algorithm for the Nyström

extension as a means to accelerate the computation of the lower dimension embed-

dings of our data sets. This allows us to see the Nyström extension, and the choice

of landmark points, in a different mathematical context. We also formulate a means

to move from an LE analysis of a data set to a Schrödinger Eigenmap (SE) analysis

of the same data using efficient matrix factorization updates.

For the problems of spatial-spectral fusion with hyperspectral sensors, we use

2

the Laplacian Eigenmaps algorithm as a template to address spatial-spectral fusion

at the graph, operator, and feature space level. We accomplish this first set of

data fusions by modifying graph distance calculations, modifying the construction

of k-nearest neighborhoods, and developing fusion operators to combine separately-

calculated graph Laplacians.

For the problem of hyperspectral-LIDAR fusion, we develop an algorithm, the

Minimum Path Gradient Distance, to encode LIDAR information into a nontrivial

graph representation. We then use this graph representation of the LIDAR data and

fuse it with the hyperspectral data to produce better classification and data repre-

sentation results. We also adapt the feature space rotation methodology of Diffusion

Maps to Laplacian Eigenmaps and rotate the feature spaces for the hyperspectral

and LIDAR together as a means of fusion.

Next, we study the problem of fusing two hyperspectral data sets, first with

varying levels of overlapping pixels, then finally without any overlapping pixels. For

the former, we use rotation maps learned on partial overlapping image segments. For

the latter, we use a graph matching algorithm to learn pixel-to-pixel relations. Once

these relations have been learned, a similar feature space rotation is formulated. Now

having the two data sets combined in the same feature space, a classifier can be used

to obtain classification results from the fused product.

Finally, we propose a technique for fusing expert knowledge into the data

representation of a hyperspectral data set via the Schrödinger Eigenmaps algorithm.

3

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 pro-

vides background on the field of remote sensing and examples of the types of data

collected. These data will be analyzed later in the thesis. Chapter 3 discusses

the mathematical background of dimension reduction of Laplacian and Schrödinger

Eigenmaps. Chapter 4 shows how an approximate preimage can be calculated for

the Laplacian Eigenmaps algorithm. Chapter 5 provides a summary of Random

Projections and Approximate Neighborhood construction that we will use in our fu-

sion methods. Chapter 6 provides the details of the developed fusion methodologies

and results from example data sets. Chapter 7 proposes the application of Nyström

method to accelerate our developed methods and how Frames and Σ∆ Quantization

can be used with remote sensing data and the Nyström method.

4

Chapter 2

Introduction to Remote Sensing

It is often impossible to observe a distant object or area physically due to the

financial costs, safety concerns and/or length of travel incurred in traveling to the

object or area. In addition, if the objectives of a mission require concealment it

would be impractical to survey an area. Remote Sensing is the broad field of study

that attempts to solve these problems. It is a field with many definitions, see [29];

two of the most citied are:

Remote sensing is the acquisition of physical data of an object without

touch or contact [96].

Remote sensing is the science of deriving information about an object

from measurements made at a distance from the object, i.e., without ac-

tually coming in contact with it. The quantity most frequently measured

in present day remote sensing systems is the electromagnetic energy ema-

nating from objects of interest, and although there are other possibilities

(e.g., seismic waves, conic waves, and gravitational force), our attention

... is focused upon systems which measure electromagnetic energy[124].

In this thesis we will restrict the definition of the remote sensing to sensing

that involves only the earth’s surface, but it should be noted that remote sensing

can involves studying other planets, stars, galaxies, etc.

5

Remote sensing can be divided into two separate domains based upon how

the sensors acquire their data, i.e., actively or passively. Active sensors interact

with the target or area of interest by sending a signal and waiting for a response.

Examples of active sensors include Radio Detection and Ranging (RADAR), Sound

Navigation and Ranging (SONAR), Light Detection And Ranging (LIDAR) and

Synthetic Aperture Radar (SAR). In Section 2.2 we will go into greater detail on

LIDAR sensors. For more information about RADAR and SAR see [63] and [47].

Passive sensors do not interact with the target or area of interest directly, but instead

acquire the radiated energy from objects, usually in the form of reflected solar

radiation. Passive sensors detect radiation in a wide range of frequencies from extra-

low to gamma rays which represent frequencies from 103Hz to 1020Hz or wavelengths

in the range 105m to 10−12m. In the realm of passive sensors, multispectral and

hyperspectral sensors are the most ubiquitous. Multispectral sensors combine tens

of different distinct frequencies of light, while hyperspectral combine hundreds of

different frequencies of light, usually ranging from the Ultraviolet (UV) to the Infra-

red (IR) wavelengths, see Figure 2.1. We will discuss more broadly Hyperspectral

sensors in Section 2.1. Other types of passive sensors include those that focus on

microwave [95] and thermal IR [106].

6

Figure 2.1: Electromagnetic Spectrum showing the ultraviolet, visible, near-

infrared, and shortwave infrared which are used in hyperspectral imaging.

Both types of sensors have their benefits. Active sensors are favored over

passive sensors due to their ability to collect information without the presence of

a radiating source (i.e., the sun) and their increased range of operation. Passive

sensors are favored due to their concealability (do not require a signal to be sent

to the area of interest), low power usage, high angular resolution, and spectral

variability [29]. A fusion of data derived from both types of sensors is thus favorable

as it allows for each of the strengths to be used. Data fusion from active and passive

sensors will serve as the inspiration for this thesis in the following chapters.

7

2.1 Hyperspectral Sensors and Imaging

A hyperspectral sensor collects information from a distant object by sensing

the solar radiation that is reflected off of the object in a discrete collection of wave-

lengths, as seen in Figure 2.2. These sensors can be installed in planes, contained

in satellites, placed on high structures, or carried by hand. The sensors record

information about the scene in one of two ways: either by a push-broom or by a

staring array. Push-broom sensors record one spatial line at a time for all available

wavelengths. Staring arrays record all spatial lines at once but for only one light

frequency. Radiation emitted from the sun, upon striking an object on the earth’s

surface, has its spectrum modified because at various wavelengths the radiation is

absorbed to some degree by the object. This physical reaction modifies the radia-

tion spectrum produced by the sun in a unique way for each object. The spectral

signature can be used to accurately identify objects either by classifying them based

on known ground truths (pixels with a descriptive label) or comparing the signals to

a known spectral library of signatures. This process is complicated by the fact that

the solar radiation is also modified by the atmosphere both preceding and succeeding

the impact with the object.

The collected data from the hyperspectral sensor can be integrated into the

form of an image which is called a hyperspectral image (HSI) or data cube. Usually

some form of image processing is done on the collected data before it is ready

for analysis. For example, it is necessary to smooth and georectify the data to

remove effects from the uneven travel of the plane and any shift or rotations between

8

Figure 2.2: The path of solar radiation from the sun to the hyperspectral sensor

(in this case on a plane). Note how the solar spectrum is by the target on the ground.

flightlines. It is also necessary to perform some level of in-painting, i.e. using

surrounding pixels to infer information about a missing pixel, and interpolation to

account for missing data in either a spectral or spatial sense, and to fit the data to

a uniform pixel grid.

Depending on the application, it is useful to distinguish reflectance from ra-

diance. As the solar radiation enters the atmosphere, it is altered by the presence

of water molecules and other particulate matter in the atmosphere. The same ef-

fect happens once the solar radiation is reflected off the ground or object, as shown

9

in Figure 2.2. The data that are recorded by the sensor are known as the radiance

spectrum. The reflectance spectrum for a particular band is the ratio of the reflected

radiation at that band to the incident radiation at that band, and can be recovered

from the collected radiation spectrum by using atmospheric correction equations,

for example Quick Atmospheric Correction (QUAC) [23] or Fast Line-of-sight Atmo-

spheric Analysis of Hypercubes (FLAASH) [101]. The application of atmospheric

correction codes is necessary as it often useful to compare spectral signatures in an

image to a library of lab-recorded spectra, i.e., spectra that have not been altered

by the atmosphere.

HSIs have a wide range of practical applications, ranging from agriculture to

mineralogy and exploration to applications in the security and defense fields. Farm-

ers are able to use hyperspectral images to determine plant stress levels, amount

of water being absorbed, and possible insect infestations [129]. In resource explo-

ration, in particular in mineralogy exploration, hyperspectral images can be quickly

obtained for a vast amount of territory, and then known spectral signatures cor-

responding to desirable minerals can be searched for, see, e.g., [134]. The defense

industry makes wide use of hyperspectral images for target detection and tracking

[99] because, for example, the limitations of human vision make it difficult to discern

modern camouflage from vegetation [116].

HSI, in general, has hundreds of spectral bands in contrast to a normal digital

image which has three spectral bands (blue, red, and green), and thus offers a more

complete part of the light spectrum for viewing and analysis [99]. As a note, a multi-

spectral sensor is a sensor that samples the light spectrum at fewer wavelengths than

10

a hyperspectral sensor, usually only between 7 and 20. This fine sampling performed

by a hyperspectral sensor of the electromagnetic spectrum offers powerful material

discernability but the large dimension number and inherent correlation amongst the

bands, as seen in Figure 2.3, leads to difficultly in analysis. A collection of these

spectral bands for the Indian Pines image, which will be discussed in Section 2.1.3,

is shown in Figure 2.4. In Figure 2.5, we show 3 potential false color representations

of the hyperspectral scene, i.e., choosing three bands to represent the red, blue and

green bands in the RGB color space.

Figure 2.3: Correlation matrix for the 200 spectral bands contained in the In-

dian Pines Hyperspectral scene. Red is positively correlated while blue is negatively

correlated.

11

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.4: A collection of the bands from the Indian Pines Hyperspectral Image

rendered in gray scale.

Figure 2.5: Three potential false color renderings (assigning 1 band to red, 1 band

to green, and 1 band to blue) of the Indian Pines Hyperspectral image.

From a mathematical perspective, a hyperspectral image is a m×n×D matrix,

X, or a collection of mn = N , D-dimensional spectral vectors, each representing

the information for one pixel [119]. As D increases, this high dimensionality of

data, as well as its inherent redundancy, leads to the field of machine learning

12

and specifically, dimension reduction and data representation. These fields will be

discussed in Chapter 3. One of the areas of research into HSI is image classification.

The major goal of image classification is to classify the pixels of an image into some

number of classes with the use of training data. This allows for example the creation

of vegetation maps near wetlands [3]. We will define ground truth or training data

for the dataset X as the set of ordered triplets, T = {(ri, ci, zi)}ti=1, where ci and

ri represent the row and column for the ith training pixel with class label zi. The

set T can be used to classify an image by training a classifier, which once trained,

will return the most probable class label for any pixel in image. For this thesis, we

will use the simple nearest neighbor (1NN) classifier. The 1NN classifier labels an

unknown pixel x as zr where:

r = arg min
i
‖X(ri, ci)− x‖2.

Since we will be using hyperspectral images as an application of our data

fusion methods in the later chapters, in Sections 2.1.1, 2.1.2, 2.1.3, and 2.1.4 we

will introduce the popular Pavia University, Pavia Centre, Indian Pines, and Urban

data sets, respectively.

2.1.1 Pavia University

The Pavia University scene is a 610 × 340 pixel image [54] that contains 103

spectral bands with approximately 1.3 meter resolution. It was acquired in a flyover

of Pavia, Italy using a ROSIS sensor. There is a collection of 42, 776 ground truth

pixels covering a total of 9 classes. Figure 2.6 contains a 3 color composite image

13

of Pavia University, as well as a ground truth mask and Table 2.1 contains the

corresponding class names and number of samples.

(a) (b)

Figure 2.6: (a) Three color composite image and (b) ground truth mask for Pavia

University.

14

Class Name Samples # Class Name Samples

1 Asphalt 6631 6 Bare Soil 5029

2 Meadows 18649 7 Bitumen 1330

3 Gravel 2099 8 Self-Blocking Bricks 3682

4 Trees 3064 9 Shadows 947

5 Painted metal sheets 1345

Table 2.1: Ground truth descriptions with sample count for Pavia University.

2.1.2 Pavia Centre

The Pavia Centre scene is a 1096×492 pixel image [54] (we have chosen to crop

out the right side of the image where little ground truth is available) that contains

102 spectral bands with approximately 1.3 meter resolution. It was acquired in a

flyover of Pavia, Italy using a ROSIS sensor. There is a collection of 103, 539 ground

truth pixels covering a total of 9 classes. Figure 2.7 contains a 3 color composite

image of Pavia Centre, as well as a ground truth mask and Table 2.2 contains the

corresponding class names and number of samples.

15

(a) (b)

Figure 2.7: (a) Three color composite image and (b) ground truth mask for Pavia

Centre.

16

Class Name Samples # Class Name Samples

1 Water 65278 6 Tiles 7585

2 Trees 6508 7 Shadows 7287

3 Asphalt 2905 8 Meadows 3122

4 Self-Blocking Bricks 2140 9 Bare Soil 2165

5 Bitumen 6549

Table 2.2: Ground truth descriptions with sample count for Pavia Centre.

2.1.3 Indian Pines

The Indian Pines scene [88] is a 145 × 145 pixel image that contains 224

spectral bands with approximately 20 meter resolution; we discard 4 of the bands

due to sensor noise and absorption by water. It was acquired in a flyover of northwest

Indiana using an AVIRIS spectrometer. There is a collection of 10, 249 ground truth

pixels associated with the data set coving a total of 16 classes. Figure 2.8 contains a

3 color composite image of Indian Pines, as well as a ground truth mask and Table

2.3 contains the corresponding class names and number of samples.

17

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(a) (b)

Figure 2.8: (a) Three color composite image and (b) ground truth mask for Indian

Pines.

Class Name Samples # Class Name Samples

1 Alfalfa 46 9 Oats 20

2 Corn-notill 1428 10 Soybean-notill 972

3 Corn-mintill 830 11 Soybean-mintill 2455

4 Corn 237 12 Soybean-clean 593

5 Grass-pasture 483 13 Wheat 205

6 Grass-trees 730 14 Woods 1265

7 Grass-pasture-mowed 28 15 Bldgs-Grass-Trees-Drives 386

8 Hay-windrowed 478 16 Stone-Steel-Towers 93

Table 2.3: Ground truth descriptions with sample count for Indian Pines.

18

2.1.4 Urban

The Urban scene is a 307 × 307 pixel image [133] that contains 210 spectral

bands with approximately 3 meter resolution; we discard 48 of the bands due to

sensor noise and absorption by water leaving 162 bands for analysis. There is col-

lection of 1, 058 ground truth pixels representing 23 classes. It was acquired in a

flyover of Copperas Cove, Texas using a HYDICE spectrometer. Figure 2.9 contain

a 3 color composite image of Urban.

Figure 2.9: Three color composite image of Urban.

2.2 LIDAR

LIDAR is a sensing technology that uses light in the UV, visible, and/or IR

spectrums to image the earth’s surface. Based on the applications and the spatial

fidelity required, a wavelength is chosen as well as a type of scattering (e.g. Lie,

Mie, or Rayleigh). LIDAR systems can be used to figure out ground reflectivity, but

for this thesis we will focus on its use in Digital Terrain Mapping (DTM) or Digital

19

Elevation Mapping (DEM). In DTM and DEM, LIDAR data is created by measuring

the time it takes for the laser beam to return to its origin. The emitted laser pulse

may return in a series of backscatters as it reflects off of objects of different heights in

its path to the ground, see Figure 2.10. The first return gives the top of the feature,

while intermediate returns can be used to infer structural information about the

object, and the last return usually signifies the laser pulse impact with the ground;

however it is possible that the entire pulse is reflected before hitting the ground.

Then, the scene’s height information can be inferred relative to a known ground

level quantity. Images derived from LIDAR sensing generally offer a single channel

which contains the calculated height for a small region of the scene; in addition,

sometimes the first and last detected backscatter and their converted heights are

included as well.

20

Figure 2.10: The LIDAR laser pulse after being emitted is backscattered several

times during its path to the ground. This backscattered pulses can be used to gain

information about the objects in the path of the laser including height of the objects.

2.2.1 University of Houston

The HSI and the LIDAR provided by the 2013 IEEE GRSS Data Fusion

Contest [51], as seen in Figure 2.11, are co-registered 349 × 1905 images. The HSI

was acquired using a CASI sensor which has 144 spectral bands between 380nm and

1050nm. The image was acquired over the University of Houston on June 22, 2012

at 1400 UTC. The LIDAR image was acquired by the National Center for Airborne

Mapping on June 23, 2012 at 1700 UTC. The data set contains 2, 832 labeled pixels

over 15 classes as seen in Figure 2.4.

21

(a)

(b)

(c)

Figure 2.11: (a) Three color composite image from HS data, (b) LIDAR height

map (red = tallest, blue = shortest) and (c) ground truth mask for University of

Houston

22

Class Samples # Class Samples

1 Healthy grass 198 9 Road 193

2 Stressed grass 190 10 Highway 191

3 Synthetic grass 192 11 Railway 181

4 Trees 188 12 Parking Lot 1 192

5 Soil 186 13 Parking Lot 2 184

6 Water 182 14 Tennis Court 181

7 Residential 196 15 Running Track 187

8 Commercial 191

Table 2.4: Ground truth descriptions with sample count for University of Houston

2.2.2 MUUFL Gulfport

The MUUFL Gulfport [70] dataset contains a co-registered HSI and LIDAR

data of size 325× 337. The HSI was acquired using a CASI-1500 sensor which has

72 spectral bands between 375nm and 1050nm. The image was acquired over the

University of Southern Mississippi-Gulfport, located in Long Beach, Mississippi on

November 10, 2010 at approximately 1200 CT. The LIDAR image was acquired

using a Gemini sensor. The two data sets can be seen in Figure 2.12.

23

(a) (b)

Figure 2.12: (a) Three color composite image from HS data and (b) LIDAR height

map (red = tallest, blue = shortest) for MUUFL Gulfport scene.

24

Chapter 3

Introduction to Dimension Reduction

In recent years, large advancements in technology have allowed for sensors to

record at increasingly finer spectral, spatial, and temporal scales. This advancement

in technology, as well as the large drop in storage costs, has lead to an abundance

of data. This data is only useful if it can be analyzed in an efficient and time

sensitive manner. It is no longer possible for analysts to analyze this data unassisted;

dimension reduction techniques offer a partial solution to this problem by reducing

the number of spectral dimensions present in a data set.

Dimension reduction, is a type of machine learning or data representation

method, which seeks to transform high dimensional data to a lower dimensional

representation while at the same time preserving the intrinsic qualities of the data.

High dimensionality is problematic because of the curse of dimensionality [12] or

the empty space phenomenon [120]. The curse of dimensionality describes situa-

tions where the complexity of a problem grows exponentially with the number of

dimensions. The empty space phenomenon illustrates that when data is described

by a few observations then the high dimensional space becomes sparse.

There are two main branches of dimensionality reduction algorithms: linear

and nonlinear. Linear methods, which include Principal Component Analysis (PCA)

[110], Independent Component Analysis [43] and Multi-Dimensional Scaling (MDS)

25

[132], have been used past to study problems in image processing, signal processing,

andstatistics. There are also a growing number of nonlinear dimension reduction

techniques, such as Laplacian Eigenmaps (LE) [9], Schrödinger Eigenmaps (SE)

[48], Diffusion Maps (DM) [42], Kernel PCA (KPCA) [118], Local Linear Embed-

ding (LLE) [114], Local Tangent Space Alignment (LTSA) [140], and Hessian LLE

(HLLE) [58]. All of these nonlinear techniques can be described as Output Normal-

ized Algorithms [73]. These nonlinear methods have been used to study the same

problems as the linear methods. However, while linear methods are superior in their

computational efficiency, they are limited by their assumption that the original data

lies on a linear manifold. This assumption can be shown to be untrue for many data

sources, for example, hyperspectral data is nonlinear, see, e.g., [92, 36, 3]. For this

reason, and nonlinear dimension reduction algorithms’ well-documented use in re-

mote sensing data [80, 41, 65, 75, 97], we will rely on nonlinear methods for our

fusion methodologies.

To illustrate the advantages of nonlinear methods over linear methods we will

look at the toy data set known as the Helix show in Figure 3.1 (a). The Helix

data set, which is a torodial helix in 3 dimensions, should be unraveled to form a

circle in 2 dimensions as it is fundamentally a 2-dimensional object. We see that

PCA, a linear method, and KPCA, a method which is somewhere between a linear

and nonlinear method, both have trouble with the data. In Figure 3.1 (b) and (c),

both of these methods are unable to unravel the helix; instead they project the

third dimension onto the hyperplane which runs through the origin. This results in

distances between points, especially near the cusps of the asterisk, becoming skewed.

26

The LE algorithm, however, is able to properly recover the 2-dimensional circle, as

seen in in Figure 3.1 (d). While this is only a toy example it illustrates the power of

nonlinear dimension reduction techniques to find lower dimensional representations

of complicated data sets.

For the following sections in this Chapter, let the data set X = {x1, . . . , xN} ⊂

RD where xi(p) is the pth coordinate of the vector xi. We will seek an embedding

Y = {y1, . . . , yN} ⊂ Rd where d ≤ D. yi will be referred to as the lower dimensional

representation of the data point xi. We will call Y , the feature space of X and

the d vectors composing Y the feature vectors. We can also consider a function

Φ : RD 7→ Rd, a dimension reduction function.

For the data fusion methods we are developing, we will make use of Principle

Component Analysis, Laplacian, and Schrödinger Eigenmaps. Some detail of these

algorithms and their mathematical background in Sections 3.1 - 3.4. In Section

3.2, we provide a brief discussion of spectral graph theory as this is vital for the

exposition of LE and SE.

3.1 Principle Component Analysis (PCA)

PCA is a linear method that uses an orthogonal transform to convert a set of

data into its so called principle components. The principle components are chosen

to maximize the preserved variance in the original data or to minimize the recon-

struction error. It can be shown that both definitions are analogous, see [93]. PCA

is also sometimes referred to as Karhunen-Loève Transform (KLT) in signal pro-

27

(a)

(b)

(c) (d)

Figure 3.1: (a) Helix Data Set, 1st and 2nd principle embedding dimension for

(b) PCA, (c) KPCA and (d) LE.

28

cessing and Proper Orthogonal Decomposition (POD) in engineering. It can also

be shown to be of the same form as Independent Component Analysis (ICA) and

Multi-dimensional Scaling (MDS). The dimension that PCA projects into, unlike

the nonlinear methods which will be discussed in the following sections, is bounded

above by the initial dimension of the data. It also differs because, it has a natural

inversion or in other words, an exact preimage.

PCA assumes that the D observations, for x ∈ X, can be realized as the linear

transformation, W, of d latent variables from a Gaussian distribution, y ∈ Y ⊂ Rd.

This can be compactly stated as:

x = Wy. (3.1)

The PCA algorithm has three steps which are summarized below:

1. Mean center the data. This can be accomplished in linear algebra terms by,

X = X − 1

N
X11T ,

where 1 is a N × 1 matrix of 1’s.

2. Minimize the reconstruction error or maximize the preserved variance. Since

these operations are equivalent we will only detail the latter.

Let the covariance matrices for X and Y be defined as:

CY = E
{
Y Y T

}
(3.2)

and

CX = E
{
XXT

}
. (3.3)

29

Now substituting (3.1) and (3.2) into (3.3), we obtain:

CX = E
{
WY Y TW T

}
= WCYW

T . (3.4)

We can now rearrange (3.4), by left and right multiplication by W and W T to

produce,

CY = W TCXW. (3.5)

If we diagonalize CX , as seen in (3.5), then

CX = V ΣV T

where V is the D × D matrix of left singular vectors and Σ is the D × D

diagonal matrix of singular values. Thus,

CY = W TV ΣV TW.

Now we let:

W = V ID×d,

where Id×D is the d×D identity matrix.

Thus we have shown that:

CY = Id×DΛID×d.

3. Calculate the lower dimensional embedding Y by preserving only the first d

principle components:

Y = Id×DV
TX,

30

3.2 Spectral Graph and Operator Theory

To give a proper treatment of the LE and SE algorithms and then develop

fusion methodology with them, it is vital to understand the spectral graph theory

that underlies their algorithms. For this section we will reference the basic results

from [38] and [24], which offer an excellent introduction to spectral graph theory.

3.2.1 Unweighted Graphs

We will first need to start with the basic definition of a graph:

Definition 3.2.1 (Unweighted Directed Graph, Vertex, Edge). The unweighted di-

rected graphG = (V,E) is defined by a set of vertices (or nodes) V = {v1, v2, . . . , vN}

and a set of ordered pairs of vertices, E = {(u, v), u, v ∈ V }. The ordered pair of

vertices e = (u, v) is known as an edge.

If we drop the notion of orderedness to the edge pairs we get an undirected

graph:

Definition 3.2.2 (Undirected Unweighed Graph). An undirected,unweighted graph

G = (V,E) has an edge set E such that if (u, v) ∈ E, (v, u) ∈ E, as well.

We will now refer to an undirected graph simply as a graph and when we need

to refer to a directed graph specifically, we will. To eventually build our definition of

the graph Laplacian, we will need to define the degree of a vertex and the Adjacency

matrix associated with a graph:

Definition 3.2.3 (Adjacency Matrix). The adjacency matrix for a graph G =

31

(V,E), N = |V |, is the N ×N matrix matrix A such that

A(i, j) =

1, if (vi, vj) ∈ E

0, otherwise.

Definition 3.2.4 (Degree). For a graph G = (V,E), N = |V |, the degree for a

vertex v ∈ V is dv = |{(v, u) : u ∈ V, (v, u) ∈ E}|. It is common to store all the

degrees for a graph G in a N ×N diagonal matrix D such that D(i, i) = di.

We can now define the graph Laplacian as:

Definition 3.2.5 (Graph Laplacian). The graph Laplacian, L, of the graph G =

(V,E), |V | = N , is defined as L = D − A, or for u, v ∈ V ,

L(u, v) =

du, if u = v

−1, if (u, v) ∈ E

0, otherwise.

It is sometimes convenient to look at the normalized graph Laplacian, L,

Definition 3.2.6. The normalized graph Laplacian, L, G = (V,E), |V | = N , is

defined as L = D−1/2AD−1/2, or for u, v ∈ V ,

L(u, v) =

1, if u = v and du 6= 0

− 1√
dudv

, if (u, v) ∈ E

0, otherwise.

32

L, can also be represented as:

L = D−1/2LD−1/2

= I −D−1/2AD−1/2

= SST ,

where S is a N × |E| matrix where each column corresponds to an edge, i.e. for

ek = (vi, vj), then in column k, row i has an entry of 1/
√
di, row j has an entry of

−1/
√
dj, and all other entries are 0.

By the definition, L (and L if A is symmetric) is a symmetric matrix of real

entries and thus, a Hermitian matrix.

Let g be a function that maps the vertices of G to real numbers, i.e., g : V → R

and let f be the function defined as g = D1/2f . Now using the above definitions of

L we can calculate:

〈g,Lg〉
〈g, g〉

=
〈g,D−1/2LD−1/2g〉

〈g, g〉

=
〈f, Lf〉

〈D1/2f,D1/2f〉

=

∑
u∼v(f(u)− f(v))2∑

v f(v)2dv
, (3.6)

where
∑

u∼v is the sum over all unordered vertex pairs (u, v) ∈ E. The calculation

in (3.6) gives us the definition of Dirichlet Sum and Rayleigh Quotient:

Definition 3.2.7 (Dirichlet Sum). The Dirichlet Sum of G is defined as:

∑
u∼v

(f(u)− f(v))2.

Definition 3.2.8 (Rayleigh Quotient). The Rayleigh Quotient is defined as 〈g,Lg〉〈g,g〉 .

33

By Equation (3.6) and the fact that L is Hermitian, we can see that all the

eigenvalues are real and nonnegative. We can also see that D1/21 is a an eigenfunc-

tion of L with eigenvalue 0:

Since the eigenfunctions of L must be orthogonal to each other, we can con-

clude that the second eigenvalue, λ1, of L has corresponding eigenfunction g = D1/2f

where

λ1 = inf
f⊥D1

∑
u∼v(f(u)− f(v))2∑

v f(v)2dv
. (3.7)

Just as we expressed the eigenvalue λ1 in terms of the Rayleigh quotient in

(3.7) we can express λk as:

λk = inf
f

sup
g∈Pk−1

∑
u∼v(f(u)− f(v))2∑
v(f(v)− g(v))2dv

= inf
f⊥DPk−1

∑
u∼v(f(u)− f(v))2∑

v f(v)2dv
, (3.8)

where Pk−1 is the subspace generated by the eigenfunctions corresponding to

λ0, λ1, . . . , λk−1.

Using (3.8) and the trace of L it is possible to prove some basic facts about

the spectrum of G:

Lemma 3.2.9 (Eigenvalues of Unweighted Laplacians). For a graph G = G(V,E),

|V | = N ,

1.
∑N−1

i=0 λi ≤ N

2. For N ≥ 2, λ1 ≤ N
N−1

34

3. For N ≥ 2 and no isolated vertices, λN−1 ≤ 2

4. The spectrum of G is the union of the spectrum of the connected components

of G. A connected component is the largest collection of vertices in G such

that there is sequence of edges which connect all pairwise sets of vertices.

5. Let f and λ be an eigenfunction-eigenvalue pair, then for any v ∈ V we have

that

1

dx

∑
y:y∼x

(f(x)− f(y)) = λf(x).

3.2.2 Weighted Graphs

Now we move away from the trivial case of unweighted graphs and introduce

a weighting function, ω, on the edges of the graph. This will be vital to LE and SE

algorithms as it will allow for embeddings that preserve certain intrinsic qualities

of the high dimensional data. Now that the edges will have a nontrivial weight

associated with them will need to revisit some of our previous definitions:

Definition 3.2.10 (Weighed Graph). The weighted graph, G = (V,E, ω) is defined

by a set of vertices (or nodes) V = {v1, v2, . . . , vN}, a set of ordered pairs of vertices,

E, and a function ω : V × V → R. It is common to store all the weights produced

by the weighting function in a N ×N matrix, W such that W (i, j) = ω(vi, vj).

Definition 3.2.11 (Degree of Weighted Graph). For a weighted graphG = (V,E, ω)

with associated weight matrix W , the degree of a vertex v ∈ V is dv=
∑

u:u∼v ω(v, u).

It is common to store all the degrees for a graph G is a N ×N matrix D such that

D(i, i) = di.

35

The unweighted graph is thus a special case of the weighted graph where

W = A; i.e. ω(u, v) = 1 if (u, v) ∈ E and 0 otherwise. With these definitions of the

weight matrix and degree of a weighted graph, we can define the weighted graph

Laplacian and the weighted normalized graph Laplacian:

Definition 3.2.12 (Graph Laplacian). The graph Laplacian, L, of the graph G =

(V,E, ω), |V | = N , is defined as L = D − A, or for u, v ∈ V ,

L(u, v) =

du − ω(u, u), if u = v

−ω(u, v), if (u, v) ∈ E

0, otherwise.

Definition 3.2.13. The normalized graph Laplacian, L, of the graph G = (V,E, ω),

|V | = N , is defined as L = D−1/2AD−1/2, or for u, v ∈ V ,

L(u, v) =

1− ω(u,u)
du

, if u = v and du 6= 0

− ω(u,v)√
dudv

, if (u, v) ∈ E

0, otherwise

Just as for the case of the unweighted L, we can characterize the eigenvalues

of the weighted L, for example:

λ1 = inf
g⊥D1/21

〈g, gL〉
〈g, g〉

= inf
f :
∑
f(x)dx=0

∑
x∈V f(x)Lf(x)∑
x∈V f

2(x)dx

= inf
f :
∑
f(x)dx=0

∑
x∼y(f(x)− f(y))2ω(x, y)∑

x∈V f
2(x)dx

.

36

and in general, λk is:

λk = inf
f

sup
g∈Pk−1

∑
u∼v(f(u)− f(v))2ω(x, y)∑

v(f(v)− g(v))2dv

= inf
f⊥DPk−1

∑
u∼v(f(u)− f(v))2ω(x, y)∑

v f(v)2dv
.

3.2.3 Heat Kernel

The heat kernel, Ht, derives its name from being the fundamental solution to

the heat equation:

∂u

∂t
= −Lu.

For the graph G, Ht is the N ×N matrix:

Ht = e−tL

= I − tL+
t2

2!
L − t3

3!
+ . . . , (3.9)

where (3.9) is a Taylor expansion. If we let t = 1 and use a first-order approximation

we get:

H1 ≈ I − L

= I − I +D−1/2LD−1/2

= D−1/2LD−1/2.

The heat kernel allows us to study diffusion on graphs which is a means to

identifying important graph connections and preserving them in a lower dimensional

space.

37

3.2.4 Laplace-Beltrami Operator

The graph Laplacian is analogous to the Laplace-Beltrami operator on man-

ifolds. Let M be a smooth, compact, finite dimensional Riemannian manifold.

The eigenvalues of the Laplace-Beltrami operator on Riemannian manifolds can be

expressed as:

λM = inf∫
M f=0

∫
M |∇f |

2∫
M |f |2

.

3.3 Laplacian Eigenmaps (LE)

Belkin and Nyogi were inspired to develop the Laplacian Eigenmaps algorithm

by the observation that points in a high dimensional space that are close should also

be close in a lower dimensional representation [9]. In the LE algorithm, the data is

assumed to lie on or near a d-dimensional manifoldM. For practical applications, It

is not necessary to find the actual manifold, instead it suffices to only approximate

it with a data dependent graph. Let G = (V,E, ω), defined on the data set X, be

such a graph. In the LE algorithm, vertices are defined as the data points contained

in X, i.e., V = X. The undirected edge set E = {ei}, denotes the connections

between vertices in the G. Finally the weight function ω : V ×V → R measures the

similarities between vertices in the G.

The choices of E and ω are both important and affects the final lower dimen-

sional representation. E can be defined as the set of all possible edges, thus making

G a complete graph. This, however, is avoided in practice because a sparse graph

yields computational advantages. Also, since the aim of the algorithm is to preserve

38

relationships between data points that are close in the higher dimensional space,

including only edges between vertices that are close is consistent with this goal.

Thus E is chosen using the closest neighbors for each data point using a distance

measure, typically L2. We will discuss this method further in Section 3.4.2 and 5.2.

The weighting function, ω, must also be chosen as to best preserve the local infor-

mation in the higher dimensional space. The heat kernel is a natural choice to use

because it describes the evolution of temperature over a region with fixed boundary

conditions and is widely used to study the spectrum of the graph Laplacian, which

can be thought of as an information spreading process and thus makes a good choice

for the constraint weights. Thus, the kernel, or weighting matrix W defined by the

heat kernel, is:

W (i, j) = ω(vi, vj) =

e−
‖xi−xj‖

2
2

2σ2 if (vi, vj) ∈ E,

0 otherwise,

(3.10)

where σ is a parameter which will be discussed in Section 3.4.2. Once an appropriate

graph and weighting function on the graph have been defined, the cost function, CLE,

is defined to provide an optimal lower dimensional embedding:

CLE = arg min
yTDy=I

1

2

N∑
i=1

N∑
j=1

‖yi − yj‖2
2W (i, j). (3.11)

We can see that the minimization of the cost function will force points yi

and yj to be close in the lower dimensional space if W (i, j) is large, which by the

weighting function is guaranteed if their high dimensional distance is small. The

constraints here avoid the trivial solution and remove affine solution families. With

39

linear algebra manipulation, it can be shown that 1
2

∑N
i=1

∑N
j=1 ‖yi − yj‖

2
2W (i, j) is

equivalent to the trace(Y LY T),

CLE =
1

2

N∑
i=1

N∑
j=1

‖yi − yj‖2
2W (i, j)

=
1

2

d∑
p=1

N∑
i=1

N∑
j=1

(yi(p)− yj(p))2W (i, j)

=
1

2

d∑
p=1

N∑
i=1

N∑
j=1

(
y2
i (p)− 2yi(p)yj(p) + x2

j(p)
)
W (i, j)

=
1

2

d∑
p=1

(
N∑
i=1

y2
i (p)

N∑
j=1

W (i, j)−2
N∑
i=1

N∑
j=1

yi(p)yj(p) +
N∑
j=1

y2
j (p)

N∑
i=1

W (i, j)

)

=
1

2

d∑
p=1

(
N∑
i=1

y2
i (p)D(i, i)− 2

N∑
i=1

N∑
j=1

yi(p)yj(p) +
N∑
j=1

y2
j (p)D(j, j)

)

=
1

2

d∑
p=1

(
2ep(Y)Dep(Y

T)− 2ep(Y)Wep(Y
T)
)

=
d∑
p=1

(
ep(Y)Lep(Y

T)
)

= trace(Y LY T),

where ep is a function which gives the pth coordinate for the embedded point. Now

that minimizing CLE can be expressed as minimizing the trace,

CLE = arg min
yTDy=I

trace yLyT ,

the Courant-Fisher Min-Max Theorem [115], which is stated as follows.

Theorem 3.3.1 (Courant-Fisher Min-Max Theorem). The eigenvalues of a Her-

mitian matrix A are characterized by the relation

λk = min
S,dim(S)=n−k+1

max
v∈S,v 6=0

〈Av, v〉
〈v, v〉

.

40

Theorem 3.3.1 allows us to solve for the principle (smallest non-zero) eigen-

values and associated eigenvectors.

To summarize, the LE algorithm is divided into three main steps:

1. Construct a graph representation G of the data set X by defining edges as the

kNN for each data point. Symmetrize the graph as G = max(G,GT).

2. Weight the graph by the heat kernel to create the weights matrix W . Calculate

the graph Laplacian as L = D −W , where D is the degree matrix.

3. Minimize the cost function in (3.11).

3.3.1 Convergence Results for Laplacian Eigenmaps

After the successful application LE to a wide-array of real world problems,

Belkin and Niyogi revisited their algorithm and proved in [10] and [11] that the

eigenvectors of the graph Laplacian converge to the eigenfunctions of the Laplace-

Beltrami operator when the data is sampled from a uniform distribution on the

embedded manifold. In the following paragraphs we will replicate the results found

in the mentioned papers.

Let M be a smooth embedded k-dimensional manifold in RD with induced

Riemannian structure and measure µ. Now define the Laplacian operator, Lt :

L2(M)→ L2(M), by

L̂t(f)(p) = (4πt)−(k+2)/2

(∫
M
e
−‖p−xi‖

2

4t f(p)dµq −
∫
M
e
−‖p−xi‖

2

4t f(xi)dµq

)
,

41

and its discrete version as,

L̂tN(f)(p) =
(4πt)−(k+2)/2

N

(
N∑
i=1

e
−‖p−xi‖

2

4t f(p)−
N∑
i=1

e
−‖p−xi‖

2

4t f(xi)

)
.

In [10] it was shown that the graph Laplacian of a point cloud converged to

the Laplace-Beltrami operator on the underlying manifold:

Theorem 3.3.2 (Belkin and Niyogi, 2005). Let x1, . . . , xN be sampled from a uni-

form distribution on a manifold M⊂ RD. Put tN = N−1/(k+2+α), where α > 0 and

let f ∈ C∞(M). Then there is a constant C, such that in probability,

lim
n→∞

C
(4πtN)−(k+2)/2

N
LtNN f(x) = ∆f(x).

It was however more difficult to show that the eigenvectors of the graph Lapla-

cian converged to the eigenfunctions of the Laplace-Beltrami operator. In [11] Belkin

and Niyogi showed that, if we assume that the points xi are chosen independent and

identically distributed (i.i.d.) from a uniform distribution on M, then there exists

a sequence tN , such that eigenfunctions of L̂tNN converge to the eigenfunctions of ∆

in probability, this is stated in the following spectral convergence theorem.

Theorem 3.3.3 (Spectral Convergence, Belkin and Niyogi 2007). Let λtn,i be the ith

eigenvalue of L̂tn and etn,i be the corresponding eigenfunction (which for each fixed i,

will be shown to exist for t sufficiently small). Let λi and ei be the corresponding

eigenvalue and eigenfunction of ∆ respectively. Then there exists a sequence tn → 0,

such that

lim
n→∞

λtnn,i = λi

lim
n→∞

∥∥etnn,i(x)− ei(x)
∥∥

2
= 0

42

where the limits are in probability.

To prove the Spectral Convergence theorem two parts must be satisfied, first

it must be shown that there is spectral convergence of L̂tN → Lt as N → ∞, and

second, spectral convergence of the functional approximation Lt → ∆ as t → 0;

these are stated in Theorem 3.3.4 and 3.3.5.

Theorem 3.3.4 (Belkin and Niyogi, 2007). Let λi, λ
t
i, ei, e

t
i be the ith smallest

eigenvalues and corresponding eigenfunctions of ∆ and Lt respectively. Then

lim
t→0

∣∣λi − λti∣∣ = 0 and

lim
t→0

∥∥ei − eti∥∥2
= 0.

Theorem 3.3.5 (Luxburg, Belkin and Bousquet, 2004). For a fixed sufficiently

small t, let λtn,i and λti be the ith eigenvalue of L̂tn and Lt respectively. Let etn,i and

eti be the corresponding eigenfunctions. Then

lim
n→∞

λtn,i = λti and

lim
n→∞

∥∥etn,i(x)− eti(x)
∥∥

2
= 0,

assuming that λti ≤ 1
2t

. The convergence is almost sure.

The two Theorems, 3.3.4 and 3.3.5, can shown symbolically as:

EigL̂tN
N→∞−−−−−−−→

probabilistic
EigLt

t→0−−−−−−−→
deterministic

Eig∆

Finally the authors are able to show that there exists a sequence tN which

guarantees the convergence in Theorem 3.3.3.

43

3.4 Schrödinger Eigenmaps

In [48], Czaja and Ehler generalize LE by introducing a potential, V , on the

graph. In general, V is a symmetric, positive semi-definite N × N matrix. We

include a brief overview of the method here. For further details and proofs, see [48]

and [75]. The graph Laplacian is replaced with

E = L+ αV,

where the parameter α indicates the relative significance of the potential with respect

to the Laplacian operator. We do not directly incorporate the parameter α into the

potential matrix as we would like to retain the ability to study a parameter family

of SE embeddings. Accordingly, the cost function which needs to be minimized,

CLE becomes CSE:

CSE = arg min
yTDy=I

1

2

N∑
i=1

N∑
j=1

‖yi − yj‖2
2W (i, j) + α

N∑
i=1

N∑
i=1

V (i, j)‖yi − yj‖2
2. (3.12)

As before, with linear algebra this can be shown to be equivalent to:

CSE = arg min
yTDy=I

trace(Y EY T)

= arg min
yTDy=I

trace(Y (L+ αV)Y T)

= arg min
yTDy=I

trace(Y LY T) + α trace(Y V Y T).

As we showed in the last section, the graph Laplacian under certain conditions

will converge to the Laplace-Beltrami operator. It is possible to make the same

arguments with the Schrödinger operator, see [48] for the proof.

We will consider two types of potentials: barriers and clusters.

44

A barrier potential, V , is a nonnegative diagonal matrix. The barrier potential

is designed to stop diffusion from the heat kernel as certain identified graph vertices.

With the barrier potential we can simplify CSE:

arg min
yTDy=I

1

2

∑
i,j

‖yi − yj‖2
2Wi,j + α

∑
i

V (i)‖yi‖2
2.

The diagonal potential thus introduces a penalty term at each nonzero entry. This

can be seen as creating a well at the corresponding vertices. More precisely, if

V (i) 6= 0 there exists a constant C such that,

‖yα(i)‖2 ≤ C

V (i)α
.

Thus, as α → ∞, yα(i) → 0. Since the SE algorithm, like the LE algorithm, must

preserve local geometry, the neighbors of these vertices are also pulled toward 0 as

well.

Let b be an index set and let β = {vb(1), . . . , vb(m)} be a collection of vertices.

A cluster potential over β is defined by taking V to have zeros everywhere except

for the submatrix defined by β, where

V [b, b] :=

1 −1

−1 2 −1

.

−1 2 −1

−1 1

.

For such a V , (3.12) is equivalent to

CSE = arg min
yTDy=I

1

2

∑
i,j

‖yi − yj‖2Wi,j + α

m−1∑
k=1

‖yik − yik+1
‖2.

45

The penalty term has the effect of sequentially identifying points in β; as

α→∞,

m−1∑
k=1

‖yik − yik+1
‖2 ≤ C

α
→ 0.

Again, the embedding must preserve local geometry, and so neighbors of β are pulled

inwards as well, but instead of toward 0, they will be pulled toward each other in a

chain. Thus, the potential forces an increased amount of clustering around β.

We can even move away from sequentially identifying points and create off-

diagonal potentials which realize complete graphs between a subset of points. This

formulation would be

V [b, b] :=

m −1 −1 . . . −1

−1 m −1 . . . −1

.

−1 −1 . . . m −1

−1 −1 −1 . . . m

.

For such a V , (3.12) is equivalent to

CSE = arg min
yTDy=I

1

2

∑
i,j

‖yi − yj‖2Wi,j + α
m−1∑
k=1

‖yik − yik+1
‖2.

In this case, the identified data points would be collapsed to their centroid in the

feature space as α becomes large.

To summarize the SE algorithm is divided into three main steps:

1. Construct a graph representation, G, of the data set X by defining edges as

the kNN for each data point. Symmetrize the graph as G = max(G,GT).

46

2. Weight the graph by the heat kernel to create the weights matrix W . Calculate

the graph Laplacian as; L = D −W where D is the degrees matrix. Define a

potential matrix V and constant α and calculate the Schrödinger E = L+αV .

3. Minimize the cost function in (3.12).

3.4.1 A Toy Example To Illustrate The Use Of Potentials

To illustrate the use of diagonal and non-diagonal potentials we look at the

function

f(x) = 1− 2x2,

placed into R3 by (x, y, z) = (x, f(x), 0). We sample the function uniformly in x,

[−1, 1], 201 times (interval width of 0.01). In Figure 3.2 (a) we see the original

data set. Using the LE algorithm we can produce the 2-dimensional representation

of the data set seen in 3.2 (b); this is trivial due to the construction of the three

dimensional data set lying on the x-y coordinate hyperplane. In Figure 3.2 (c)-(f)

we apply a diagonal potential,

V (i, j) =

1, i, j = 101

0, otherwise,

to the x = 0 coordinate. We can see that as α increases in value the x = 0 coordinate

in the embedding gets pulled toward the origin. As the x = 0 coordinate is connected

with its neighbors in the graph construction, the neighbors of x = 0 also get pulled

toward the origin. In Figure 3.2 (g)-(j), we apply a cluster potential between the

47

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 3.2: (a) Original data, (b) LE representation (c)-(f) SE with diagonal

potential placed at x = 0, α = 0.01, 0.05, 0.1, 0.5. (g)-(j) SE with cluster potential

placed between at x = −1 and x = 1, α = 0.001, 0.01, 0.1, 1.0.

x = −1 and x = 1 coordinates,

V (i, j) =

−1, i = 1 and j = 201 or i = 201 and j = 1

1, i, j = 1 or i, j = 201

0, otherwise.

(3.13)

In this case, as α increases, the two points in the embedding are pulled together,

toward their centroid.

48

3.4.2 A Brief Discussion on Intrinsic Dimension, Heat Kernel Param-

eter, and k-Nearest Neighborhood Construction

In this section we will discuss 3 parameters which are common to the LE and

SE algorithms.

The dimension which we seek to project into d, must be chosen to carefully

balance the computational cost of calculating extra eigenvectors and the added

benefit of being able to distinguish data points better. This optimal projection

dimension, also known as the intrinsic dimension, is difficult to choose. With toy

examples, such as the Helix presented in Figure 3.1, the intrinsic is easy to realize,

in this case 2. Of the algorithmic predictors of intrinsic dimension, there exist,

q-Dimension, Capacity dimension, Information dimension, Correlation dimension,

PCA and local PCA. A summary of all of these techniques can be found in [93].

In practice we have found that the PCA dimension, which calls for looking at the

spectrum from PCA, gives the only practical results.

The parameter σ in the heat kernel control the spread of information in the

graph. A small value will force the cost function to concentrate on only the nearest

of the kNN. A larger value will allow for a more balanced approach; closer kNN will

still play a larger role in the minimization, but further kNN will have a non-trivial

effect. This parameter is chosen in practice either experimentally or algorithmically.

By looking at the effect different values have on the histogram of the kernel, an

experimentally derived value can be found. An algorithmic solution is to take the

mean or median row sum of the kernel.

49

There are two basic ways to select nearest neighbors, either ε-balls or kNN.

ε-balls choose nearest neighbors for a point x as all other data points a distance ε

away. This is problematic to implement in an approximate fashion, as we will discuss

in Chapter 5.2, and the sparsity level of the resultant kernel matrix is difficult to

control. kNN, on the other hand is relatively easy to implement and gives an

exact sparsity level. Choosing the number k is also vital, as we want to balance

the computational burdens of having a less sparse graph with fully describing the

connections between data points in the form of edges. In practice we have found

that choosing a k that is slightly larger than the minimum k required to have a fully

connected graph produces adequate classification results. Also related to the choice

of the parameter k is the procedure used to symmetrize the kernel resultant for the

graph. kNN neighborhood construction algorithms, unlike ε-ball algorithms do not

produce undirected graphs, so a method must be devised so as to symmetrize the

kernel. We have chosen to simply remove all edge directedness, by adding all edges

necessary to ensure a undirected graph. Other options are to only consider an edge

if two points are mutual kNN. This procedure will often result in non-connected

graphs so adding a spanning tree is required. Another choice, which we will explore

more fully in Chapter 7, is which distance measure to use to determine kNN: Lp,

vector angle, Mahalanobis, are all possible choices. Again, we have found that L2

works well with a wide variety of data.

50

Chapter 4

The Preimage Problem

In Sections 3.1 to 3.4 we mainly focused on the feature space; this was because

in the feature space it becomes easier to make comparisons between data points.

As a result of the dimension reduction process, the data becomes organized and

concentrated in less dimensions. However, it is also interesting to consider the

mapping back from the feature space to the original space. We will refer to this

mapping as the preimage [117]. We see many possible applications to this idea, for

example if two data sources are fused by an analyst in a feature space, it would

be illustrative to see what that fusion would look like in a more natural space to

the analyst, i.e., the original data space. Thus, the preimage offers a means to use

feature space based fusion with the promise that the fused product can be viewed

in the original space if desired.

4.1 Kernel PCA Preimage

With the popularity of non-linear manifold learning techniques such as KPCA

and LE surpassing those of linear techniques, such as PCA, vast improvements have

been seen in many fields of study such as classification and feature extraction. One

problem however with these non-linear techniques is the lack of an easily calculable

preimage. Unlike with PCA, which is an invertible method, non-linear techniques

51

are not invertible and generally an exact preimage does not exist. Recent work has

however shown that it is possible to find an approximate preimage for a feature

space constructed using KPCA.

First let us define a preimage.

Definition 4.1.1 (Preimage). Given a dimension reduction mapping, Φ : RD 7→ Rd,

the preimage of y ∈ Rd is x ∈ RD such that Φ(x) = y.

The difficulty of finding the preimage is that it may not always exist. In [103]

the authors illustrate this with a dataset made up of a line in RD. Since the dataset

is intrinsically two-dimensional, after the dimension reduction mapping,

Φ : RD 7→ R2,

all the qualities of the dataset would be preserved by a line in R2. Now, in the feature

space, insert a point which does not lie on the 2-dimensional line; the preimage of this

point does not exist. Since it is possible to develop situations where the preimage

does not exist, instead of trying to find an exact preimage, we should look for one

which is merely close, i.e. an approximate preimage.

Definition 4.1.2 (Approximate Preimage). Given a dimension reduction mapping,

Φ : RD 7→ Rd, the approximate preimage of of y ∈ Rd is x ∈ RD such that

x = arg min
x∈RD

‖Φ(x)− y‖2. (4.1)

Finding an approximate preimage by minimizing the distance in (4.1) has been

studied in the past but it requires a closed form definition of the mapping, which

52

we don’t have. In [1], an application of the Nyström out of sample extension allows

for the solution to the preimage problem to be phrased as:

x = arg min
x∈RD

‖EKx − y‖2. (4.2)

where, E ∈ Rm×n is the Nyström out of sample extension and Kx is the kernel vector

evaluation of the point x, i.e., Kx = [K(x, x1), . . . , K(x, xN)] and (Kx)i = K(x, xi).

Next we will need the definition of the Moore-Penrose pseudoinverse.

Definition 4.1.3 (Moore-Penrose pseudoinverse). The Moore-Penrose pseudoin-

verse of m× n matrix A, is A† such that the following hold

1. AA†A = A

2. A†AA† = A†

3. (AA†)∗ = AA†

4. (A†A)∗ = A†A.

Now, using the Moore-Penrose pseudoinverse, we are able to solve (4.2) for an

optimal Kx:

K̂x = E†y. (4.3)

For KPCA, see [118], we know that the kernel matrix has the form:

K(x, y) = e−
‖x−y‖22

2σ2 . (4.4)

Now if we apply the log function to (4.4) we are able to state the distance between

53

data points as,

‖x− y‖2
2 = −2σ2 log(K(x, y))

= −2σ2 log(K̂(x, y)), (4.5)

where (4.5) comes from (4.3). In our compact notion (4.5) becomes:

‖x− xi‖2 = −2σ2 log((K̂x)i). (4.6)

The preimage problem can now be solved using MDS in [87].

4.2 Laplacian Eigenmap Preimage

Due to the nearest neighbor condition in LE, the relation (4.6) is not readily

available. This is because (Kx)i is a function of ‖x − xi‖2 for all xi ∈ N (x), the

nearest neighbors of x. We are thus forced to develop new techniques. The problem

can be traced to Nyström extension of the LE kernel [20], which we will discuss in

Chapter 7:

K(x, xi) =
k(x, xi)√∑N

j=1 k̃(x, xj)
∑N

j=1 k̃(xi, xj)
,

where k̃(x, xj) is the kernel restricted to the nearest neighbors of x. In the denomi-

nator,

n∑
j=1

k̃(x, xj),

(Kx)i depends simultaneously on all ‖x − xj‖2, j ∈ {1, ..., N}. Since we have a

sparse kernel defined by the nearest neighbors, let us specify that there are c many

54

neighbors for x, i.e., c many non-zeros. To allow for easier calculations let:

ej = k(x, xj)

= e−‖x−xj‖
2
2/2σ

2

.

Now let e = [e1, . . . , ec] be the vector holding all the nearest neighbors weights

which contribute to Kx, with

(Kx)ij =
ej√∑

l el
∑

xl∈N (xij) k(xij , xl)
. (4.7)

We are able to manipulate (4.7),

1

(Kx)ij
=

√∑
l el
√∑

xl∈N (xij) k(xij , xl)

ej
ej√∑
l el

= (Kx)ij

√ ∑
xl∈N (xij)

k(xij , xl)

e2
j∑
l el

= ((Kx)ij)
2
∑

xl∈N (xij)

k(xij , xl)

e2
j = aj

∑
l

el,

to obtain a system of c equations

e2
j − a2

j

∑
l

el = 0, (4.8)

1 ≤ j ≤ c, where

aj = (Kx)ij

√ ∑
xl∈N (xij)

k(xij , xl).

The non linear system of equations in (4.8) now needs to be solved. The

first obvious choice is Newton’s method, which can be used to find the solution

if conditioned to avoid the trivial solution. However, we can do better by using

55

inequality constrained quadratic programming because we can take advantage of

the structure in the LE kernel. Let us rewrite (4.8) as,

min
e
‖A(e)‖2,

where Ai(e) = e2
i − a2

i

∑
j ej.

If we now assume that the ai’s are ordered such a1 ≥ a2 ≥ ... ≥ ac we can

constrain the minimization such that we get 1 ≥ e1 ≥ ... ≥ ec ≥ 0. This ordering is

naturally what we would expect in the kernel amongst the nearest neighbors. Let

us now define a matrix B to hold our constraints:

Bi,j =

−1 + α(i) if j = i,

1 if j = i+ 1,

0 otherwise,

where α is a function which controls the spread of the weights in the kernel. We

can learn such a function by studying the distribution of the weights in the rows of

the kernel, but for simplicity, let α be the constant function, α(i) = ᾱ. Finally let

the inequality contained quadratic programming solution to (4.8) be:

min
e,B(e)<0

‖A(e)‖2. (4.9)

Given a means now to solve for the ej’s, we can find the distances in the

original space for the neighbors of x:

‖x− xij‖2
2 = −2σ2 log(ej), xij ∈ N (x).

We have now shown a means to solve for distances in the original space, we now

proceed by the methods outlined in [87] to calculate x.

56

Table 4.1 demonstrates the advantages of using the inequality constrained

quadratic programming approach over Newton’s method. In this experiment, the

true ej = k(x, xj) were generated as uniform random variables with 2
3
< ej < 1.

The kNN was set to 25. Noise of various standard deviations, where the standard

deviation is determined as a percentage of maximum entry in Kx, were added to Kx

after it is calculated from ej, j ∈ {1, ..., 25}. The error is taken to be ‖ê− e‖2/‖e‖2.

We can see from the results that the inequality contained quadratic programming

outperforms Newton’s method in its stability in the presence of noise. For future

calculations we will make use of (4.9).

σ = 2% σ = 4% σ = 6%

Newton’s Method 0.0269 0.0575 0.0837

Constrained Quadratic Programming 0.0187 0.0347 0.0487

Table 4.1: Comparison of Newton’s Method to Constrained Quadratic Programming

in the solution of (4.8). Columns are the added noise corresponding to p% of the

max of Kx.

In [40] an extension to this method is offered. To deal with the noise inherent

in the process, an L1 regularization scheme is applied to the techniques developed

here.

In Table 4.2 we look at denoising the MNIST dataset [91] seen in Figure 4.1

with KPCA, LE, and LE with L1 regularization preimage techniques. This dataset

is composed of a collection of 28 × 28 gray scale hand written digits from 0 to 9.

57

For each digit the dataset contains 2000 images, we select at random 200 of these to

train our system. The system was trained by embedding the set of images, treated

as a matrix of size 2000 × 282, i.e. each image is converted to a 1 × 282 vector.

In the dimension reduction procedure the images are observations and the pixels

contained in the image are the variables. Now, given a non training sample, we

apply white Gaussian noise, project it into the feature space using a Nyström out

of sample extension, see Chapter 7, and then use the preimage routines to pull back

the sample into the image space. Since the preimage was calculated using nearest

neighbors which do not have noise added, when the sample is pulled back to the

image space it should be denoised. Once back in the image space we can use the

SNR to evaluate the denoising procedure.

Figure 4.1: A collection of ten of each digit from the MNIST Digits database.

58

σ2 = .2 σ2 = .4 σ2 = .6

Digit KPCA LE LE(L1) KPCA LE LE(L1) KPCA LE LE(L1)

0 4.28 2.38 5.38 4.08 2.44 5.09 4.20 1.41 4.75

1 5.37 3.77 4.85 5.02 3.72 4.64 5.13 3.84 4.45

2 4.27 2.33 5.12 3.92 2.28 4.76 3.68 2.32 4.54

3 4.17 1.49 4.73 4.02 2.20 4.30 3.94 1.61 4.32

4 3.66 2.45 4.65 3.66 2.15 4.32 3.37 1.63 3.72

5 3.54 1.92 4.63 3.48 1.37 4.39 3.35 2.57 3.99

6 4.20 2.05 5.41 3.98 2.16 5.07 3.99 1.61 4.85

7 4.33 3.23 4.85 4.35 2.43 4.50 4.04 2.92 3.90

8 3.68 1.80 4.44 3.33 2.36 4.16 3.55 1.97 4.10

9 3.97 2.62 4.72 3.76 1.58 4.25 3.67 2.49 4.01

Table 4.2: SNR for Kernel PCA, LE, and LE with L1 Regularization (LE(L1))

The results in Table 4.2 make it clear that the LE preimage, especially with L1

regularization, is a comparable method to KPCA. The LE with L1 regularization

preimage is only beaten by the KPCA preimage for the 1’s digit; this is to be

expected since the digit one is linear and KPCA linearizes the underlying manifold.

LE has the advantage of being computationally less costly then KPCA; as LE utilizes

a sparse kernel and KPCA does not. As the number of elements in the dataset or

pixels in the image increase, even the non L1 regularized version of the LE preimage

routine becomes appealing. It it also advantageous to work with LE, as opposed

59

to KPCA, because LE in reality is a feature extraction tool. The fact that LE

without L1 regularization was comparable to KPCA, and LE with L1 regularization

outperformed KPCA in most cases with reduced dimensions is very promising.

We are currently looking at the preimage technique for the application of

inpainting and fusion of remote sensing data, see [40]. The preimage would be used

in conjunction with the feature space rotation fusion method which we will discuss

in Chapter 6. We note that the preimage of the Schödinger Eigenmaps analysis is

a direct extension of the preimage method built here.

60

Chapter 5

Numerical Acceleration Methods for Dimension Reduction

Using the LE algorithm on large data sets and the problem of data fusion are

intimately tied. For our theories on data fusion to be practical, they must be able

to scale with the size of the data sources encountered. As with the problem of high

dimensionality in data, which we solved using dimension reduction, the problem of

high sample count can also be dealt with by harmonic analysis.

Nonlinear dimension reduction techniques, like the ones discussed in Chapter

3, can be summed up in three steps:

1. Select a representative collection of nearest neighbors for each data point.

2. Assign an appropriate weight to each pair of nearest neighbors thus represent-

ing the data as a weighted graph.

3. Minimize a cost function on the graph to find the lower dimensional represen-

tation .

Steps 1 and 3 in the above enumeration are computationally expensive, so we will

seek means to accelerate their computation. Step 2 in practice is usually calculated

as a byproduct of Step 1 thus by addressing Step 1 we will indirectly address Step

2.

For the first step, assuming that the dimensionality of the data is D, an exact

nearest neighbor search requires the computing of N2 distances, where N is the

61

number of data points; this results in a complexity of O(DN2). Big-Oh, O(·), is a

means to measure the computational complexity of an algorithm. It indicates, in

the limit case, the number of operations that an algorithm needs to execute before

completing and gives a general idea of the effect on execution time of increasing the

input data size. We can alleviate this computational complexity by performing an

approximate nearest neighbor search. This will be discussed in Section 5.2 and will

allow us to lower the exponent for the nearest neighbor search complexity from 2 to

a number in the range (1,2). We can also reduce the length of the vectors we are

measuring the distance between, from D to M < D, by using Random Projections;

we will discuss this in Section 5.1. Random Projections will reduce the constant D

to M with only a small amount of additional overhead.

For the third step, the eigendecomposition of the resulting kernel matrix has

complexity O(N3). The Nyström method, which we will be discussed in Chapter

7, offers a way to approximate the eigendecomposition in much less time. This is

accomplished by computing the eigendecomposition on only a small sub matrix of

the kernel matrix made up of Nyström or landmark points. This result can then be

extend, using the Nyström extension, to the rest of the kernel matrix. The Nyström

method will reduce the base of the exponent from N to `, where is ` is the number

of landmarks chosen; thus reducing the computational cost significantly.

62

5.1 Random Projections

Random Projections, borrowing its theory from the field of compressive sens-

ing/sampling (CS), seeks to project the data from a D dimensional space to an M

dimensional space. The projection is linear and is not data dependent, only the pa-

rameter M must be chosen. The theory of CS states that every signal xi ∈ X ⊂ RD

which is K-sparse can be recovered with high probability using M linear measure-

ments zi, zi = xiΦ where Φ is M × N independent and identically distributed

Gaussian entries.

Using the Theorem 5.1.1 from [75], which gives a probabilistic bound for the

error associated with using Random Projections with Laplacian Eigenmaps, and the

work in [4] we can use Random Projections as a preprocessing step to reduce the

dimensionality of the data set and then apply the Laplacian Eigenmaps algorithm.

Theorem 5.1.1 (Halevey, 2011). Given a data set {x1, . . . , xN} ∈ RD, sampled

from a compact d-dimensional Riemannian manifold, assume 0 < ‖xi − xj‖ ≤ A <

∞,∀i 6= j. Let 0 ≤ λ1 < · · · < λd be the first d non-zero eigenvalues computed by

Laplacian Eigenmaps algorithm, assumed simple, with r the minimum eigengap and

let fi be a normalized eigenvector corresponding to λi. Use a random orthoprojector

Φ to map the points to RM . Let f̂j be the jth eigenvector computed by Laplacian

Eigenmaps for the projected data set. Fix 0 < α < 1 and 0 < ρ < 1. If

M ≥ 4− 2 ln(1/ρ)

ε2/200 + ε3/3000
K ln

(
CKD

ε

)
, where ε =

rα

4AN(N − 1)
,

then, with probability at least 1 − ρ, ‖fi − f̂i‖ < α. C = 1900RV
τ1/3

where R is the

geodesic covering regularity, V is the volume, and τ−1 is the condition number of

63

the manifold.

Projecting the data from D to M dimensional space using random projec-

tions requires only the complexity of a matrix-matrix product, but offers a savings

of O(N2(D − M)) when computing the nearest neighbors required in the graph

construction.

In Figure 5.1, we decrease the ratio between M and D for the Laplacian

Eigenmaps analysis of the Indian Pines and measure percent time change and per-

cent accuracy change in classification. The time change decreases gradually while

the percent accuracy change remains approximately constant for all but the smallest

ratio.

Figure 5.1: Time savings and percent change in classification accuracy for Indian

Pines as a function of percent reduction by Random Projections.

64

5.2 Approximate Nearest Neighbors

As previously discussed, one of the most computationally expensive steps dur-

ing any nonlinear dimension reduction procedure is choosing the kNN for the graph

construction. To find the kNN for a set of N data points in D dimensional space in

an exact fashion requires O(DN2) time because we are finding N2 inner-products

of length D.

There are number of approximate nearest neighbor algorithms that have been

developed to deal with the large computational cost. For example, Locality-sensitive

Hashing [52], Best Bin First [6], Clustered Point Sets Search [2], and Divide and

Conquer with Recursive Lanczos Bisection [35]. For this thesis we will look at

the Divide and Conquer with Recursive Lanczos Bisection. The basic idea of the

method is to iteratively split the data set into two overlapping subsets until the

subsets become small enough such that a brute force calculation is feasible. These

subsets are then rejoined and only the kNN are retained for each data point. We

can think of the algorithm as having three main phases that are recursively called.

The Divide phase is responsible for splitting the data into approximately equal

subsets. This is accomplished by using the leading eigenvector of the Singular Value

Decomposition (SVD) of the centered data. First mean center X to form X̃:

X̃ = X −mX1,

where mX is the D × 1 spectral mean of X. Now we find the SVD of X̃,

X̃ = UΣV T .

65

Let (u`, σ`, v`) denote the largest triplet. If we define a hyperplane as 〈u, x〉 = 0, X̃

is divided into two sets based on the sign of uT x̃i. We note that the hyperplane,

〈u, x〉 = 0, maximizes the sum of the squared distance from each point x̃i to the

hyperplane,

N∑
i=1

=
∥∥∥uT X̃∥∥∥2

2
=
∥∥σvT∥∥2

2
= σ2.

Noting the relationship, uT x̃i = σv, and that σ > 0, it is convenient then to

divide X based on the sign of v. To find the largest triplet, the Lanczos algorithm

[46] can be used.

The Lanczos algorithm constructs an orthonormal basis, Q, from a random

unit vector q and small integer s to the Krylov subspace,

Q = [q, (X̃T X̃)q, . . . , (X̃T X̃)s−1q].

Then, if we let T = QT (X̃T X̃)Q, the largest triplet of T will approximate the largest

triplet of X̃ in only O(sDN).

However, for data which is close to the hyperplane, it is possible that its

nearest neighbors lie on either side of the hyperplane. The inclusion of the overlap

parameter, α, allows for points near the hyperplane to be included in both subsets.

This is accomplished splitting the data not based on the sign of the coefficients but

by ≤ t and ≥ −t where t is the αth percentile of the absolute value of the coefficients.

The Brute phase is performed once the now split data sets have size less than a

chosen parameter β. This threshold, β, is chosen based on the computer architecture

to balance taking unnecessary further Divide phases with the large cost of computing

66

all pairwise distances. The Brute phase retains only the (k + 1)NN for each data

point, the requested kNN and itself.

The Conquer phase is performed once the Brute phase has been completed

for both divided data sets. During the Conquer phase any data points that were

included in the overlap section have their kNN chosen from distances retained during

each Brute phase.

The ANN algorithm is summarized in pseudo code in Algorithm 5.2.1, The

time complexity of the ANN algorithm is summarized in the following theorem.

Theorem 5.2.1 (Cormen[45], 2001). The time complexity for the divide and conquer

method is O(DN t0), where

t0 = log 2
1+α

2 =
1

1− log2(1 + α)
.

From Theorem 5.2.1 is it easy to calculate time complexity for several different

α values; in Figure 5.2 we see a plot of α vs. t0, where the time complexity is

O(DN t0).

67

Figure 5.2: A comparison of time complexity O(DN t0) vs overlap parameter α in

the ANN algorithm

In practice, with an α value equal to 0.1 and β determined by the amount of

memory present in the system, we find that the neighborhood are only marginally

dissimilar and the runtime goes from hours to minutes for scenes with larger than

100, 000 pixels. We also notice that for the purposes of classification, the results are

almost identical. For example in the Indian Pines scene with Laplacian Eigenmaps

we see an approximate 400 percent decrease in the graph construction phase with

less than 1 percentage point change in classification accuracy. For the methods of

Chapter 6 we will use the ANN algorithm for all analysis with α = 0.1.

It should be noted that this algorithm would fit well into a parallel implemen-

tation because after each Divide step, the resulting two split data sets could be sent

off to a separate processor.

68

Algorithm 5.2.1: ANN

Data: A N ×D data set X, number of nearest neighbors k, overlap

percentage α, and brute calculation number β.

Result: A sparse graph G.

if Size(X) ≤ β then

[G]=BRUTE(X,k)

else

[X1,X2]=DIVIDE(X,α)

[G1] = ANN(X1,k,α,β)

[G2] = ANN(X2,k,α,β)

[G] = CONQUER(G1,G2,k)

end

69

Chapter 6

Data Fusion

As discussed in Chapter 1, data fusion is a technique that can encompass

many aspects of data analysis. For example, In the remote sensing community,

data fusion is referred to as many different types of data analysis pan-sharpening or

band sharpening, [27, 107, 71], is a technique where two sources of data, one high

spectral and low spatial fidelity, and another source of low spectral and high spatial

fidelity are combined to approximate a high spectral and high spatial data source.

This technique allows the user to improve the spatial fidelity of the high spectral

fidelity data source without developing a more expense sensor. Another place where

data fusion is used in the remote sensing community is in image registration, see,

e.g., [90, 49, 130]. This problem involves finding pixel-to-pixel registration between

two data sets, possibly taken with different sensors or temporally separated. The

problem of classification, discussed earlier in Chapter 2, can also be viewed as a

fusion problem. Here we are fusing a set of partially labeled pixels with a spectral

data set describing all the pixels. Yet another example of data fusion in the remote

sensing community is the color selection problem, see, e.g., [78, 84, 60]. Here an

analyst is required to select, from a multidimensional data source, the three most

important channels, or a 3 dimensional feature space representation of the data, to

view in a traditional RGB or HSV color space.

70

In this chapter we shall look at a more traditional type of data fusion with

respect to remote sensing data sources: the fusion of two or more disparate types of

information into a common product. We shall apply the harmonic analysis concepts

developed in the previous chapters to help to accomplish this task. First, we shall

look at the problem of spatial-spectral data fusion. Spatial-spectral fusion has been

researched over the past decade as a means to improve image classification, anomaly

detection, change detection, and target detection results. This fusion method im-

proves the results by making use of the inherent spatial information contained in

the scene acquired by a hyperspectral sensor. We will only study fusion in regards

to image classification, but we will provide justification for our fusion technique ap-

plications to the other problems of remote sensing in Section 6.5. Next, we move

on to the fusion of LIDAR and hyperspectral data and then multiple hyperspectral

data sources. These are both newer problems in the remote sensing community due

to the proliferation of different types of sensors. Next, we explore how to accom-

plish these fusions without an a priori point registration. Finally, we will look at a

novel application of SE analysis to hyperspectral data with limited ground truth as

a means to fuse hyperspectral data with expert analysis. The types of fusion we are

exploring here, spatial/spectral, LIDAR/HS, multiple HSIs, are just an example of

the types of data we can study. The focus of our fusion methodology is building

techniques that are not data dependent. By relying on a graph theoretic represen-

tation of the data sources, we can readily move our algorithms to different problem

domains; the only limitation is developing a measure of similarity for defining the

graph. We show an example of developing such a similarity measure, the Minimum

71

Path Gradient Distance, in reference to LIDAR data.

6.1 Spatial-Spectral Fusion

State of the art methods of analyzing hyperspectral data have primarily fo-

cused on studying the spectral information contained in the N ×D data set. How-

ever, spatial information is intrinsically included within hyperspectral images. Of-

ten, spatial information has largely been ignored in hyperspectral image analysis

and dimension reduction algorithms which treat data as belonging to a point cloud.

Recent work has sought to incorporate this spatial information into a coherent

product that improves classification results compared to a single sensor by means

of data fusion [66]. Current strategies to integrate spatial and spectral information

include the use of wavelet packets [16, 15, 68], modified distance metrics for graph

construction [104], combining spectral classification with image segmentation results

[125], spatially weighted normalized cuts [72], and adding spatial information in

spectral band grouping [94]. Other approaches include using iterative information

spreading on the data-dependent graphs with SVM to label unknown classes [31,

30, 32], using spatially motivated morphological profiles [64], creating end member

sets which are spatially weighted [111], multilevel segmentation [28] or combining

segmentation with pixel classification maps [126].

It is within the dimension reduction process that we see opportunities at the

graph level, the operator level, and the feature space level, to fuse the multiple

data sources in a unique way, which shall improve upon the state of the art. Our

72

methods, by design, do not rely on pre- and post-processing of the data and use

simple classifiers. By developing algorithms which seek to create a new unified

representation of the data, our techniques can be easily combined with different

classifiers, majority voting, output smoothing, cloud and vegetation masks, all of

which can further improve the numerical outputs. By treating the data studied

broadly, i.e. without using pre- and post- processing, data specific tools, we believe

that our methods can be applied to not just the remote sensing field but to entirely

different scientific fields. For example early forms of our ideas were used in the

study of gene expressions combined with chromosomal locations [112]. Our goal

is to find meaningful ways of including spatial information, which is acquired with

no additional cost, with the hyperspectral data in Laplacian Eigenmaps framework.

To accomplish this, we studied the effect of introducing spatial information in each

phase of the Laplacian Eigenmaps algorithm, separately and simultaneously. Initial

work in this domain has been published as [13, 14, 62].

6.1.1 Laplacian Eigenmap Analysis of Hyperspectral Data

Recall that we can think of a m×n×D hyperspectral image, Imhsi, as being

a collection of mn = N , D-dimensional vectors. If we form a matrix X, such that

each row corresponds to a hyperspectral pixel (D-dimension vector) then we have a

N ×D matrix. The rows of X correspond to the pixels in Imhsi, and the columns

correspond to the discretely sampled light spectrum that the hyperspectral sensor

recorded.

73

As a baseline for our analysis, we first look at Spectral Laplacian Eigenmaps

which have been previously used to analyze hyperspectral data in [135]. We are

defining Spectral Laplacian Eigenmaps to be the standard Laplacian Eigenmaps

algorithm where the L2 distance between two pixels’ spectra is used to determine

the nearest neighbors and the weights of the kernel matrix. For Section 6.1 we set the

number of nearest neighbors, k to be 20 for all three scenes. This number was chosen

to ensure that the graph was connected. We also set d, the intrinsic dimension, to

25 for Pavia University and Pavia Centre and 50 for Indian Pines. These dimensions

were chosen to roughly represent the material complexity in the scenes and be the

number of eigenimages such that any additional eigenimages would not change the

classification results. We choose Indian Pines to have a greater intrinsic dimension

because the ground truth had classes which were spectrally very close together, i.e.,

corn and soybeans as different maturity levels.

In Figures 6.1, 6.2, and 6.3 we can see several of the eigenimages that are

produced by the Spectral Laplacian Eigenmaps algorithms on three test data sets,

Pavia University, Pavia Centre, and Indian Pines. Eigenimages correspond to the

eigenvectors produced by the Laplacian Eigenmaps algorithm which are reshaped

to form a matrix corresponding to the original dimensions of the hyperspectral

image. So for an eigenvector, φr, which represents the rth dimension of the lower

dimensional embedding found by the LE algorithm, we reshape φr to form an image

Imr as such:

74

Imr =

φr(1) φr(m+ 1) φr(2m+ 1) . . . φr((n− 1)m+ 1)

φr(2) φr(m+ 2) φr(2m+ 2) . . . φr((n− 1)m+ 2)

...
...

... . . .
...

φr(m) φr(2m) φr(3m) . . . φr(nm)

.

All the eigenimages, Imr, for r = 1, . . . , d, can now be collected to form a m×n× d

matrix Y . The matrix Y can be thought of as the lower dimensional representation

of X. The eigenimages are colored using a linear scale determined by the minimum

and maximum value present in the eigenimage; colors only hold meaning in that

two pixels which share the same color have been determined to be close by the LE

algorithm.

The eigenimages that are presented here seem to work well as a feature extrac-

tion algorithm, as we know Laplacian Eigenmaps does well in practice. In Figure 6.4

and Table 6.1 we see the classification results for the Spectral Laplacian Eigenmap

analysis.

Figure 6.1: Several eigenimages from Pavia University scene.

75

Figure 6.2: Several eigenimages from Pavia Centre scene.

Figure 6.3: Several eigenimages from Indian Pines scene.

76

(a) (b) (c)

Figure 6.4: Class maps for (a) Pavia University scene, (b) Pavia Centre scene,

and (c) Indian Pines scene, using spectral Laplacian Eigenmaps.

6.1.2 Spatial Laplacian Eigenmap Analysis of Hyperspectral Data

We first motivate how we can improve on results of the Spectral Laplacian

Eigenmaps analysis by looking at the results of running Spatial Laplacian Eigenmaps

on Xs, the N × 2 array of purely spatial information, i.e., if a pixel x is located in

the ith row and jth column of Imhsi, then let:

Xs(i+ (j − 1)n, 1) = i and Xs(i+ (j − 1)n, 2) = j. (6.1)

Spatial Laplacian Eigenmaps, like Spectral Laplacian Eigenmaps, uses the standard

Laplacian Eigenmaps algorithm but with the L2 distance between pixel locations

on the m× n positive integer grid, where the origin is selected to be the upper left

corner of the image, to select nearest neighbors and the weights in the kernel matrix.

77

The Spatial Laplacian Eigenmaps results provide a means of measuring to

what degree the ground truth classes are spatially interspersed. In Figure 6.5 and

Table 6.1, we can see the classification results for Spectral Laplacian Eigenmaps and

Spatial Laplacian Eigenmap analysis of our three test images.

Spectral Spatial

P
av

ia
U

n
iv

er
si

ty
OA 73.26 89.94

AA 72.15 82.07

κ 0.6440 0.8593

P
av

ia
C

en
tr

e

OA 81.16 93.89

AA 57.25 80.97

κ 0.6736 0.8948

In
d
ia

n
P

in
es OA 60.41 78.78

AA 55.52 71.61

κ 0.5491 0.7577

Table 6.1: Spatial and Spectral Laplacian Eigenmaps Classification Results

78

(a) (b) (c)

Figure 6.5: Class maps for (a) Pavia University scene, (b) Pavia Centre scene

and (c) Indian Pines scene, using Spatial Laplacian Eigenmaps.

6.1.3 Feature Space Stacking

A first attempt at fusion, and perhaps the most naive, would be in the feature

space. Here we can combine eigenvectors obtained by our two initial methods,

Spectral and Spatial Laplacian Eigenmaps, by stacking the resulting eigenvectors

and then applying a classifier. In Table 6.2 we present the classification results

obtained by stacking different ratios of the Spatial Laplacian Eigenmap eigenvectors

with the Spectral Laplacian Eigenmap eigenvectors. To arrive at a better comparison

with our other methods, we force the total the number of stacked feature vectors to

be consistent with the chosen intrinsic dimensions which are 25 for the Pavia scenes

and 50 for the Indian Pines scene. In Table 6.2 the columns indicate the ratio of

79

primary, i.e. the ordering which minimize (3.11), spatial eigenvectors to spectral

eigenvectors chosen for this experiment.

[100p%] Primary Spatial and [100(1− p)%] Primary Spectral Vectors

0 0.08 0.16 0.4 0.6 0.84 0.92 1.00

P
av

ia
U

n
iv

er
si

ty

OA 73.26 89.91 92.24 95.99 97.48 98.22 96.44 89.44

AA 72.15 87.39 91.08 95.06 96.84 97.63 95.09 82.07

κ 0.6440 0.8652 0.8970 0.9465 0.9664 0.9764 0.9525 0.8593

P
av

ia
C

en
tr

e

OA 81.16 84.46 86.70 92.64 93.77 94.39 94.53 93.89

AA 57.25 61.16 68.47 82.31 83.05 84.15 84.26 80.97

κ 0.6736 0.7278 0.7669 0.8722 0.8925 0.9035 0.9059 0.8948

In
d
ia

n
P

in
es OA 0.6041 78.78 84.77 93.01 96.46 98.17 98.44 97.95

AA 55.52 71.61 79.27 92.35 95.84 97.92 97.88 95.83

κ 0.5491 0.7577 0.8261 0.9204 0.9596 0.9791 0.9822 0.9767

Table 6.2: Feature space fusion overall classification percentage with varying per-

centage of principle spatial feature vectors retained.

The outcome of this analysis is very promising, as the results in Table 6.2 in-

dicate. We can see that after appropriate dimension reduction, choosing a balanced

selection of spatial and spectral eigenvectors allows to significantly increase the clas-

sification rates as compared to the Spectral Laplacian Eigenmap analysis. Further

we see, even including a small amount of spatial information (Column 1 vs Column

80

2 in Table 6.2) that overall classification scores increase by over 15 percentage points

in the Pavia University and Indian Pines scenes. We also see that a purely spatial

classification scheme, which should provide meaningless results but relatively high

classification scores, does not perform the best in Table 6.2. This confirms that

Spectral information is also crucial to the data fusion process. The reason for this

improvement and for the fact that such an arbitrage works is the difference between

the spatial and spectral class maps, which can be exploited via data integration.

6.1.4 Distance Modification

Inspired by the Spatial Local Linear Embedding (SLLE) algorithm [104], we

look to modify it and apply the concept to our LE analysis. The SLLE algorithm

adds spatial information to each pixel, by forming a super pixel, containing the

immediate spatially defined neighborhood’s spectral information. Once the super

pixel data set is created the standard LLE algorithm is executed on the modified

data set. As mentioned earlier and Section 3.3, under some assumptions, LE and

LLE are very similar algorithms, so a straightforward application is possible. We

propose here a modification of the algorithm to allow for different neighborhood

arrangements.

Let us first define a C-neighborhood:

Definition 6.1.1 (C-Neighborhood). Given a non boundary pixel p ∈ X, called

the source pixel, located in a n×m spatial grid corresponding to the number of rows

and columns of X, the pixels, {pi}Ci=1, which have minimum L2 spatial distance from

81

p are the C-Connectivity pixels. This collection of pixels form the C-Neighborhood.

We can break ties which occur by either choosing randomly or choosing the smallest

spectral distance to the source pixel.

Remark 6.1.2. We will here consider two general cases of C-neighborhoods, C =

4, 8. When C = 4, the neighborhood will be the pixels immediately to the north,

south, east, and west. When C = 8, the neighborhood will be the pixels immediately

to the north, south, east, west, north-east, north-west, south-east, and south-west.

Using the C-Neighborhood it is possible to construct a super pixel for each

non boundary pixel in the scene by concatenating the source pixel with is C-

Neighborhood pixels. Now, for our standard D dimensional data set, we have pixels

which are (C + 1)D dimensional. When distances between super pixels are mea-

sured, the distances amongst the local patches are also measured. This forces pixels

that have similar local neighborhoods to be close in the final embedding, not just

similar single pixels. Boundary pixels can be addressed by either using a reflexive

boundary or ignoring them all together as the border of an image contains a small

fraction of the total pixels.

The method discussed in [104] does not however give consideration to the

arrangement of the local neighborhoods. For example, two pixels separated in the

image could have very similar neighborhoods up to a rotation or permutation. This

would be missed by the SLLE algorithm as the super pixel does not take this rotation

or permutation into account. For the special case of 4− and 8−Neighborhoods

we will consider the 4 and 8 rotations, respectively, for the neighborhood. The

82

classification results for the Indian Pines and Pavia Univeristy data set, with normal

kNN, the super pixel kNN from [104], and our optimized super pixel kNN can be

found in Tables 6.3, 6.4, 6.5, and6.6. The corresponding class maps can be found

in Figures 6.6 and 6.7. We see that Super Pixel kNN improves upon the standard

kNN for LE analysis just as was show for LLE. We also see that optimizing the

arrangement of the super pixels, in the Optimized Super Pixel kNN, improved the

classification results as compared with the naive approach. When moving from 4-

Connectivity to 8-Connectivity we notice that the optimized arrangement showed

classification improvement where the naive approach had a decrease in classification

performance. This shows the superiority of the optimized method as increasing the

spatial patch should improve upon results.

kNN Super Pixel kNN Optimized Super Pixel kNN

OA 60.41 62.23 66.58

CA 55.52 60.55 64.49

κ 0.5491 0.5702 0.6189

Table 6.3: Classification results for 4-Connectivity super pixels kNN construction

for LE analysis of Indian Pines.

83

kNN Super Pixel kNN Optimized Super Pixel kNN

OA 60.41 61.30 66.91

CA 55.52 58.06 65.58

κ 0.5491 0.5595 0.6236

Table 6.4: Classification results for 8-Connectivity super pixels kNN construction

for LE analysis of Indian Pines.

(a) kNN (b) 4-SP kNN (c) 4-OSP kNN

(d) 8-SP kNN (e) 8-OSP kNN

Figure 6.6: Class maps for Indian Pines after performing LE analysis on the

graphs constructed from (a)standard kNN, (b) 4-Connectivity Super Pixels, (c) 4-

Connectivity Optimized Super Pixels, (d) 8-Connectivity Super Pixels, and (e) 8-

Connectivity Optimized Super Pixels.

84

kNN Super Pixel kNN Optimized Super Pixel kNN

OA 73.26 74.45 76.45

CA 72.15 72.73 75.12

κ 0.6440 0.6711 0.6872

Table 6.5: Classification results for 4-Connectivity super pixels kNN construction

for LE analysis of Pavia University.

kNN Super Pixel kNN Optimized Super Pixel kNN

OA 73.26 76.36 77.81

CA 72.15 75.89 77.67

κ 0.6440 0.6883 0.7074

Table 6.6: Classification results for 8-Connectivity super pixels kNN construction

for LE analysis of Pavia University.

85

(a) kNN (b) 4-SP kNN (c) 4-OSP kNN

(d) 8-SP kNN (e) 8-OSP kNN

Figure 6.7: Class maps for Pavia University after performing LE analysis on

the graphs constructed from (a)standard kNN, (b) 4-Connectivity Super Pixels, (c)

4-Connectivity Optimized Super Pixels, (d) 8-Connectivity Super Pixels, and (e)

8-Connectivity Optimized Super Pixels.

Remark 6.1.3. We would like to allow for any of the possible permutation of the

86

local neighborhood and then find the minimum distance but this is combinatorially

hard; for the case of 8-connectivity there are 8!=40,320 arrangements to check. This

problem is akin to the assignment problem in combinatorial optimization which has

a O(C3) solution in the form of the Hungarian Algorithm [83]. For our setup this

would require O(C3N2) operations.

6.1.5 Graph Based

Another avenue to explore for data fusion is combining spatial and spectral

information in the graph construction phase of the LE algorithm. Let Gf be the

kNN graph computed using the spectral metric and let Wf be the weight matrix

constructed for a given kNN graph using weights determined by 3.10. Let Gs be the

kNN graph constructed using the spatial metric:

‖xi − xj‖s = ‖s(i)− s(j)‖2,

and let Ws be the weight matrix obtained by replacing the spectral weights with

their spatial analogues. In this spatial-spectral fusion attempt, a global structure is

first defined by the initial construction of Gf using spectral information. Later, by

replacing the weights in the kernel matrix with spatial distances a priority in the

embedding will be given toward preserving distances, between spatially close pixels.

However, since the connections in Gf were spectrally defined, materials with similar

spectra will still be linked in the embedding. We show class maps for our test data

sets in Figure 6.8 and classification results in Table 6.7. .

87

Mixed

P
av

ia
U

n
iv

er
si

ty

OA 73.34

AA 72/24

κ 0.6450

P
av

ia
C

en
tr

e

OA 95.58

AA 87.64

κ 0.9240
In

d
ia

n
P

in
es OA 60.49

AA 55.94

κ 0.5502

Table 6.7: Mixing spectral neighborhoods with spatial weights

88

(a) (b) (c)

Figure 6.8: (a) Pavia University scene, (b) Pavia Centre (c) Indian Pines Scene

using spectral neighborhood construction with spatial kernel.

6.1.6 Operator Based

Having already explored how to fuse data in the graph construction phase

of the Laplacian Eigenmaps, we move onto looking at how to fuse in the operator

phase of the LE algorithm. In this section, we fix G = Gf . We choose to fix the

construction G based on spectral information as to preserve a global perspective to

the embedding. Otherwise, a very local and patchy embedding may result. Spatial

information is introduced by modifying the Laplacian operator, L, in three different

ways. Let Lff be the operator using spectral information for the graph construction

and graph weights and, let Lfs be the operator using spectral information for the

graph construction and spatial information for the graph weights. We define:

89

• L1(σ, η) = Lff (σ) · Lfs(η), where · denotes entry-wise multiplication,

• L2(σ, η) = Lff (σ) + Lfs(η),

• L3(σ, η) = G · (Lff (σ) × Lfs(η)), i.e., we take the usual matrix product of

the two Laplacians and then overlay the sparsity structure determined by the

adjacency matrix.

In this fusion operator based approach to adding spatial information, three

separate methodologies are considered based on how the fused diffusion weight ma-

trix is defined. L1(σ, η) is perhaps the simplest and is akin to defining a new distance

metric which weights spectral and spatial information differently for the diffusion

weights matrix. L2(σ, η), by adding the two diffusion weight matrices separately

allows for pixels are both close spectrally and spatially to dramatically dominate

the imbedding while allowing pixels which are only close in one regard to have

approximately equal importance in the imbedding. L2(σ, η) can viewed as a gen-

eral for of the Schrödinger operator, where the Lfs operator acts like a potential.

L3(σ, η) seeks to take the fusion deeper by considering weights derived from common

neighborhoods amongst pixels. By further requiring the original sparsity structure

be preserved keeps the problem computationally on scale with the fusion operator

approaches.

Across all three data sets (Pavia University, Pavia Centre, and Indian Pines)

we found that a value 0.2 for η and 0.8 for σ produced the best results, σ was set

to 0.8. We performed a simple grid optimization search, varying σ and η between

0.1 and 1.0 in intervals of width 0.1 and choose the pair which gave the heights

90

classification accuracy; we did however notice that there was not a large amount

of variation caused by the parameter selection. In Figures 6.9, 6.10 and 6.11 we

provide the class maps and in Table 6.8 the classification accuracy for for the three

test data sets.

L1 L2 L3

P
av

ia
U

n
iv

er
si

ty
OA 73.92 73.90 73.92

AA 72.53 72.28 72.59

κ 0.6482 0.6525 0.6528

P
av

ia
C

en
tr

e

OA 95.84 95.66 95.80

AA 88.40 87.88 88.20

κ 0.9285 0.9524 0.9279

In
d
ia

n
P

in
es OA 61.30 52.62 64.73

AA 56.56 47.23 61.82

κ 0.5593 0.4587 0.5983

Table 6.8: Operator Fusion Classification Results

91

(a) L1(σ, η) (b) L2(σ, η) (c) L3(σ, η)

Figure 6.9: Pavia University class maps using spectral neighborhood construction

and Fusion Operators kernel matrix construction.

(a) L1(σ, η) (b) L2(σ, η) (c) L3(σ, η)

Figure 6.10: Pavia Centre class maps using spectral neighborhood construction

and Fusion Operators kernel matrix construction.

92

(a) L1(σ, η) (b) L2(σ, η) (c) L3(σ, η)

Figure 6.11: Indian Pines class maps using spectral neighborhood construction

and Fusion Operators kernel matrix construction.

6.1.7 Combining Graph and Operator Fusion

Another way spatial and spectral information can be combined is to adjust

the norm used to determine the knn-graph and the weight matrix. In this manner

we are claiming that by carefully adjusting the norms used to construct the graph

we can inject important spatial information into the optimization phase and thus

favor solutions (eigenimages) that are spatially and spectral motivated. For γ > 0,

we define

‖xi − xj‖γ =
√
‖xi − xj‖2

f + γ‖xi − xj‖2
s.

Let Lγ be the Laplacian operator defined using the kNN graph and weight matrix

determined by ‖ · ‖γ.

The parameter γ allows the user to control how much spatial information to

include in the analysis. Our goal was to choose γ so that the contribution of spatial

information to ‖·‖γ reflects the relative importance of spatial information to spectral

93

information inherent in the image. By choosing such a γ we would guarantee that

two pixels in the image would be considered close with respect to ‖ · ‖γ if and only

if they are close spectrally and “close enough” spatially. Motivated thusly, let γ be

determined as follows.

Let {Ni}Ni=1 be the set of indices for the spectral kNN of the pixel xi. Define

γi to be the ratio of the spectral and spatial spread of this neighborhood:

γi =

∑
j∈Ni ‖xi − xj‖

2
f∑

j∈Ni ‖xi − xj‖2
s

.

Define γ to be the global average of these local weights:

γ =
1

N

N∑
i=1

γi.

In Figures 6.12, 6.13, and 6.14 we present the class maps produced using this metric

with the fusion operators from the previous section. In Table 6.9 we also present

the classification accuracies for this method.

To capture the essence of the results presented in this section we refer again

to Table 6.9, which provides the overall and average classification rates for the

three examples of hyperspectral imagery we have chosen to analyze. Comparing to

the most recent results in the field of spatial-spectral integration for hyperspectral

imagery, we clearly show that our results are in line with those presented recently in

literature, or better, see e.g., in [66]. Moreover, we showed that across the range of

various methods presented in this section, the standard deviation is negligible, and

as such all methods perform equally well. This is due to the fact that varying the

graph constructions with a fixed method for computing the Laplacian, or the varying

the construction of the Laplacian on a fixed graph, amounts to similar results, if done

94

correctly. At the same time, we emphasize that we have introduced a completely

novel approach to spatial-spectral fusion, which possibly can be combined with the

state of the art classification techniques such as those in [131, 22, 127] to provide

additional improvements.

Lf L1 L2 L3 Lγ

P
av

ia
U

n
iv

er
si

ty

OA 97.15 96.99 97.03 98.15 97.14

AA 97.47 97.39 97.39 97.81 97.46

κ 0.9623 0.9603 0.9607 0.9754 0.9622

P
av

ia
C

en
tr

e

OA 95.57 95.81 95.68 95.77 97.28

AA 87.62 88.26 87.94 88.11 92.91

κ 0.9239 0.9280 0.9258 0.9273 0.9532

In
d
ia

n
P

in
es OA 98.81 98.87 98.82 87.95 98.81

AA 98.52 98.56 98.53 78.89 98.52

κ 0.9864 0.9872 0.9865 0.8625 0.9864

Table 6.9: Fusion Metrics Classification Results

95

(a) L(σ, η) (b) L1(σ, η) (c) L2(σ, η)

(d) L3(σ, η) (e) Lγ(σ, η)

Figure 6.12: Pavia University class maps using fusion metric neighborhood con-

struction.

96

(a) L(σ, η) (b) L1(σ, η) (c) L2(σ, η)

(d) L3(σ, η) (e) Lγ(σ, η)

Figure 6.13: Pavia Centre class maps using fusion metric neighborhood construc-

tion.

97

(a) L(σ, η) (b) L1(σ, η) (c) L2(σ, η)

(d) L3(σ, η) (e) Lγ(σ, η)

Figure 6.14: Pavia University class maps using fusion metric neighborhood con-

struction.

6.2 Fusing Hyperspectral and LIDAR Data

Recall from Chapter 2 that LIDAR data represents the height of an object rel-

ative to the earths’ surface. Along withe height information provided by the LIDAR

we will also infer spatial coordinates upon LIDAR data in the same fashion as we

did in 6.1 to create a 3 dimensional set of coordinates for each pixel. In this section,

we will assume that we two data sets, hyperspectral and LIDAR, that have been

co-registered such that the (i, j)th pixel from one data set matches the (i, j)th pixel

from the other. Our goal here, like with the spatial-spectral fusion, is to use the

98

spatial information inherent in the LIDAR data to improve the classification results

of the hyperspectral data. Previous approaches to this problem have attempted to

fuse the data using sparse modeling [33], decision trees [26], diffusion bases [102],

Shape and Spectral Integration (SSI) [121], and Support Vector Machines (SVMs)

[50, 82]. To solve this difficult problem we rely on representation theory of data de-

pendent operators instead. We build on the previous fusion methods in this Chapter

by introducing LIDAR and spatial information, not only spatial information, to the

hyperspectral data. We also develop new concepts in feature space rotation between

distinct sensor outputs. We will first develop a distance measure for LIDAR data

which will help us build a graph representation of the data. Next, we will introduce

a new type of fusion which we will call Feature Space Rotation fusion based on the

ideas of [41]. Finally, we will provide numeric results for two hyperspectral and

LIDAR data sets.

6.2.1 Minimum Path Gradient Distance Algorithm

We introduce here the Minimum Path Gradient Distance (MPGD) as a means

to measure the three dimensional distance between pixels in such a manner that local

structure is preserved. In theory, we want to consider all possible paths between

two pixels in an image and find the one which minimizes the numerical gradient

along the path. This provides a valuable metric by which pixels belonging to a

common class and close in MPGD measure, can be differentiated from pixels from

different classes which are spatially close, or from pixels of the same class, which

99

are spatially separated. Moreover, MPGD provides a feasible way to fuse spatial

and LIDAR data with hyperspectral data. As minimizing over all possible paths is

combinatorially hard, we rely on an approximate solution using spatial clustering

and Dijkstra’s algorithm. Given a m× n LIDAR image ImL:

1. Let mL = mini,j{ImL(i, j)} and ML = maxi,j{ImL(i, j)}. Define a set of NL

levels between mL and ML, i.e. L = {(ML −mL)k +mL}NL−1
k=0 .

2. Label pixels of ImL as belonging to the same class if they are spatially con-

nected (using 8-Connectivity) and their values belong to the same interval

Li = [L(i), L(i+1)] for i = 0, . . . , NL (in essence, a form of quantization). De-

note clusters C = {ci} assigned by the function C with corresponding values

R = {ri} and ImNL

L as the approximate or quantized image.

3. Let GL be the graph with vertices indexed by C found in the previous step:

GL(i, j) =

(ri − rj)2, if ci and cj are connected spatially

0, otherwise

4. To find MPGD between two pixels, DM(xi, xj) ≈ DM(C(xi), C(xj)), use Di-

jkstra’s algorithm on the graph GL.

Dijkstra’s algorithm, [57], reduces the complexity of finding the shortest path

between two vertices in a graph from the brute force case ofO(N2), toO(N logN). It

accomplishes this by spreading out from the source vertex via the edge connections of

the graph and updating the distance from the source vertex to all other vertices while

traveling. By only visiting each vertex once, and always traveling in the direction of

100

the closest vertex, which has not been visited yet, from the source vertex, Dijkstra’s

algorithm is able to drastically reduce the computational burden. Using Dijkstra’s

algorithm thus allows us to efficiently calculate the MPGD. As the number of levels,

NL, increases the approximation, ImNL

L , closer to that of the actual LIDAR image

ImL. The parameter NL thus allows us to balance computational performance and

accuracy.

We have developed the MPGD because we need a robust distance for LIDAR

which can easily return a distance between two requested pixels in LIDAR space.

This distance will be especially powerful in discerning dissimilarity in urban scenes.

For example, given two buildings which are close together spatially, have approxi-

mately the same spectral properties, and are same hight using a traditional LIDAR

distance measure would group the pixels belonging to the two buildings together

in the LIDAR graph representation. Also, since the buildings have approximately

the same spectral properties the hyperspectral derived graph would connect the two

buildings. The MPGD, on the other hand, would only connect the pixels belonging

to each building independently in the graph representation.

The MPGD, unlike morphological profiles, is shape independent in that it

can learn shapes of contiguous objects since their gradient is not likely to change

dramatically.

Remark 6.2.1. We see three possible extensions to the MPGD. The first of which

is to weigh the gradient along the path by the length of the path. This would

constrain the solution to be even more locally focused. The second would be to

101

also consider hyperspectral information during the MPGD calculation. Here we

would be accomplishing our fusion solely during the calculation of the MPGD. This

could be accomplished easily by calculating DM(C(xi), C(xj)) + d(xi, xj), where

d(xi, xj) is the L2 distance between the pixels’ spectra. Third we augment the

hyperspectral data set by adding additional channels derived by the MPGD. In

this scheme we would choose pixels at random or by some deterministic algorithm,

see the landmarking discussion in Chapter 8, and calculate the MPGD to all other

pixels. This N×1 vector of distances would now be added as another channel to the

hyperspectral data set with an appropriate weight. Laplacian Eigenmap analysis,

or any of the developed fusion methods, can now be applied to the augmented

hyperspectral data set.

6.2.2 Feature Space Rotation

In [41], Coifman and Hirn, develop a method which we will call here, Feature

Space Rotation. In their paper they develop their concept for Diffusion Maps but

we will show that LE can be used with it as well. The basic concept of the method

it to learn a rotation from one feature space to another given some amount of pixel

registration between the two embeddings. We will present this method with the

fusing of two data sets, but it can be easily extended to fuse any number of data

sets.

Let us first assume that we are given two data sets, X1 and X2. In our

applications, X1 will be a hyperspectral data set and X2 will be a LIDAR image in

102

Sections 6.2.3 and 6.2.4 or another hyperspectral data set in 6.3.1 and 6.3.2.

Let us also assume that we preformed an LE analysis of both X1 and X2; thus

resulting in the feature space representation of Y1 and Y2 for X1 and X2 resultant

from mappings Φ1 and Φ2. Let the dimension of the feature space, i.e. the number

of retained eigenvectors from the LE minimization phase, be d1 and d2. So we have

Φ1 : X1 7→ Y1 and Φ2 : X2 7→ Y2,

and

Φ1(x) = [φ
(1)
1 (x), . . . , φ

(d1)
1 (x)] and Φ2(x) = [φ

(1)
2 (x), . . . , φ

(d2)
2 (x)].

We now embed Y1 and Y2 into one joint representation space. Without this,

each embedding would have to be considered independently. For this reason, we

define a rotation operator O2→1 : Y2 → Y1 by

O2→1x =

(
d2∑
j=1

xj〈φ(i)
1 , φ

(j)
2 〉

)d1

i=1

. (6.2)

The final step is to fuse the data expressed in Y1 and Y2 into a common

representation. For any x ∈ X1, we concatenate to form:

x̃ = [y1;O2→1y2],

We have now defined a fused feature space where any type of classification

algorithm can therefore be applied. In Figure 6.20 we see a diagram summarizing

the feature space rotation fusion method applied to two data sets, X1 and X2.

In the next two subsections, 6.2.3 and 6.2.4, we use the MPGD in conjunction

with the fusion methodologies developed earlier and the feature space rotation fusion

103

Figure 6.15: Fusion of X1 and X2 via feature space rotation.

to study the Houston and Gulfport scenes. In Section 6.2.3, we again solve the image

classification problem for the Houston data set. In Section 6.2.4, we will introduce

endmember extraction then produce the endmembers and abundance maps on the

fused Gulfport data sets instead of performing image classification, as there is no

available ground truth.

6.2.3 Image Classification

Recall the Houston data set discussed in Section 2.2.1; this data set contains

a LIDAR and hyperspectral image with corresponding ground truth. To establish a

baseline we used standard LE analysis on the HSI and HSI stacked with the LIDAR

image, i.e., [HSI; (γ LIDAR)], where γ is an optimized multiplier for the LIDAR

band chosen to give the best classification results.

The results for Overall Accuracy (OA) and Average Accuracy (AA) for the

operator fusion, graph fusion, and feature space rotation fusion are shown in Table

104

6.10. Our best class map, by percent classification, was found using the feature

space rotation fusion, can be seen in Figure 6.16. We also include the graph fusion

classification map as it gave comparable results, see Figure 6.17. As seen in Table

6.10, our methods all outperformed the naive approach of stacking the heterogeneous

data. It should be noted that the presence of a cloud in the scene affected the

classification in the surrounding area; this is a situation where the application of

a pre-processing algorithm, i.e. a cloud removal mask, would have improved our

results.

Figure 6.16: Class map obtained using Feature Space Fusion

Figure 6.17: Class map obtained using Graph Fusion

6.2.4 Endmember Extraction

It is not always the case that data sets come with available ground truth to

evaluate an algorithms effectiveness. Without ground truth, a unsupervised ap-

proach must be undertaken to perform classification on the image. For this exper-

105

Method % OA % AA

LE HSI 74.237 74.252

LE [HSI; (γ LIDAR)] 80.345 80.303

Graph Fusion 85.270 85.772

L1(σ, η) 81.284 81.285

L2(σ, η) 83.591 83.590

L3(σ, η) 84.616 84.719

Feature Space Rotation 86.374 86.437

Table 6.10: Summary of Classification Results for Houston Data Set

iment we shall make use of endmember extraction algorithms to evaluate visually

the effectiveness of our data fusion algorithms.

An endmember can be thought of as a representative or pure sample from an

image. Using the linear mixture model [79], every pixel xi ∈ X, can be represented

as a linear collection of s end members, ei, with coefficients, ci,j, and noise vector

Nxi ,

xi =
s∑
j=1

ci,jej +Nxi .

For simplicity it is usually assumed that the coefficients are non-negative, ci,j ≥ 0

for i = 1, . . . , N and j = 1, . . . , s, and sum to 1,
∑s

j=1 ci,j = 1 for i = 1, . . . , N . The

106

coefficients, ci,j, are chosen to minimize the reconstruction error,

ci,· = arg min
ci,j≥0,

∑s
j=1 ci,j=1

∥∥∥∥∥xi −
s∑
j=1

ci,jej

∥∥∥∥∥
2

.

A common extension is to add sparsity [34] via a penalty term τi,

ci,· = arg min
ci,j≥0,

∑s
j=1 ci,j=1

∥∥∥∥∥xi −
s∑
j=1

ci,jej

∥∥∥∥∥
2

+ τi ‖ci,·‖1 .

The process of finding the coefficients is called spectral unmixing [79], as we are

finding each pixels’ abundance contribution from the set of endmembers. Once the

set of endmembers and coefficients are found, an abundance map can be produced

for each endmember indicating the percentage of each pixel that corresponds to

that endmember. It also possible to classify the data in an unsupervised format

(similar to clustering) based on the coefficients, by labeling each pixel belonging to

the endmember class of greatest contribution.

For this work we shall make use of the Vertex Component Analysis (VCA)

algorithm [105]. The VCA algorithm extracts a set E = {e1, . . . , es}, of endmembers

from a data set by finding the s vertices of a simplex that encompasses the point

cloud. Other algorithms exist, for example, N-FINDR [137], Pixel Purity Index

(PPI) [25] and Support Vector Data Description (SVDD) [128], but we choose to

use the VCA algorithm for its presence in the literature and simple implementation.

For this experiment we use the MUUFL Gulfport data set. We choose to

use k = 30, σ = .5, and d = 30 for both the hyperspectral, with L2 distance, and

LIDAR, with MPGD, datasets. After both data sets had feature space realizations

we used the feature space rotation of Section 6.2.2. Again, as there was no included

ground truth with this data set, we choose to compute the endmembers using VCA

107

algorithm and then create an abundance map. For the number of endmembers to

select we choose to follow the results of [33] which indicated that 11 was the ideal

number for this scene. We did this process on the original hyperspectral data set

and on the fused hyperspectral and LIDAR data set. In Figure 6.18 we see the image

classified by the produced abundance maps. We notice that first the LE and feature

space rotation fusion produced a much better abundance map than the unprocessed

hyperspectral. This is expected because in the higher dimensional space it is more

difficult to pick representative signatures. The difference between the LE analysis

and the feature space rotation fusion is much closer in performance but we will claim

the fusion results is superior. We note that the grass and tree areas in the fusion

result are better separated. In the LE result these classes look very noisy. This can

been seen as a direct result of the LIDAR information, as trees and grass, though

spatially similar, give very different LIDAR returns. We also notice in the fusion

result that roof tops rendered much cleaner and the roads are separated from the

roof tops.

108

(a) (b) (c)

Figure 6.18: The abundance maps resultant from the VCA endmember extraction

with 11 endmembers on the (a) HSI dataset, (b) LE embedding on the hyperspectral

dataset, and (c) feature space rotation fusion of hyperspectral and LIDAR

Thus, we have shown the validity of our approach to the problem of LIDAR

and hyperspectral data fusion and we have created a broad paradigm for the fusion

of multimodal data, and not just LIDAR and hyperspectral data. In the next section

we move to the fusion of multiple hyperspectral data sources.

6.3 HSI-HSI Fusion

The fusion of multiple hyperspectral data sources is the next problem which we

will study. This problem, usually phrased for change detection or pan sharpening,

here will be defined as the combination of two hyperspectral images not necessarily

acquired from the same sensor.

We will study two different setups for this fusion. In Section 6.3.1 we will

present a fusion method where the pixels of two images are registered on a subset

109

of their pixels [39]. In the 6.3.2 we will present a fusion where there is no known

registration between the two data sets. Both of these setups will use the feature

space rotation fusion methodology. When there is partial overlap we will split our

data into three sets, one containing the overlap, and the other two containing the

non overlap from each data set. After embedding each of the three sets separately

we will learn a rotation into the overlap embedding. For the second setup, where

there is no pixel registration, we will use a graph matching algorithm to develop

an approximate pixel registration in the feature space then perform a rotation from

one feature space into another.

6.3.1 Partial Overlap

If the data sets have pixel registration on only a subset of each of their total

number pixels then we shall make a slight modification to the Feature Space Rotation

algorithm, see Figure 6.19. For simplicity let A and B be two heterogeneous data sets

which we wish to fuse and let C be their intersection (i.e., the set of registered pixels

which have been concatenated so as to contain the full spectral information from

each sensor). We shall now find a feature space embedding for A, B, and C, denoted

FA, FB, and FC , via the Laplacian Eigenmaps algorithm. Now a rotation, ΘFA→FC ,

is learned from FA to FC using the Feature Space Rotation algorithm. Similarly, a

rotation, ΘFB→FC , is learned from FB to FC . Now A and B are represented in a

common feature space that was learned using only a subset of the total pixels in A

and B.

110

A" B"C"

FB"
"

FA"
"

FC"
"

φ A
"

φ
C" φ
B"

ΘFB!FC"
ΘFA!FC"

Figure 6.19: Data sets A and B with overlap C = A ∩B realized as feature space

representations FA, FB, and FC, by Laplacian Eigenmaps and then rotated into a

common space via rotations ΘFA→FC and ΘFB→FC

We look at two different ways to select the overlapping and non-overlapping

data points. In Experiment #1 we select the partition at random but preserve

complete lines; we choose columns of the image for convience. This procedure

equates to simulating data lost during transmission from two separate sensors. In

Experiment #2, we simulate the situation in which two different sensors both observe

the same scene but there is only a small amount of overlap between the observed

pixels. In this experiment the overlap set is chosen at random with no spatial

continuity conditions applied. Experiment #2 reflects a situation where two different

sensors made measurements over the same geographic area within a short time

frame but due to the orientation of the sensors only a fraction of the recorded

111

pixels corresponded spatially within the margin of the error of the sensors spatial

resolutions. For both Experiment #1 and #2, we split the available spectrum from

our real data set into two parts, even and odd channels, for the data sets A and B

as denoted in Figure 6.19.

As a metric for how well the fusion process performed we shall use classification

based upon a known set of the ground truth for the Urban and Indian Pines data

sets. Classification will be performed using the simple 1NN algorithm between the

training and validation data. We shall use 25% of the ground truth, chosen as by

class, to train the classifier and retain the rest of the ground truth in a validation

set. The training data will be picked at random and to remove irregularities in the

selection of the training data, we shall repeat the classification ten times and average

the results. Aside from our measures of classification accuracy, OA and CA, we will

also look at the comparison metric, CM,

CMO :=

∥∥∥ΘFA→FBFA

∣∣∣
O
−ΘFB→FAFB

∣∣∣
O

∥∥∥
F

|O|
. (6.3)

In (6.3) we measure how close FA restricted to the overlap O and rotated into FB,

denoted as ΘFA→FBFA

∣∣∣
O

, is to FB restricted to the overlap O and rotated into FA,

denoted as ΘFB→FAFB

∣∣∣
O

.

The classification percentages and comparison metric results can be found in

Tables 6.11, 6.12, 6.13, and 6.14. First we see that in both scenes the p% overlap

results show a drop in classification performance as compared with running LE

on the complete data set. This result makes sense as the graph underlying the

embeddings with p% overlap are learned on only half of the spectral information

112

and a small performance drop is expected. In a real situation it would not be

possible to have the LE on HSI result the way we did here as the concatenation

and weighting of the channels would not be trivial. We also see a general downward

trend in classification accuracy as p decreases from 100 to 25; this too is to be

expected. What we find encouraging is the drop off is small. The results from the

CM metric shows that as the amount of overlap between the two data sets decreases,

the difference between mapping FA into FB as compared with mapping FB into FA,

restricted to the overlap, increases. This too is to be expected and this can be used

as a means to devise a metric as to how well the fusion process will work in the

future on data sets that don’t have ground truth.

OA CA CM

LE on HSI 82.02 77.55 ·

100% overlap 81.36 76.49 0.0504× 10−4

75% overlap 81.40 77.15 0.0686× 10−4

50% overlap 81.15 77.24 0.0722× 10−4

25% overlap 79.94 73.05 0.1240× 10−4

Table 6.11: Classification and CM Results for Urban - Experiment #1. LE on

HSI is classification on the complete data cube after LE algorithm and p% overlap

is the spatial overlap between sensors.

113

OA CA CM

LE on HSI 61.28 56.84 ·

100% overlap 59.82 54.98 0.1226× 10−3

75% overlap 58.52 53.40 0.1410× 10−3

50% overlap 57.97 50.00 0.1606× 10−3

25% overlap 57.36 51.76 0.1948× 10−3

Table 6.12: Classification Results and CM for Indian Pines - Experiment #1. LE

on HSI is classification on the complete data cube after LE algorithm and p% overlap

is the spatial overlap between sensors.

OA CA CM

LE on HSI 82.02 77.55 ·

100% overlap 81.36 76.49 0.0504× 10−4

75% overlap 81.56 77.27 0.0626× 10−4

50% overlap 80.31 75.81 0.0778× 10−4

25% overlap 79.78 74.12 0.0943× 10−4

Table 6.13: Classification and CM Results for Urban - Experiment #2. LE on

HSI is classification on the complete data cube after LE algorithm and p% overlap

is the spatial overlap between sensors.

114

OA CA CM

LE on HSI 61.28 56.84 ·

100% overlap 59.82 54.98 0.1226× 10−3

75% overlap 59.39 55.26 0.1439× 10−3

50% overlap 57.51 54.05 0.1663× 10−3

25% overlap 57.24 51.13 0.2028× 10−3

Table 6.14: Classification Results and CM for Indian Pines - Experiment #2. LE

on HSI is classification on the complete data cube after LE algorithm and p% overlap

is the spatial overlap between sensors.

6.3.2 Without Point Registration

We will now discuss how we can avoid requiring an a prior point registration.

For the other examples which we have studied the data has been perfectly co-

registered or the there has been some amount of overlap between the two data

sets. We seek to avoid making this assumption in this section as it is impractical

in the real world to have aligned or registered data sets without some amount of

preprocessing. The co-registration of remote sensing data sets is another research

topic in its own right with rich mathematics, see, e.g., [89]. We shall here build a

new technique which uses graph matching algorithms to find a registration between

two embedded data sets. After a registration is known, the feature space rotation

fusion will be used to fuse the data sets. To summarize, in this section we will only

115

assume that the two data sets were acquired over roughly the same area; the sensor

types, number of channels, and number of recorded data points can all be different.

We will start with a brief introduction to graph matching, for a more complete

introduction see [44]. There are two main types of graph matching, exact and

inexact. Exact methods provide a 1:1 matching between two graphs and thus require

a common number of vertices, we would like to avoid this constraint, so instead we

will focus on inexact graph matching. These methods relax the 1:1 requirement

and instead require only 1:many relationship which allows for matching betweens

graphs of unequal number of nodes. This is much more practical situation, as real

world sensors record at different spatial fidelities. In this thesis we will focus on the

methods presented in [100, 81] as they rely on eigenvectors of the graph Laplacian

which we have calculated already during the LE analysis.

Suppose first that we have two data sets, X1 and X2. Suppose also that we

have analyzed these data sets using LE, thus we have formed a graph representa-

tion, G1 and G2, a graph Laplacian, L1 = D1 − G1 and L2 = D2 − G2, and a

lower dimensional embedding Y1 and Y2. Recall that Y1 and Y2 are the eigenvec-

tors corresponding to the respective graph Laplacians. Also, recall that the Y1 and

Y2 are composed of the eigenvectors corresponding to the smallest eigenvalues, i.e.,

they contain the low frequency information of the graph. It works out well that LE

requires this information as well so there is no overhead is this regard. The reason

we focus on the low-frequency information is that we are trying to find point corre-

spondences between different graphs. Low-frequency information is fairly robust to

small deformations and structure changes, thus making it perfect for learning point

116

correspondences between two data sets.

For now, we shall concentrate on the first K eigenvectors of Y1 and Y2. The

first K eigenvectors are chosen since the primary eigenvectors should describe the

dominate features of the scene with following eigenvectors describing smaller fea-

tures and generally being more noisy. It is thus desirable to match only based on

the primary dominate features. Our method for learning a rotation between these

eigenvectors is originally proposed in [100] for the purposes of shape matching. Due

to the nature of eigenvalue/eigenvector pairs, the feature extraction algorithms is

contingent on a combinatorially hard matching process. First, eigenvectors can

match up to a sign difference. Second, the eigenvectors which represent the feature

space cannot be directly matched, as order in general is not illustrative. So when

attempting to align K feature vectors, we must compare 2KK! K-tuples.

To eliminate problems associated with unequal sample sizes, it is desirable to

look at the histograms belonging to each of the feature vectors sets, H1 and H2, for

a fixed number bins b. We also normalize the histograms to be in the range of [−1, 1]

to aid in comparison. Now let the distance, D, between the sets of histograms be:

D(s, p,H1, H2) =
K∑
i=1

‖s(i)Hp(i)
1 −H i

2‖2
2, (6.4)

where s is a vector representing the signs (+,-) and p is a vector representing the

permutations to the ordering of the histograms. To improve the histogram matching

process one can apply a smoothing window to each histogram to eliminate the

influence of outliers. As finding the best matching is still a complicated calculation

we can employ the Hungarian algorithm, which was mentioned in Chapter 5, to

117

efficiently find the matching which minimizes the distance D.

Remark 6.3.1. To improve results, it might also be advantageous to modify (6.4)

to match based only on the smallest m ≤ n distances, i.e.:

Dm(s, p,H1, H2) =
∑
i∈M

d(s(i)H
p(i)
1 , H i

2),

where M is an indicator function for the smallest m feature vector distances.

Now that we know the correspondences between the histograms, and by ex-

tension between the sets of eigenvectors, let us rearrange the eigenvectors of Y2 and

apply any sign changes necessary to match those of Y1. To find the registration

between Y1 and Y2 we can employ an Expectation Maximization (EM) algorithm al-

gorithm. This procedure calls for letting the Y1 eigenvectors act as cluster centroids

of normally distributed clusters and Y2 eigenvectors act as observations. During

the designed EM procedure the likelihood that each yj ∈ Y2 belongs to the cluster

yi ∈ Y1 is found, for details please see [100]. These probabilities, then properly

weighted, can be used as a set of weights which we denote as S. Now that we have a

set of weights to express one sets’ data points in terms of weighted combinations of

the other data sets’ data points, we use this setup the registration which is needed

for the feature space rotation method. In Figure 6.20 we see a diagram representing

the proposed method.

To test the effectiveness of this proposed fusion method we require two hy-

perspectral data sets which were acquired over the same approximate territory. As

access to such a data set is problematic, we modify the Indian Pines data set to suit

our needs. Let X be the 145× 145× 200 hyperspectral data cube for Indian Pines.

118

Figure 6.20: Fusion of X1 and X2 without any a priori point registration via graph

matching and feature space rotation.

We can form subsets of X, denoted X1 and X2, where X1 collects the odd columns

and odd channels of X, and X2 collects the even columns and even channels of X.

We are thus left with a 145× 73× 100 data cube X1 and a 145× 72× 100 data cube

X2. By their construction, X1 and X2, have no pixel registration (or overlap), share

no common spectral channels and have a different number of data points. Since

the data sets do not have common spectral channel centers direct measurements

between the data sets is not possible without interpolation. As was outlined above

we first embed X1 and X2 into a feature space by finding their lower dimension

representations, Y1 and Y2, using the LE algorithm; see Figure 6.21 and 6.22 for a

collection of the eigenimages for each data set.

119

Figure 6.21: Several eigenimages from X1 data set.

Figure 6.22: Several eigenimages from X2 data set.

For a visualization, we can plot the leading two eigenvectors contained in Y1

and Y2, see Figure 6.23.

Figure 6.23: The leading two eigenvectors contained in Y1 (left) and Y2 (right)

plotted as x-y coordinates. Notice that the shape is approximately equivalent but is

orientated in different ways.

120

For the histogram matching process we choose to use the first three eigenvec-

tors from each data set and 100 bins. Both of these constants were chosen by visual

inspection of the embedding. We could have chosen these constants algorithmically

by looking at entropy in the eigenimages to chosen how many eigenvectors to match

and smoothness of the normalized histograms over a set of number of bins to chose

the number of bins. With the now matched eigenvectors between the two embed-

dings we represent the coordinates described by the first three eigenvectors from Y2

as combinations of the coordinates described by the first three eigenvectors from Y1

using an EM algorithm. We find the rotation from Y2 to Y1:

OY2 7→Y1 = (Y T
1 SY2)T (6.5)

where S expresses the relationship between the coordinates described by Y1

and Y2. Note the similarity between (6.5) and (6.2); if S is the identity matrix these

are equivalent. We denote the now rotated data set Y27→1, see Figure 6.24.

121

(a) (b)

Figure 6.24: (a) The leading three eigenvectors contained in Y1 (red) and Y2

(blue) plotted as x-y-z coordinates. (b) Y2 matched and rotated into the feature space

formed by X1.

To judge whether the fusion was successful or not we compare the classification

scores between Y1 and the concatenated data set [Y1;Y2 7→1]. A positive test here is

any improvement in the classification scores, because, as we we theorized above

this fusion process should allow for the transfer of spectral information from one

heterogeneous unaligned data set to another. Here we restrict the ground truth to

only data points that were contained in X1 and use 20% of the remaining ground

truth to train the 1NN classifier; the classification results can be seen in Table

6.15. We notice that the fused data set outperforms X1 by almost 13%. This

is evidence that the fusion methodology was able to correctly pass the additional

spectral information, which was only contained in X2, to the fused product. This

extra spectral information was thus able to improve the classification score by giving

added material discernability power.

122

Data Set % OA % AA

Y1 60.15 59.32

[Y1;Y27→1] 67.89 64.22

Table 6.15: The results from non overlapping heterogeneous data set X1 and X2.

derived from Indian Pines scene, using Feature Space Rotation fusion.

6.4 A Priori Knowledge Fusion

In this section we propose the use of the potentials defined in Section 3.4 as a

means to fuse spectral information with expert knowledge. The idea is to have an

expert choose pixels prior to the embedding process and label them with a potential

term. Recall that we can choose a barrier potential or a cluster potential. In Figure

6.25 we assign a barrier potential to one of three classes. As we would expect this

class, as α increases, is pulled toward the origin. A problem that arises is that while

being pulled to the origin, the class with the barrier potential is pulled through

other classes thus interfering with a classification algorithm.

123

(a) α = 0 (b) α = 100

(c) α = 1, 000

Figure 6.25: Dimensions 4 and 5 of the embedding for classes 1, 3, and 7 with

barrier potential placed on small percentage of class 1’s (red) pixels from the Pavia

University data set. (a) is Laplacian Eigenmaps (b) and (c) are Schrödinger Eigen-

maps with α = 100 and 1000 respectively.

A better solution is to use the cluster potentials. Here we identify several pixels

from each class prior to the embedding and create a potential which sequentially

identifies them. As it is difficult to obtain such expert knowledge, we propose here

to cluster the scene with k-means and use the learned clusters to build the cluster

124

potential. We can also grid the image and perform k-means on small subimages

thus adding spatial information. In Figure 6.26 we see the result of this procedure.

Here we can very clearly see the spatially and spectrally formed clusters which are

learned by the SE analysis.

(a) α = 0 (b) α = 100

(c) α = 1, 000

Figure 6.26: SE Cluster Potentials for Indian Pines plotted with dimensions 17

and 22 of the embedding for classes 2, 3, and 10 from the Indian Pines data set. (a)

is Laplacian Eigenmaps (b) and (c) are Schrödinger Eigenmaps with α = 100 and

1000 respectively.

125

6.5 Extensions to Other Remote Sensing Problems and Future Work

This thesis looked at the problem of image classification but the other central

problems of remote sensing; anomaly, target, and change detection may also be

studied with these methods.

Anomaly detection is perhaps the easiest problem to address with our methods.

For anomaly detection, we attempt to rank all pixels in a scene with a number from

0 to 1 based on how anomalous it is to all other pixels. Since our methods are data

representation methods at heart, the output of the methods developed here can be

passed directly to any of a number of different anomaly detection algorithms, for

example RX [113] or Topological Anomaly Detection (TAD) [5]. A simpler solution

is perhaps to cluster the outputs of the algorithms and use the largest clusters by

pixel count to characterize the background of the image. Once the background has

been characterized, the distance between the background average to each pixel can

be used as an anomalousness measure. This procedure can be done iteratively, in

case the background is not very uniform or varied at different spatial scales, to

capture anomalies of different sizes.

Target detection can be looked at in two different ways: in situ and out of

scene. In situ target detection involves finding a target from a known source in the

scene; this involves simply finding a distance from all pixels to the known target

and then deciding on a cutoff between positive and negative target detection. Our

methods are well suited for this type of target detection in the same way they are

for image classification. Out of scene target detection is a harder problem because

126

it involves finding a target given a lab derived spectrum. Assuming there is a target

in the scene corresponding to the lab spectrum, due to the effects of the atmosphere

the lab spectrum will not match pixels in the scene. This problem is traditionally

solved by applying atmospheric correction codes, see, e.g., [101] and [23]. Our

methods, by representing the various sources of the data in the feature space, make

applying correction codes difficult after the embedding. Instead, as suggested in

[141], it is possible to inject the target spectrum in the graph representation of

the data. A subgraph can be constructed from the target pixel by varying several

of the parameters used in the MODTRAN atmospheric modeling code base [21].

This will create a target subspace which then can be modeled by a complete graph.

Edges between the created subgraph and the data graph then can be found in the

traditional nearest neighbor way. In the feature space, the problem of out of scene

target detection then becomes an in situ target detection problem.

Change detection is the problem of finding what, if any anything, has changed

between two temporally separated data collections from the same area. Calculating

a distance between the two images is problematic because the images may have been

acquired using different sensors with unequal recorded wavelengths or nonaligned

wavelength centers. To adapt our methods we would make use of the feature space

rotation methodology introduced in [41]. Once both data sets have been realized in

the feature space, a rotation can be calculated. Now in a common feature space a

direct measurement between pixels is possible. If the data sets are unaligned then

the graph matching techniques we mentioned can be used to align the different data

sets in the feature space.

127

Aside from other problems in remote sensing our methods can also be adapted

easily to study the fusion of other types of remote sensing data. We are particu-

larly interested in the fusion of SAR or multiple view angle images with HSI and

LIDAR. Our methods should also not be limited to remote sensing, e.g., in the

case of biomedical imaging, to the fusion of Optical Coherence Tomography (OCT)

with multispectral retinal imagery. To summarize, at the heart of our methods lies

the representation of multiple data sets in a common space, with classification of

remote sensing data being just one of the many possible applications for this new

representation.

128

Chapter 7

Nyström Method

A significant portion of the computational cost of any dimension reduction

routine is the eigendecomposition of the resulting kernel matrix. To perform it ex-

actly, results in a computational complexity of O(N3). For our methods developed

in Chapter 6 to be practical, we must lower the complexity of this eigendecomposi-

tion. Thus, we see the numerical acceleration techniques to be directly tied to the

developed data fusion methods as to fuse large data sets can only be accomplished

if the complexity is lowered. To improve this, we first look to take advantage of the

real positive semi-definite structure that is inherent in the dimension reduction ker-

nel. Cholesky Factorization offers a starting point to quickly diagonalize the kernel.

If we now also consider that the kernel will be sparse to a known level (related to

the number of nearest neighbors chosen) we can again realize a reduction in com-

pute time. Iterative eigensolvers, namely Subspace Iteration or more complicated

methods like Krylov Subspace methods (Implicitly Restarted Arnoldi or Lanczos),

Jacobi Davidson, and Preconditioned Conjugate Gradient Rayleigh Quotient mini-

mization or random matrix decomposition have been developed to take advantage

of the structure of sparse kernels. Another eigensolver based approach is to make

use of the large number of eigensolvers which have parallel implementations. All

of these computational improvements however are limited in that their complexity

129

is based on the size of the kernel or the number of vertices in the graph. To get a

greater reduction in compute time we will look at matrix eigendecomposition ap-

proximation schemes, which rely on sampling the kernel matrix, i.e., methods that

find an eigenbasis for a subset of the kernel and extend these eigenvectors to unseen

entries.

The leading solutions for sampling the kernel include: Random SVD, CUR,

and the Nyström method. We have chosen to concentrate on the Nyström method,

and will discuss it at length in the following paragraphs, for this thesis because of

its rich mathematical content and number of citations in leading literature. The

CUR algorithm [98], taking its name from the sub matrices C, U , R which give

us A ≈ CUR, is a general low rank matrix approximation scheme. The CUR

algorithm however does not respect the symmetric, positive, semi-definite property

that is inherent in the kernel matrices which we are studying and has a higher

complexity than the Nyström method. Random SVD uses Random Projections

with the SVD algorithm, which we discussed in Section 5.1.

Using the Nyström method to aid in the computation of kernels relating to

dimension reduction was proposed in [69, 136, 7], we are able to find the approximate

eigendecomposition of the kernel related to dimension reduction methods. This

method has the advantage, over the other methods mentioned above, in that it is

designed to operate on symmetric, positive, semi-definite matrices. We now provide

a detailed discussion of this technique.

The Nyström method, developed by Evert Nyström in 1930 [108], arose from

130

the solution of Fredholm-type differential equations [55, 59] which have the form:

∫ b

a

K(x, y)φ(y)dy = λφ(x), x ∈ [a, b], (7.1)

where K is a kernel function. We first find the solution to (7.1) on a set of N

uniformly sampled quadrature node points, ξ1, , ξn ∈ [a, b], using the quadrature

rule:

∫ b

a

f(y)dy =
N∑
i=1

wif(ξi), (7.2)

where {wi}Ni=1 are the set of quadrature weights usually chosen to uniformly sample

[a, b]. Now we can use (7.2) to approximate the solution of (7.1),

∫ b

a

K(x, y)φ(y)dy ≈
N∑
i=1

wik(x, ξi)φ̂(ξi), (7.3)

where k is the kernel matrix. (7.3) can be posed as eigenvalue problem:

N∑
i=1

wik(x, ξi)φ̂(ξi) = λ̂φ̂(x), (7.4)

where φ̂ and λ̂ are an approximate eigenvalue-eigenfunction pair. Now the

Nyström method is the solution for λ̂ and φ̂ by creating a system of N equations by

letting x ∈ {xi}Ni=1:

N∑
i=1

wik(xi, ξi)φ̂(ξi) = λ̂φ̂(xi), i = 1, . . . , N (7.5)

131

Definition 7.0.1 (Nyström Point). The Nyström points are the discrete set of

points, x = {xi}Ni=1, chosen in the range [a, b] which sample (7.4) to produce a

system of N equations in (7.5).

Definition 7.0.2 (Landmark Point). A landmark is synonymous with a Nyström

point but it is more common to refer to a Nyström point in the context of numerical

integration of integral equations and a landmark in the context of discrete data

dependent kernels.

For simplicity, let the Nyström points and the quadrature points be equivalent,

as this guarantees that if K is symmetric then k will also be symmetric. Then, for

λ̂m 6= 0 the exact eigenfunction φ̂m on the Nyström points can be extended to φ̄m,

i.e. the Nyström extension, on [a, b] by using (7.4):

λ̂mφ̄m(x) =
N∑
i=1

wik(x, ξi)φ̂m(ξi),

or equivalently,

φ̄m(x) =
1

λ̂m

N∑
i=1

wik(x, ξi)φ̂m(ξi). (7.6)

Definition 7.0.3 (Nyström Extension). The function, φ̄m in (7.6) is the Nyström

extension of an eigenvector φ̂m.

Now if we consider the discrete analogue of the above problem for a kernel

matrix A (symmetric, positive, semi definite) and a set of landmarks L (for simplicity

assume that L = {1, 2, . . . , `}, ` < N), i.e., a set of rows or columns of A, we can

132

rewrite A as:

A =

AL B

BT C

 . (7.7)

In (7.7) AL ∈ R`×` is the submatrix formed by taking the rows and columns corre-

sponding to the set L, i.e. the weights amongst the landmark points, B ∈ R(N−`)×`

is the sub matrix that contains the weights from landmark to non-landmark points

and C ∈ R(N−`)×(N−`) is the submatrix that contains the weights between the non-

landmark points.

If we choose ` << N , the eigendecomposition of AL = ULΛLU
T
L will be dra-

matically cheaper than that of A. Now we note that with some simple linear algebra

we can find an approximate eigendecomposition of A, denoted as Ã:

Ã = Ũ Λ̃ŨT

=

 U

BTUΛ−1

[Λ] [UT Λ−1UTB

]

=

UΛUT B

BT BTA−1
L B

=

AL B

BT BTA−1
L B

 .
Thus the Nyström method (extension) gives us eigenvectors as the columns of

the `×N matrix,

Ũ =

 U

BTUΛ−1

 . (7.8)

133

We note that the forms of (7.6) and (7.8) are equivalent. It is also possible to find

the Nyström extension for an arbitrary matrix, see [59]. We will, however, restrict

ourselves to extending N ×N symmetric, positive, semi-definite kernel matrices as

they are the form guaranteed by our Dimension Reduction algorithms, so (7.8) will

suffice.

The error involved in approximating A by Ã can be measured by how well C

is approximated by BTA−1
L B, or as how well the rows of B span C. We can quantify

this error, EN , by the norm of the Schur complement,

EN = ‖C −BTA−1
L B‖F , (7.9)

where ‖ · ‖F is the Frobenius norm (for a matrix M , ‖M‖2
F =

∑
i,j |M(i, j)|2). If

instead of looking at the norm of the Schur Complement, (7.9), we look at the norm

squared of the Schur complement, which is referred to as the trace norm, ‖ · ‖tr, we

notice that:

‖C −BTA−1
L B‖tr = ‖C −BTA−1

L B‖2
F

= trace(C)− trace(BTA−1
L B). (7.10)

This alternative error measure can be useful, as it has been shown that among all

unitary invariant norms ‖ · ‖, ‖ · ‖tr ≥ ‖ · ‖. Thus the trace norm offers an upper

bound on the error associated with the Nyström extension.

Until now we have not specified how the landmark points are to be chosen

for use in the Nyström method; essentially there are two means for their selection,

either deterministically or randomly.

134

Random methods offer the advantage of lower computational cost (basically

just the expense needed to generate the sampling distribution) and some proven

bounds on the error (unlike deterministic methods). On the other hand, determin-

istic methods, which either are iterative greedy methods or minimize a cost function,

offer the advantage of reproducible results and smaller landmark sets that can be

designed to concentrate on certain qualities of the data.

We will now explore some of the error bounds and variations on the Nyström

method.

We will then look at the Nyström method in relation to Frame Theory and

Sigma-Delta Quantization Section 7.2.

7.1 Landmark Selection Methods and Error Bounds

To optimize the Nyström method can be thought of as selecting a group of

landmarks which will minimize the error in (7.9) or (7.10).

It might be illustrative to first look for when a set of landmarks gives perfect

reconstruction, i.e. EN = 0. This can occur when L = {1, . . . , N}, i.e. the full set of

data points; in this situation the error in (7.9) and (7.10) are both 0. This can also

occur, in a nontrivial way, when A has rank less than the number of landmarks. It

is also required, as shown in [7], that for exact reconstruction, trace(AL) 6= 0. In

a similar vein, the authors in [139] note that the Nyström extension of the kernel

matrix A(xi, xj) will be exact if there exists landmark points lp and lq such that

lp = xi and lq = xj.

135

If we sample the landmarks at random uniformly, [8] provides the following

theorem on the bounded expected value of the error in the trace norm.

Theorem 7.1.1 (Belabbas and Wolf, 2009). Let A be a symmetric, positive, semi-

definite matrix with Nystrom extension Ã with landmark set L, |L| = `. Averaging

over this choice we have

E[‖A− Ã‖tr] ≤
N − `
N

trace (A).

In [8] the authors introduce annealed determinantal sampling as an improve-

ment over uniform sampling. This sampling scheme assigns probabilities to each

column of A, for a fixed parameter s ≥ 0 and landmark set size `:

ps(L) ∝ det(AL)s.

For s = 0 the annealed determinantal sampling gives the uniform sampling case.

However for, s > 0, the error measured by (7.10) will be 0. The difficulty lies in

the combinatorially complex sampling of the distribution ps(L), as there are
(
N
`

)
possibilities. For the special case of s = 1 the authors are able to show that the

expected value of the trace norm error can be bounded by the spectrum of A:

Theorem 7.1.2 (Belabbas and Wolfe, 2009). Let A be a symmetric, positive, semi-

definite matrix with Nyström extension Ã where the landmark set L, |L| = ` was

chosen with the annealed determinantal sampling scheme with parameter s = 1.

Then,

E[‖A− Ã‖tr] ≤ (`+ 1)
N∑

i=`+1

λi,

where λi is the ith largest eigenvalue of A.

136

In [59] the authors look at probabilistic bounds for creating a optimal rank k

approximation of A given a set of landmarks of size ` chosen with sampling proba-

bilities equal to:

pi =
A(i, i)2∑N
i=1A(i, i)2

. (7.11)

The algorithm they developed, which we will call here the Weighted Column Selec-

tion Nyström algorithm, selects ` columns of A i.i.d. with replacement using the

probabilities defined in (7.11) to form the landmark set L. The N × ` matrix T is

assembled by the selected the columns corresponding to L in A and dividing them

by
√
`pi. The `× ` matrix W is then created such that W (i, j) = A(i, j)/(`

√
pipj).

Finally the approximation Ãk = TW+
k T

T is found where W+
k is the pseudo inverse

of the best rank k approximation of W . The algorithm can be simplified by using a

uniform distribution but affects the tightness of the bound in the following theorem.

Theorem 7.1.3 (Drineas and Mahoney, 2005). Suppose A is a N ×N symmetric,

positive, semi-definite matrix, let k ≤ ` be a rank parameter and let Ãk = T be

constructed using the Weighted Column Selection Nyström algorithm by sampling `

columns of A with probability {pi}Ni=1 defined by (7.11). Let r = rank(W) and ket Ak

be the best rank k approximation to A. In addition let ε > 0 and ν = 1+
√

9 log(1/δ).

If ` ≥ 64k/ε4, then

E[‖A− Ãk‖F] ≤ ‖A− Ak‖F + ε

N∑
i=1

A(i, i)2

and if ` ≥ 64kν2/ε4 then with probability at least 1− δ,

‖A− Ãk‖F ≤ ‖A− Ak‖F + ε
N∑
i=1

A(i, i)2.

137

The authors in [85] introduce Ensemble Nyström which is based on a weighted

mixture of Nystrom approximations. In Ensemble Nyström, like in the standard

Nyström algorithm a set of landmark points, L is first selected randomly without

replacement. Let |L| = `p, where ` and p are positive integers. The algorithm

now calls for partitioning L into p subsets, L1, . . . , Lp, where |Li| = `. Each of

these subsets, Li, with the Nyström method, produces an approximation of A,

denoted as Ãi. Now given a set of weights, µ = {µi})i = 1p, the Ensemble Nystrom

approximation of A is, Ãens:

Ãens =

p∑
i=1

µiÃi.

The authors discuss three methods for choosing the mixture weights, uniform,

exponential, or ridge regression. First let V be a subset of the columns of A and let

AV by the submatrix formed from the columns and rows denoted by V . Uniform

weights give equal weight to each Ãi, i.e. µi = 1/p. Exponential weights set µi =

exp(−νε̂i)/Z where ν > 0 is a spreading parameter and Z is a normalization factor

ensuring the weights belong to the simplex {µ ∈ Rp : µ ≥ 0,
∑p

i=1 µi = 1} in Rp.

ε̂i is the error associated in approximating the kernel AV with ÃVi via the Nyström

extension with the landmarks coming from landmark set Li. The ridge regression

weights use V to train µ to optimize the regression objective function:

min
µ
λ ‖µ‖2

2 +

∥∥∥∥∥
p∑
i=1

µiÃ
V
i − AV

∥∥∥∥∥
2

F

,

where λ > 0.

138

The Ensemble Nyström method has complexity that is approximately p times

that of the standard Nyström method (more if using the exponential or ridge re-

gression weight method) but is easily parallelizable. For the improved error bounds

we refer to [85].

The Max-Min [53] algorithm chooses the landmark set iteratively by first

choosing a seed number, 1 ≤ s < `, of landmarks at random, then adding them

to the set L and removing the corresponding data points from the data set X. Then

for each iteration till the set L contains the required number of points the algorithm

chooses the new landmark point to add as the data point which maximizes the min-

imum distances to all other previously selected landmark points. Again, as in the

seeding phase, this point is added to L and removed from X.

Sparse Matrix Greedy Approximation (SMGA) [122] works by finding an op-

timal approximation to the matrix A using a weighted combination of the columns

of A which act as basis elements. This procedure can be accomplished via a greedy

optimization algorithm. The authors suggest using the Matching Pursuit algorithm

which iteratively finds the best column to add to the basis set then projects out

that column from the remaining columns in A. Since the number of possible basis

sets is equal to
(
N
`

)
the search space is limited each iteration to a small subset of

the total number of columns.

The Incomplete Cholesky Decomposition (ICD) [67] builds a low rank approxi-

mation of the kernel matrix A using the ICD algorithm and then uses the Woodbury

formulas to find a decomposition of A. Since any positive definite matrix can be

represented by its Cholesky factorization, we can let A(icl)k = QQT , where Q is

139

lower triangular and of rank k. If k = ` then [Bach Jordan 2005] proved that A(icl)k

is identical to the Nyström approximation with landmarks equal to the Cholesky

pivots.

In [139, 138], the authors introduce Density weighted Nyström, a method

designed to remove the flawed assumption that all data points are equally important

under the Nyström extension. The authors propose to assign a density p(·) to the

landmarks. The major difference now is during the extension phase of the Nyström

method a probability density function will appear:

φ̄m(x) =
1

cλ̂m

N∑
i=1

p(ξ)wik(x, ξi)φ̂m(ξi),

where c =
∑N

i=1 p(ξi). The authors also propose a block-quantization scheme for

the kernel matrix, which can be shown to be a special case or the weighted Nyström

method. The data set is partitioned into disjoint clusters Sk, k = 1, . . . , `, each with

size |Sk| and landmark point or cluster representative sk. So for xi ∈ Sp and xj ∈ Sq,

A(xi, xj) ≈ A(sp, sq). A then can be quantized, if ordered correctly, to produce Ā,

a blockwise constant matrix of the distances between landmarks. AL can be formed

from the landmark distances now and decomposed as per the standard Nyström

method, the weighting will be proportional to the cluster sizes. The authors offer

the following bound on the approximation error.

Theorem 7.1.4 (Zhang and Kwok, 2009). If the data set X is partitioned into `

clusters with centers L = {`i}`i=1, c(i) center indicator function, and the blockwise

constant kernel is obtained by replacing each xi with its corresponding cluster center.

140

Then using the stationary gaussian kernel k(x, y) = k(‖x− y‖2/σ2),

‖A− Ã‖F ≤ 8
ξ2

σ4
(NR2D(2) + nRD(3) +

1

4
nD(4) +R2(D(1))2

+
3

4
(D(2))2 + 3RD(2)D(1) +D(3)D(1)),

where R is the max pairwise distance, and ξ = maxx |k′(x)| (from mean value theo-

rem), and D(k) =
∑N

i=1 ‖xi − `c(i)‖k.

Using the k-means algorithm to form the set L is cheap but results in a non-

deterministic algorithm. Sequential sampling is used to seed the k-means algorithm

to fix this problem. Ouimet and Bengio have a similar approach called greedy

sampling.

The Adaptive Sampling [56] improves upon the uniform random sampling. It

updates the probability distribution over the columns of A each iteration. The prob-

abilities are updated each iteration such that they are proportional to the distance

squared from the span of the previously selected columns. A later refinement of

Adaptive Sampling, Adaptive Partial Sampling [86], lowers the computational bur-

den by measuring the reconstruction error using the partially assembled sub matrix

[AL;BT] and using this to update the sampling probabilities across the remaining

columns.

We can now look at the choice of different landmark sets and how it will effect

the final embedding. For all the different landmark selection methods we will discuss

here we have chosen to use 25% of the total number of data points. Recall the Helix

data set from Figure 3.1. First in Figure 7.1 we construct a set of landmarks perfectly

uniformly spaced on the data set. Here we are using the a priori knowledge that the

141

(a) (b) (c)

Figure 7.1: Landmarks are chosen knowing intrinsic structure of the lower dimen-

sional structure, (a) is the embedding of the landmarks, (b) is the Nyström extension

for the non landmarks, and (c) is the embeddings from (a) and (b) plotted together

the two dimensional representation is a circle. We are thus able to sample the circle

in uniformly spaced intervals. These chosen indices are then chosen from the Helix.

We notice that when sampling knowing the underlying structure of the data the

Nyström extension works very well. In Figure 7.2 we sample the landmark uniform

randomly with no a priori information. We notice that the final lower dimensional

embedding is not as good as 7.1 but the embedding is still close to the ideal circle.

Finally, in 7.3, we show the effect of choosing a poor landmark set. In this example

we sample all the points on a 1/4 of the arc of circle. This landmark set thus does

not provide a good descriptor for the full data set. When the Nyström extension is

calculated then there is no good collection of landmark points to represent the non

landmark points.

142

(a) (b) (c)

Figure 7.2: Landmarks are chosen with uniform random variable, (a) is the em-

bedding of the landmarks, (b) is the Nyström extension for the non landmarks, and

(c) is the embeddings from (a) and (b) plotted together

(a) (b) (c)

Figure 7.3: Landmarks are chosen with a poor sampling function, (b) is the

Nyström extension for the non landmarks, and (c) is the embeddings from (a) and

(b) plotted together

143

7.2 Frames and the Σ∆ Quantization

It is perhaps also illustrative to look at the theory of Nyström’s method and

selection of landmarks in the language of frames and Sigma-Delta (Σ∆) Quantiza-

tion. We will start with a brief summary of both frame theory and Σ∆ Quantization

then give motivations for their use with the Nyström method and remote sensing

data in general.

7.2.1 Frame Theory

In the following we will present a brief introduction to the theory of frames,

for a more complete review see [17, 37, 76].

Coming from the initial work of Duffin and Schaeffer [61] a frame is defined

by:

Definition 7.2.1 (Frame). A countable family of elements F = {fk}k∈Λ in a Hilbert

space H is a frame for H if there exits constants A and B, 0 < A ≤ B < ∞ such

that for all x ∈ H, A‖x‖2 ≤
∑

k∈Λ |〈x, fk〉|2 ≤ B‖x‖2.

The constants A and B are known as frame bounds. A tight frame is a frame

where A = B. A normalized frame is a frame where for all k, ‖fk‖ = 1. Though a

frame can be viewed as having a countable number of vectors, for the rest of this

treatment we will assume that we have a finite frame of M vectors.

The analysis operator, F : H 7→ `2, of the frame F is defined by

F(f) = {〈f, fi〉}Mi=1.

144

The synthesis operator, which is the adjoint of the analysis operator, F∗ : `2 7→ H,

is defined by

F∗({ci}Mi=1) =
M∑
i=1

cifi.

The frame operator is the positive, self-adjoint, invertible operator S : H 7→ H,

defined by,

S = F∗F ,

or,

S(f) =
M∑
i=1

〈f, fi〉fi,

for all f ∈ H. It can be shown that S satisfies the frame bound:

AI ≤ S ≤ BI,

where I is the identity operator on the H. Since S is invertible, S−1, or the dual

frame satisfies,

B−1I ≤ S−1 ≤ A−1I.

We can also form a frame from the dual frame as such.

Theorem 7.2.2 (Reconstruction Formula). Let F = {fi}Mi=1 be a frame with frame

bounds A and B and let S be the frame operator then {S−1fi}Mi=1 is also a frame

with frame bounds 1/B and 1/A and for all x ∈ H,

x =
M∑
i=1

〈x, fi〉(S−1fi) =
M∑
i=1

〈x,S−1fi〉fi.

145

Theorem 7.2.2 will play an important role in using frames for Quantization.

For finite normalized tight frames in RD the lower frame constant is M/D. For

a normalized tight frame, the lower frame bound, A, measures the redundancy of F .

If A = 1 then F is a orthonormal basis and thus has no redundancy; when A ≥ 1

there exists redundancy in F . Frames thus give us the opportunity to robustly

represent a signal, which is why they are favored in in signal processing because

they deal well with partial data loss, additive noise, and quantization.

7.2.2 ∆Σ Quantization

Quantization is a mathematical technique to obtain a representation of a sig-

nal that is ideal for practical purposes, i.e. storage or transmission of a signal.

Quantization achieves this by representing a signal x as a weighted sum of atoms of

a dictionary D where |D| = D0:

x =

D0∑
i=1

cidi, (7.12)

where di is an atom and ci is a real or complex number. For our treatment here we

will only consider dictionaries of finite size but in theory they can be of countable

size. The only problem with (7.12) is that the coefficients, ci, are not suited for use

in the digital environments because they do not have ready binary representations.

Thus a second step is used, the quantization step, which forces the continuous range

of coefficients to be reduced to a discrete alphabet, A. This second step now offers

an approximate representation of x,

x̃ =

D0∑
i=1

qidi, (7.13)

146

where qi ∈ A. The approximation error, Eq, incurred by the quantization, can now

be measured as the difference between (7.12) and (7.13),

Eq = ‖x− x̃‖.

A rule must be established that governs how the quantization occurs from the con-

tinuous range of ci’s to the discrete collection of qi’s; we will call this the quantization

rule. This rule has to predictably quantize each coefficient because once transmitted

or stored the signal will need to be recovered by apply the inverse rule.

The basic quantization rule is called Pulse Code Modulation (PCM) [109] and

it guarantees if D is a orthonormal basis then Eq is minimized for all x ∈ H. Let D

be a normalized tight frame for RD ⊂ H, such that for all x ∈ RD,

x =
D

D0

D0∑
i=1

〈x, di〉di

=
D

D0

D0∑
i=1

xidi. (7.14)

For a width-parameter δ > 0, the 2 d1
δ
e level PCM quantizer, where d·e is the ceiling

function, is:

qi =

δ
(⌈

xi
δ

⌉
− 1

2

)
if |xi| < 1,

δ
(⌈

1
δ

⌉
− 1

2

)
if xi ≥ 1,

−δ
(⌈

1
δ

⌉
− 1

2

)
if xi ≤ −1.

(7.15)

Thus by the PCM quantization rule defined in (7.15), which is essentially rounding

to the nearest grid point, we get the quantization version of x, x̃:

x̃ =
D

D0

D0∑
i=1

qidi. (7.16)

147

We can now calculate Eq using (7.14) and (7.16):

‖x− x̃‖ = ‖ D
D0

D0∑
i=1

xidi −
D

D0

D0∑
i=1

qidi‖ (7.17)

=
D

D0

‖
D0∑
i=1

(xi − qi)di‖ (7.18)

≤ δ

2

D

D0

D0∑
i=1

‖di‖ (7.19)

=
δD

2
, (7.20)

where (7.19) is from (7.15) and (7.20) is from the frame being normal. PCM does

not make use of the desinged redundancy in the frame, so will need a new technique

to improve upon (7.20).

Sigma-Delta (Σ∆) Quantization, sometimes also referred to as Delta-Sigma

(∆Σ) Quantization, is an improvement because it allows for the redundancy found

in the frame representation. We will reference the basic notions of Σ∆ Quantization

from [19].

We will start our discussion of Σ∆ Quantization by developing the quantization

rule:

Definition 7.2.3. Given K ∈ N, δ > 0, and the midrise alphabet,

AK = {(−K + 1/2)δ, (−K + 3/2)δ, . . . , (K − 3/2)δ, (K − 1/2)δ} , (7.21)

and the 2−K level mid rise uniform scalar quantizer with step size δ,

Q(u) = arg min
q∈AδK

|u− q|. (7.22)

Let {xi}Ni=1 ⊂ RD, and let p be a permutation of {1, . . . , N}. The first order quan-

148

tizer is defined by the interative scheme:

ui = uN−1 + cp(i) − qi,

qi = Q(uN−1 + xp(i)),

where u0 is a constant.

The midrise alphabet, (7.21), creates a set of uniform gridpoints between −K

and K spaced at width δ and in (7.22), the quantizer Q(u) is essentially choosing

the member of the alphabet which is closest to the u.

While order is usually not important when considering frames or frame expan-

sions the order of the dictionary while quantizing is very important. If the elements

of a dictionary are permuted once a quantization has occurred the recoverability

will no longer be guaranteed. We thus need to fix an order to the frame elements,

one means of accomplishing this is via frame variation.

Definition 7.2.4 (Frame Variation). Let F = {fi}Ni=1 be a frame for RD and let p

be a permutation of {1, . . . , N}. Then the frame variation of F with respect to p,

σ(F, p), is

σ(F, p) =
N−1∑
i=1

‖fp(i) − fp(i+1)‖.

Now that the there exists a method to order the frame elements, the authors in

[19] were able to show bounds on the approximation for general frames in Theorem

7.2.5 and for tight frames, which are better for applications, in Theorem 7.2.6.

Theorem 7.2.5 (Benedetto, Powel, and Yılmaz, 2006). Given the Σ∆ Quantization

scheme from 7.2.3. Let F = {fi}Ni=1 be a normalized frame for RD with frame bounds

149

A = N
D
≤ B and inverse frame operator S−1, let p be a permutation of {1, . . . , N},

let |u0| ≤ δ/2, and let x ∈ RD satisfy ‖x‖ ≤ (K − 1/2)δ. Then,

Eq(x) ≤ ‖S−1‖ ((δ/2)σ(F, p) + |uN |+ |u0|) .

Theorem 7.2.6 (Benedetto, Powel, and Yılmaz, 2006). Given the Σ∆ Quantization

scheme from 7.2.3. Let F = {fi}Ni=1 be a normalized tight frame for RD with frame

bounds A = N
D
≤ B, let p be a permutation of {1, . . . , N}, let |u0| ≤ δ/2 and let

x ∈ RD satisfy ‖x‖ ≤ (K − 1/2)δ, then

Eq(x) ≤ D

N

(
δD

2N
(σ(F, p) + 2)

)
.

If
∑N

i=1 fi = 0 and u0 = 0 then,

Eq(x) ≤

δD
2N
σ(F, p) if N is even,

δD
2N

(σ(F, p) + 1) if N is odd.

We discussed here linear reconstruction but there are non-linear reconstruction

methods that can be explored as well, see, [74]. These, in the future, might prove to

work even better with nonlinear data sets such as Hyperspectral. We also limited

the discussion to first order methods but it is also possible to consider higher order

schemes [18].

7.2.3 Frames and Σ∆ Quantization Applied to the Nyström Method

Now that we described the basic properties of frames and Σ∆ quantization we

will discuss their application to hyperspectral data, graph Laplacians and Nyström

extensions.

150

First, in relation to hyperspectral data, frames can be used, much like end-

members, to represent pixels as linear combination of frame vectors as suggested

in [77]. Building the set of frame vectors can be accomplished either by random

sampling or greedy methods, if the frame elements are coming from the data itself.

Random methods, much like those discussed in the landmark selection problem

could either be computed truly randomly or via assigning a density function on the

data. Greedy methods could also accomplish this by building the frame library by

using selection methods such as the Sparse Greedy Matrix Approximation algorithm

or the Max-Min algorithm. These algorithms would thus try to iteratively choose

frame members outside of the span of the current frame members. If we desire frame

elements which are not in the data, then a more traditional endmember extraction

algorithm could be used. Once a collection of frame elements has been chosen it is

simple to check if a collection of vectors, {fi}Mi=1, form a tight frame in RD, with

lower frame bound A, by verifying

S = AID,

where ID is the D×D identity matrix. Applying a level of sparsity is also advisable

when building the frame as we would want the reconstruction coefficients to be

concentrated amongst a few members of the frame.

We may also consider creating a dictionary, in essence a frame, which mini-

mizes the Eq iteratively. We can start with an initial frame, F0, which is created

at random from the data points. Now once a quantization has been performed,

those data points which have a high error can be added to the F0 to create F1;

151

the quantization error would now be 0 on these high error points. The frame will

now be reordered such that its frame variation is minimized, a second quantization

pass now may occur. We know that this second round of quantization will produce

lower (at worst the same) Eq for the data. The number of vectors in the frame, the

number of iterations in the frame building procedure, or the maximum allowable

error in each pixels quantized representation, can be used as a stopping procedure

in the algorithm.

If we consider the kernel matrix associated with our dimension reduction

schemes now, we have AL which are affinities expressed between landmark points

and B which are the affinities expressed between landmark and non landmark points.

The construction of AL and B are not only dependent on the selection of the land-

mark set L but also on the initial graph representation of the data. As the graph

is sparse, not all landmarks interact directly with a specific non landmark point. If

we view our landmark set L, arising from a frame then the affinities expressed in B

can be thought of as frame representations of the non landmark points. The weights

which were set in the graph construction phase of the LE or SE algorithm can thus

be viewed as frame coefficients.

The selection of landmarks, as discussed in this chapter is important for de-

signing an efficient Nyström extension which minimizes EN . In [123] the authors use

vector quantization to choose a set of landmark points. Vector Quantization oper-

ates similar to the k-means clustering landmark selection method. We propose here

a similar method using Σ∆ Quantization over Vector Quantization. The landmark

set would essentially be chosen in a manner so as to minimize the quantization error

152

produced. As with the coding of hyperspectral data discussed above, this would have

to be done iteratively with a random seeding. If we realize a landmark set which

minimizes Eq then the non landmarks would be represented well by the landmarks.

We can also use Quantization to develop weights for the graph. Given a frame

on our data set, we can choose the the nearest neighbors from the collection of frame

elements. The nearest neighbor would be chosen as a subset of the frame elements

which produce the smallest Eq.

153

Bibliography

[1] P. Arias, G. Randall, and G. Sapiro. Connecting the out-of-sample and pre-
image problems in kernel methods. 2007 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 1–8, 2007.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An op-
timal algorithm for approximate nearest neighbor searching fixed dimensions.
Journal of the ACM, 45(6):891–923, 1998.

[3] C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina. Exploiting manifold
geometry in hyperspectral imagery. IEEE Transactions on Geoscience and
Remote Sensing, 43(3):441–454, 2005.

[4] R. G. Baraniuk and M. B. Wakin. Random projections of smooth manifolds.
Foundations of Computational Mathematics, 9(1):51–77, 2009.

[5] B. Basener, E. J. Ientilucci, and D. W. Messinger. Anomaly detection using
topology. In Defense and Security Symposium, pages 65650J–65650J. Inter-
national Society for Optics and Photonics, 2007.

[6] J. S. Beis and D. G. Lowe. Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces. In Computer Vision and Pattern
Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on,
pages 1000–1006. IEEE, 1997.

[7] M. Belabbas and P. Wolfe. On landmark selection and sampling in high-
dimensional data analysis. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 367(1906):4295–4312, 2009.

[8] M.-A. Belabbas and P. J. Wolfe. Spectral methods in machine learning and
new strategies for very large datasets. Proceedings of the National Academy
of Sciences, 106(2):369–374, 2009.

[9] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Computation, 1396:1373–1396, 2003.

[10] M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based
manifold methods. In Learning theory, pages 486–500. Springer, 2005.

[11] M. Belkin and P. Niyogi. Convergence of Laplacian eigenmaps. Advances in
Neural Information Processing Systems, 19:129, 2007.

[12] R. E. Bellman. Adaptive Control Processes: A Guided Tour, volume 4. Prince-
ton University Press, 1961.

154

[13] J. J. Benedetto, W. Czaja, J. Dobrosotskaya, T. Doster, K. Duke, and
D. Gillis. Integration of heterogeneous data for classification in hyperspectral
satellite imagery. In Algorithms and Technologies for Multispectral, Hyper-
spectral, and Ultraspectral Imagery XVIII, Proc. SPIE,, volume 8390, pages
8390–78. International Society for Optics and Photonics, 2012.

[14] J. J. Benedetto, W. Czaja, J. Dobrosotskaya, T. Doster, K. Duke, and
D. Gillis. Semi-supervised learning of heterogeneous data in remote sensing im-
agery. In Independent Component Analyses, Compressive Sampling, Wavelets,
Neural Net, Biosystems, and Nanoengineering X, Proc. SPIE, volume 8401,
pages 8401–03. International Society for Optics and Photonics, 2012.

[15] J. J. Benedetto, W. Czaja, and M. Ehler. Wavelet packets for time frequency
analysis of multispectral data. International Journal on Geomathematics,
4(2):137–154, 2013.

[16] J. J. Benedetto, W. Czaja, M. Ehler, C. Flake, and M. Hirn. Wavelet packets
for multi- and hyper-spectral imagery. Wavelet Applications in Industrial
Processing VII, Proc. SPIE, 7535:7535–08, 2010.

[17] J. J. Benedetto and M. W. Frazier, editors. Wavelets: Mathematics and Ap-
plications, volume 13. CRC press, 1993.

[18] J. J. Benedetto, A. M. Powell, and Ö. Yılmaz. Second-order Sigma-Delta (Σ∆)
quantization of finite frame expansions. Applied and Computational Harmonic
Analysis, 20(1):126–148, 2006.

[19] J. J. Benedetto, A. M. Powell, and Ö. Yılmaz. Sigma-Delta (Σ∆) quantization
and finite frames. IEEE Transactions on Information Theory, 52(5):1990–
2005, 2006.

[20] Y. Bengio, J.-F. Paiement, and P. Vincent. Out-of-sample extensions for
lle, isomap, mds, eigenmaps, and spectral clustering. In Advances in Neural
Information Processing Systems, pages 177–184. MIT Press, 2003.

[21] A. Berk, G. Anderson, P. Acharya, J. Chetwynd, L. Bernstein, E. P. Shettle,
M. W. Matthew, and S. Adler-Golden. MODTRAN4 User’s Guide. Spectral
Sciences, Inc. and U.S. Air Force Research Laboratory, April 2000.

[22] K. Bernard, Y. Tarabalka, J. Angulo, J. Chanussot, and J. A. Benedikts-
son. Spectral–spatial classification of hyperspectral data based on a stochastic
minimum spanning forest approach. IEEE Transactions on Image Processing,
21(4):2008–2021, 2012.

[23] L. Bernstein, S. Adler-Golden, R. Sundberg, R. Levine, T. Perkins, A. Berk,
A. Ratkowski, G. Felde, and M. Hoke. A new method for atmospheric cor-
rection and aerosol optical property retrieval for VIS-SWIR multi- and hyper-
spectral imaging sensors: QUAC (QUick atmospheric correction). In IEEE
International Geoscience and Remote Sensing Symposium Proceedings, 2005.

155

[24] T. Bıyıkoglu, J. Leydold, and P. F. Stadler. Laplacian eigenvectors of graphs.
Lecture notes in mathematics, 1915, 2007.

[25] J. W. Boardman. Geometric mixture analysis of imaging spectrometry data.
In Geoscience and Remote Sensing Symposium, 1994. IGARSS’94. Surface
and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpre-
tation., International, volume 4, pages 2369–2371. IEEE, 1994.

[26] A. Brook, E. Ben-Dor, and R. Richter. Fusion of hyperspectral images and LI-
DAR data for civil engineering structure monitoring. In 2nd Workshop Hyper-
spectral Image and Signal Processing: Evolution in Remote Sensing (WHIS-
PERS), pages 1–5, June 2010.

[27] B. V. Brower and C. A. Laben. Process for enhancing the spatial resolution of
multispectral imagery using pan-sharpening, Jan 2000. US Patent 6,011,875.

[28] L. Bruzzone and L. Carlin. A multilevel context-based system for classification
of very high spatial resolution images. IEEE Transactions on Geoscience and
Remote Sensing,, 44(9):2587–2600, 2006.

[29] J. B. Campbell. Introduction to Remote Sensing. Guilford Press, 2nd edition,
1996.

[30] G. Camps-Valls, T. V. Bandos Marsheva, and D. Zhou. Semi-supervised
graph-based hyperspectral image classification. IEEE Transactions on Geo-
science and Remote Sensing, 45(10):3044–3054, 2007.

[31] G. Camps-Valls, L. Gómez-Chova, M.-M. Jordi, J. Vila-Francés, and J. Calpe-
Maravilla. Composite kernels for hyperspectral image classification. IEEE
Geoscience and Remote Sensing Letters, 3(1):93–97, 2006.

[32] G. Camps-Valls, L. Gómez-Chova, J. Muñoz-Maŕı, J. L. Rojo-Álvarez, and
M. Mart́ınez-Ramón. Kernel-based framework for multitemporal and multi-
source remote sensing data classification and change detection. IEEE Trans-
actions on Geoscience and Remote Sensing, 46(6):1822–1835, 2008.

[33] A. Castrodad, T. Khuon, R. Rand, and G. Sapiro. Sparse modeling for hy-
perspectral imagery with LiDAR data fusion for subpixel mapping. In 2012
IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
pages 7275–7278. IEEE, 2012.

[34] A. S. Charles, B. A. Olshausen, and C. J. Rozell. Learning sparse codes for
hyperspectral imagery. IEEE Journal of Selected Topics in Signal Processing,
5(5):963–978, 2011.

[35] J. Chen, H.-R. Fang, and Y. Saad. Fast approximate kNN graph construction
for high dimensional data via recursive lanczos bisection. The Journal of
Machine Learning Research, 10:1989–2012, 2009.

156

[36] A. Cheriyadat and L. M. Bruce. Why principal component analysis is not an
appropriate feature extraction method for hyperspectral data. In Geoscience
and Remote Sensing Symposium, 2003. IGARSS’03. Proceedings. 2003 IEEE
International, volume 6, pages 3420–3422. IEEE, 2003.

[37] O. Christensen. Frames and Bases: An Introductory Course. Springer, 2008.

[38] F. R. Chung. Spectral Graph Theory, volume 92. American Mathematical
Society, 1997.

[39] A. Cloninger, W. Czaja, and T. Doster. A case study on data fusion with
overlapping segments. In Applied Imagery Pattern Recognition Workshop:
Sensing for Control and Augmentation, 2013 IEEE (AIPR, pages 1–11. IEEE,
2013.

[40] A. Cloninger, W. Czaja, and T. Doster. The pre-image problem for laplacian
eigenmaps utilizing L1 regularization with applications to data fusion. In
preparation, 2014.

[41] R. R. Coifman and M. J. Hirn. Diffusion maps for changing data. Applied and
Computational Harmonic Analysis, 36(1):79–107, 2014.

[42] R. R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, and
S. Zucker. Geometric diffusions as a tool for harmonic analysis and structure
definition of data: diffusion maps. Proceedings of the National Academy of
Sciences of the United States of America, 102(21):7426–7431, 2005.

[43] P. Comon. Independent component analysis, a new concept? Signal process-
ing, 36(3):287–314, 1994.

[44] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph match-
ing in pattern recognition. International Journal of Pattern Recognition and
Artificial Intelligence, 18(03):265–298, 2004.

[45] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, et al. Introduction to
Algorithms, volume 2. MIT press Cambridge, 2001.

[46] J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric
Eigenvalue Computations: Vol. 1: Theory, volume 41. SIAM, 2002.

[47] J. C. Curlander and R. N. MacDonough. Synthetic Aperture Radar: Systems
and Signal Processing. Monograph, 1991.

[48] W. Czaja and M. Ehler. Schroedinger eigenmaps for the analysis of bio-
medical data. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 35(5):1274–1280, 2013.

[49] X. Dai and S. Khorram. A feature-based image registration algorithm using
improved chain-code representation combined with invariant moments. Geo-
science and Remote Sensing, IEEE Transactions on, 37(5):2351–2362, 1999.

157

[50] M. Dalponte, L. Bruzzone, and D. Gianelle. Fusion of hyperspectral and
lidar remote sensing data for classification of complex forest areas. IEEE
Transactions on Geoscience and Remote Sensing, 46(5):1416–1427, 2008.

[51] 2013 IEEE GRSS Data Fusion Contest. http://www.grss-ieee.org/

community/technical-committees/data-fusion/.

[52] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the twentieth
annual symposium on Computational geometry, pages 253–262. ACM, 2004.

[53] V. De Silva and J. Tenenbaum. Sparse multidimensional scaling using land-
mark points. Technical report, Stanford University, 2004.

[54] F. Dell’Acqua, P. Gamba, and A. Ferrari. Exploiting spectral and spatial
information for classifying hyperspectral data in urban areas. In Geoscience
and Remote Sensing Symposium, 2003. IGARSS’03. Proceedings. 2003 IEEE
International, volume 1, pages 464–466. IEEE, 2003.

[55] L. Delves and J. Mohamed. Computational Methods for Integral Equations.
Cambridge University Press, 1988.

[56] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approxima-
tion and projective clustering via volume sampling. In Proceedings of the Sev-
enteenth Annual ACM-SIAM Symposium on Discrete Algorithm, pages 1117–
1126. ACM, 2006.

[57] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[58] D. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data. Proceedings of the National Academy of
Sciences, 100(10):5591–5596, 2003.

[59] P. Drineas and M. W. Mahoney. On the nyström method for approximating
a gram matrix for improved kernel-based learning. The Journal of Machine
Learning Research, 6:2153–2175, 2005.

[60] Q. Du, N. Raksuntorn, S. Cai, and R. J. Moorhead. Color display for hy-
perspectral imagery. Geoscience and Remote Sensing, IEEE Transactions on,
46(6):1858–1866, 2008.

[61] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic fourier series. Trans-
actions of the American Mathematical Society, pages 341–366, 1952.

[62] K. Duke. A Study of the Relationship between Spectrum and Geometry through
Fourier Frames and Laplacian Eigenmaps. PhD thesis, University of Mary-
land, College Park, 2012.

158

http://www.grss-ieee.org/community/technical-committees/data-fusion/
http://www.grss-ieee.org/community/technical-committees/data-fusion/

[63] C. Elachi. Spaceborne Radar Remote Sensing: Applications and Techniques.
IEEE Press, 1988.

[64] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. Sveinsson. Spectral
and spatial classification of hyperspectral data using SVMs and morphological
profiles. IEEE Transactions on Geoscience and Remote Sensing, 46(11):3804–
3814, 2008.

[65] M. Fauvel, J. Chanussot, and J. A. Benediktsson. Kernel principal component
analysis for the classification of hyperspectral remote sensing data over urban
areas. EURASIP Journal on Advances in Signal Processing 2009, 2009.

[66] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. Tilton.
Advances in spectral–spatial classification of hyperspectral images. Proceeding
of the IEEE, 101(3):652–675, 2013.

[67] S. Fine and K. Scheinberg. Efficient svm training using low-rank kernel rep-
resentations. The Journal of Machine Learning Research, 2:243–264, 2002.

[68] J. C. Flake. The Multiplicative Zak Transform, Dimension Reduction, and
Wavelet Analysis of LIDAR Data. Ph.d thesis, University of Maryland, College
Park, 2010.

[69] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using
the Nyström method. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(2):214–225, 2004.

[70] P. Gader, A. Zare, R. Close, J. Aitken, and G. Tuell. MUUFL Gulfport
hyperspectral and LIDAR airborne data set. Technical report, University of
Florida, Gainesville, FL, 2013.

[71] A. Garzelli and F. Nencini. Interband structure modeling for pan-sharpening
of very high-resolution multispectral images. Information Fusion, 6(3):213–
224, 2005.

[72] D. Gillis and J. Bowles. Hyperspectral image segmentation using spatial-
spectral graphs. In SPIE Defense, Security, and Sensing, pages 83901Q–
83901Q. International Society for Optics and Photonics, 2012.

[73] Y. Goldberg, A. Zakai, D. Kushnir, and Y. Ritov. Manifold learning: The price
of normalization. The Journal of Machine Learning Research, 9:1909–1939,
2008.

[74] V. K. Goyal, M. Vetterli, and N. T. Thao. Quantized overcomplete expansions
in RN : analysis, synthesis, and algorithms. IEEE Transactions on Information
Theory, 44(1):16–31, 1998.

[75] A. Halevy. Extensions of Laplacian Eigenmaps for Manifold Learning. Ph.d
thesis, University of Maryland, College Park, 2011.

159

[76] C. Heil. A Basis Theory Primer: Expanded Edition. Springer, 2010.

[77] M. J. Hirn. Enumeration of Harmonic Frames and Frame Based Dimension
Reduction. Ph.d thesis, University of Maryland, College Park, 2009.

[78] X. Jia and J. A. Richards. Segmented principal components transformation for
efficient hyperspectral remote-sensing image display and classification. IEEE
Transactions on Geoscience and Remote Sensing, 37(1):538–542, 1999.

[79] N. Keshava and J. F. Mustard. Spectral unmixing. IEEE Signal Processing
Magazine, 19(1):44–57, 2002.

[80] D. H. Kim and L. H. Finkel. Hyperspectral image processing using locally
linear embedding. In Neural Engineering, 2003. Conference Proceedings. First
International IEEE EMBS Conference on, pages 316 – 319, 2003.

[81] D. Knossow, A. Sharma, D. Mateus, and R. Horaud. Inexact matching of
large and sparse graphs using Laplacian eigenvectors. In Graph-Based Repre-
sentations in Pattern Recognition, pages 144–153. Springer, 2009.

[82] B. Koetz, F. Morsdorf, S. van der Linden, T. Curt, and B. Allgöwer. Multi-
source land cover classification for forest fire management based on imaging
spectrometry and LIDAR data. Forest Ecology and Management, 256(3):263
– 271, 2008.

[83] H. W. Kuhn. The hungarian method for the assignment problem. Naval
research logistics quarterly, 2(1-2):83–97, 1955.

[84] S. Kumar, J. Ghosh, and M. M. Crawford. Best-bases feature extraction
algorithms for classification of hyperspectral data. Geoscience and Remote
Sensing, IEEE Transactions on, 39(7):1368–1379, 2001.

[85] S. Kumar, M. Mohri, and A. Talwalkar. Ensemble Nyström method. In Neural
Information Processing Systems, volume 7, page 223, 2009.

[86] S. Kumar, M. Mohri, and A. Talwalkar. Sampling techniques for the Nyström
method. In Conference on Artificial Intelligence and Statistics, pages 304–311,
2009.

[87] J. T. Kwok and I. W. Tsang. The pre-image problem in kernel methods. IEEE
Transactions on Neural Networks, 15(6):1517–25, Nov 2004.

[88] D. Langrebe. Indiana’s Indian Pines 1992 data set. http://dynamo.ecn.

purdue.edu/biehl/MultiSpec/documentation.html, 1992.

[89] J. Le Moigne, N. S. Netanyahu, and R. D. Eastman. Image Registration for
Remote Sensing. Cambridge University Press, 2011.

160

http://dynamo.ecn.purdue.edu/biehl/MultiSpec/documentation.html
http://dynamo.ecn.purdue.edu/biehl/MultiSpec/documentation.html

[90] J. Le Moigne and I. Zavorine. Use of wavelets for image registration. In
AeroSense 2000, pages 99–108. International Society for Optics and Photonics,
2000.

[91] Y. LeCun and C. Cortes. The MNIST database of handwritten digits, 1998.

[92] C. Lee and D. A. Landgrebe. Analyzing high-dimensional multispectral data.
IEEE Transactions on Geoscience and Remote Sensing, 31(4):792–800, 1993.

[93] J. A. Lee and M. Verleysen. Nonlinear Dimensionality Reduction. Springer,
2007.

[94] M. Lee, L. Bruce, and S. Prasad. Concurrent spatial-spectral band group-
ing: Providing a spatial context for spectral dimensionality reduction. In 3rd
Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing (WHISPERS), pages 1–4, June 2011.

[95] A. J. Lewis and F. Henderson. Geomorphic and hydrologic applications of
active microwave remote sensing. Principles and applications of imaging radar.
Manual of Remote Sensing, pages 567–629, 1998.

[96] J. Lintz and D. S. Simonett. Remote Sensing of Environment. Addison-Wesley,
1976.

[97] L. Ma, M. M. Crawford, and J. Tian. Generalised supervised local tangent
space alignment for hyperspectral image classification. Electronics Letters,
46(7):497–498, 2010.

[98] M. W. Mahoney and P. Drineas. CUR matrix decompositions for improved
data analysis. Proceedings of the National Academy of Sciences, 106(3):697–
702, 2009.

[99] D. Manolakis, D. Marden, and G. Shaw. Hyperspectral image processing for
automatic target detection applications. Lincoln Laboratory Journal, 14(1):79–
116, 2003.

[100] D. Mateus, R. Horaud, D. Knossow, F. Cuzzolin, and E. Boyer. Articulated
shape matching using Laplacian eigenfunctions and unsupervised point regis-
tration. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8. IEEE, 2008.

[101] M. W. Matthew, S. M. Adler-Golden, A. Berk, G. W. Felde, G. P. Anderson,
D. Gorodetzky, S. E. Paswaters, and M. Shippert. Atmospheric correction of
spectral imagery: Evaluation of the FLAASH algorithm with AVIRIS data.
In AeroSense 2003, pages 474–482. International Society for Optics and Pho-
tonics, 2003.

161

[102] J. E. Mesina. Urban Classification Techniques Using the Fusion of LIDAR and
Spectral Data. PhD thesis, Monterey, California. Naval Postgraduate School,
2012.

[103] S. Mika, B. Schölkopf, A. J. Smola, K.-R. Müller, M. Scholz, and G. Rätsch.
Kernel pca and de-noising in feature spaces. In NIPS, volume 11, pages 536–
542, 1998.

[104] A. Mohan, G. Sapiro, and E. Bosch. Spatially coherent nonlinear dimension-
ality reduction and segmentation of hyperspectral images. IEEE Geoscience
and Remote Sensing Letters, 4:206–210, 2007.

[105] J. M. Nascimento and J. M. Bioucas Dias. Vertex component analysis: A fast
algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience
and Remote Sensing, 43(4):898–910, 2005.

[106] J. M. Norman and F. Becker. Terminology in thermal infrared remote sensing
of natural surfaces. Agricultural and Forest Meteorology, 77(3):153–166, 1995.

[107] J. Nunez, X. Otazu, O. Fors, A. Prades, V. Pala, and R. Arbiol.
Multiresolution-based image fusion with additive wavelet decomposition.
IEEE Transactions on Geoscience and Remote Sensing, 37(3):1204–1211,
1999.

[108] E. J. Nyström. Über die praktische auflösung von integralgleichungen mit
anwendungen auf randwertaufgaben. Acta Mathematica, 54(1):185–204, 1930.

[109] B. M. Oliver, J. R. Pierce, and C. E. Shannon. The philosophy of PCM.
Proceedings of the IRE, 36(11):1324–1331, 1948.

[110] K. Pearson. LIII. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 2(11):559–572, 1901.

[111] A. Plaza, P. Martinez, R. Pérez, and J. Plaza. Spatial/spectral endmember
extraction by multidimensional morphological operations. IEEE Transactions
on Geoscience and Remote Sensing, 40(9):2025–2041, 2002.

[112] V. Rajapakse, W. Czaja, Y. Pommier, W. Reinhold, and S. Varma. Pre-
dicting expression-related features of chromosomal domain organization with
network-structured analysis of gene expression and chromosomal location. In
Proceedings of the ACM Conference on Bioinformatics, Computational Biol-
ogy and Biomedicine, BCB ’12, pages 226–233, New York, NY, USA, 2012.
ACM.

[113] I. S. Reed and X. Yu. Adaptive multiple-band cfar detection of an optical
pattern with unknown spectral distribution. IEEE Transactions on Acoustics,
Speech and Signal Processing, 38(10):1760–1770, 1990.

162

[114] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000.

[115] Y. Saad. Numerical Methods for Large Eigenvalue Problems, volume 158.
SIAM, 1992.

[116] A. Schaum and A. Stocker. Hyperspectral change detection and supervised
matched filtering based on covariance equalization. In Proceedings of SPIE,
volume 5425, pages 77–90, 2004.

[117] B. Schölkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and
A. Smola. Input space versus feature space in kernel-based methods. IEEE
Transactions on Neural Networks,, 10(5):1000–1017, 1999.

[118] B. Scholkopf, A. Smola, and K.-R. Müller. Kernel principal component anal-
ysis. In Advances in kernel methods-support vector learning, 1999.

[119] J. Schott. Remote Sensing: The Image Chain Approach. Oxford University
Press, New York, 1997.

[120] D. W. Scott and J. R. Thompson. Probability density estimation in higher
dimensions. In Computer Science and Statistics: Proceedings of the Fifteenth
Symposium on the Interface, volume 528, pages 173–179, 1983.

[121] M. Shimoni, G. Tolt, C. Perneel, and J. Ahlberg. Detection of vehicles in
shadow areas using combined hyperspectral and LIDAR data. In 2011 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), pages
4427–4430, 2011.

[122] A. Smola and B. Scholkopf. Sparse greedy matrix approximation for machine
learning. In International Conference on Machine Learning, pages 911–918,
2000.

[123] W. Sun, A. Halevy, J. J. Benedetto, W. Czaja, C. Liu, H. Wu, B. Shi, and
W. Li. UL-Isomap based nonlinear dimensionality reduction for hyperspec-
tral imagery classification. ISPRS Journal of Photogrammetry and Remote
Sensing, 89:25–36, 2014.

[124] P. H. Swain and S. M. Davis. Remote Sensing: The Quantitative Approach.
McGraw-Hill, 1978.

[125] Y. Tarabalka, J. A. Benediktsson, and J. Chanussot. Spectral-spatial classi-
fication of hyperspectral imagery based on partitional clustering techniques.
IEEE Transactions on Geoscience and Remote Sensing, 47:2973–2987, August
2009.

[126] Y. Tarabalka, J. A. Benediktsson, and J. Chanussot. Spectral-spatial classifica-
tion of hyperspectral imagery based on partitional clustering techniques. IEEE
Transactions on Geoscience and Remote Sensing, 47(8):2973–2987, 2009.

163

[127] Y. Tarabalka, J. Tilton, J. A. Benediktsson, and J. Chanussot. A marker-
based approach for the automated selection of a single segmentation from a
hierarchical set of image segmentations. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 5(1):262–272, 2012.

[128] D. M. Tax and R. P. Duin. Support vector data description. Machine Learning,
54(1):45–66, 2004.

[129] P. Thenkabail, R. Smith, and E. De Pauw. Hyperspectral vegetation indices
and their relationships with agricultural crop characteristics. Remote sensing
of Environment, 71(2):158–182, 2000.

[130] P. Thévenaz and M. Unser. Optimization of mutual information for mul-
tiresolution image registration. IEEE Transactions on Image Processing,,
9(12):2083–2099, 2000.

[131] J. Tilton, Y. Tarabalka, P. Montesano, and E. Gofman. Best merge region
growing with integrated region object classification. IEEE Transactions on
Geoscience and Remote Sensing, 50:4454–4467, 2012.

[132] W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychome-
trika, 17(4):401–419, 1952.

[133] US Army Topographic Engineering Center. http://www.tec.army.mil/

Hypercube.

[134] F. Van Der Meer. Analysis of spectral absorption features in hyperspectral
imagery. International Journal of Applied Earth Observation and Geoinfor-
mation, 5(1):55–68, 2004.

[135] D. Widemann. Dimensionality reduction for hyperspectral data. Ph.d thesis,
University of Maryland, College Park, 2008.

[136] C. Williams and M. Seeger. Using the Nyström method to speed up kernel
machines. Advances in Neural Information Processing Systems, pages 682–
688, 2001.

[137] M. E. Winter. N-FINDR: an algorithm for fast autonomous spectral end-
member determination in hyperspectral data. In SPIE’s International Sym-
posium on Optical Science, Engineering, and Instrumentation, pages 266–275.
International Society for Optics and Photonics, 1999.

[138] K. Zhang and J. T. Kwok. Density-weighted Nyström method for computing
large kernel eigensystems. Neural Computation, 21(1):121–146, 2009.

[139] K. Zhang, I. W. Tsang, and J. T. Kwok. Improved Nyström low-rank approx-
imation and error analysis. In Proceedings of the 25th international conference
on Machine learning, pages 1232–1239. ACM, 2008.

164

http://www.tec.army.mil/Hypercube
http://www.tec.army.mil/Hypercube

[140] Z. Zhang and H. Zha. Principal manifolds and nonlinear dimension reduction
via local tangent space alignment. SIAM Journal of Scientific Computing,
26:313–338, 2002.

[141] A. K. Ziemann, D. W. Messinger, and J. A. Albano. Target detection per-
formed on manifold approximations recovered from hyperspectral data. In
SPIE Defense, Security, and Sensing, pages 874319–874319. International So-
ciety for Optics and Photonics, 2013.

165

	List of Tables
	List of Figures
	List of Abbreviations and Notations
	Introduction
	Summary of Results
	Dissertation Organization

	Introduction to Remote Sensing
	Hyperspectral Sensors and Imaging
	Pavia University
	Pavia Centre
	Indian Pines
	Urban

	LIDAR
	University of Houston
	MUUFL Gulfport

	Introduction to Dimension Reduction
	Principle Component Analysis (PCA)
	Spectral Graph and Operator Theory
	Unweighted Graphs
	Weighted Graphs
	Heat Kernel
	Laplace-Beltrami Operator

	Laplacian Eigenmaps (LE)
	Convergence Results for Laplacian Eigenmaps

	Schrödinger Eigenmaps
	A Toy Example To Illustrate The Use Of Potentials
	A Brief Discussion on Intrinsic Dimension, Heat Kernel Parameter, and k-Nearest Neighborhood Construction

	The Preimage Problem
	Kernel PCA Preimage
	Laplacian Eigenmap Preimage

	Numerical Acceleration Methods for Dimension Reduction
	Random Projections
	Approximate Nearest Neighbors

	Data Fusion
	Spatial-Spectral Fusion
	Laplacian Eigenmap Analysis of Hyperspectral Data
	Spatial Laplacian Eigenmap Analysis of Hyperspectral Data
	Feature Space Stacking
	Distance Modification
	Graph Based
	Operator Based
	Combining Graph and Operator Fusion

	Fusing Hyperspectral and LIDAR Data
	Minimum Path Gradient Distance Algorithm
	Feature Space Rotation
	Image Classification
	Endmember Extraction

	HSI-HSI Fusion
	Partial Overlap
	Without Point Registration

	A Priori Knowledge Fusion
	Extensions to Other Remote Sensing Problems and Future Work

	Nyström Method
	Landmark Selection Methods and Error Bounds
	Frames and the Quantization
	Frame Theory
	 Quantization
	Frames and Quantization Applied to the Nyström Method

	Bibliography

