Identification of Operators on Elementary Locally Compact Abelian Groups

Gökhan Civan gcivan@math.umd.edu

Norbert Wiener Center for Harmonic Analysis and Applications Department of Mathematics University of Maryland, College Park

July 23, 2015

Identification of Operators on Elementary Locally Compact Abelian Groups

Introduction •0000			
Time-Vari	ant Linear Channels		

• Time-variant channels arise in mobile communications [Str06] and super-resolution radar [BGE11].

Introduction •0000			
Time-Vari	ant Linear Channels		

- Time-variant channels arise in mobile communications [Str06] and super-resolution radar [BGE11].
- Time-invariant operators = convolution operators:

$$g
ightarrow \int au(\cdot - y) g(y) \, dy$$

Introduction •0000			
Time-Vari	ant Linear Channels		

- Time-variant channels arise in mobile communications [Str06] and super-resolution radar [BGE11].
- Time-invariant operators = convolution operators:

$$g
ightarrow \int au(\cdot - y) g(y) \, dy$$

Time-variant operators:

$$g
ightarrow \int au(\cdot,\cdot-y) g(y) \, dy$$

Introduction •0000			
Time-Vari	ant Linear Channels		

- Time-variant channels arise in mobile communications [Str06] and super-resolution radar [BGE11].
- Time-invariant operators = convolution operators:

$$g
ightarrow \int au(\cdot-y)g(y)\,dy$$

Time-variant operators:

$$g
ightarrow \int au(\cdot,\cdot-y)g(y)\,dy$$

• Set $\kappa(x, y) = \tau(x, x - y)$: $g \to \int \kappa(\cdot, y) g(y) \, dy$

Introduction			
00000			

Time-Variant Linear Channels (cont.)

► The spreading function:

$$\eta(x,\omega) = \int \kappa(y,y-x) e^{-2\pi y\omega} dy$$

 η is a function of time and frequency.

Introduction			
00000			

Time-Variant Linear Channels (cont.)

The spreading function:

$$\eta(x,\omega) = \int \kappa(y,y-x)e^{-2\pi y\omega} dy$$

 η is a function of time and frequency.

$$g
ightarrow \int \eta(x,\omega) M_\omega \, T_x g \, dx \, d\omega$$

 T_x : translation (time delay) M_ω : modulation (Doppler shift)

Introduction			
00000			

Time-Variant Linear Channels (cont.)

The spreading function:

$$\eta(x,\omega) = \int \kappa(y,y-x)e^{-2\pi y\omega} dy$$

 η is a function of time and frequency.

$$g
ightarrow \int \eta(x,\omega) M_\omega \, T_x g \, dx \, d\omega$$

 T_x : translation (time delay) M_ω : modulation (Doppler shift)

▶ g is transformed into a weighted sum of time-frequency shifts of itself.

Introduction 00000			

Work of Kailath and Bello

Kailath [Kai62] considered a family of operators where η is supported in a fixed rectangle R in the time-frequency plane.

Introduction 00000	The Identification Problem	Sufficient Conditions	Necessary Conditions	Epilogue 00	References
Work of k	Kailath and Bello				

- Kailath [Kai62] considered a family of operators where η is supported in a fixed rectangle R in the time-frequency plane.
- Is it possible to identify this family by a single probing signal?

Introduction 00000			

Work of Kailath and Bello

- Kailath [Kai62] considered a family of operators where η is supported in a fixed rectangle R in the time-frequency plane.
- Is it possible to identify this family by a single probing signal?
- Kailtah's conjecture:
 Yes if µ(R) ≤ 1
 No if µ(R) > 1

Introduction			

Work of Kailath and Bello

- Kailath [Kai62] considered a family of operators where η is supported in a fixed rectangle R in the time-frequency plane.
- Is it possible to identify this family by a single probing signal?
- Kailtah's conjecture:
 Yes if µ(R) ≤ 1
 No if µ(R) > 1
- ▶ Bello [Bel69] removed the restriction that *R* should be a rectangle.

Introduction 000●0			

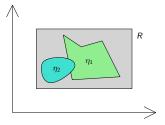
Work of Kozek and Pfander

Theorem (Kozek-Pfander [KP05])

Let R be a rectangle in the time-frequency plane. Consider a family of operators with spreading supports contained in R. If $\mu(R) \leq 1$, then the operator family is identifiable by a Dirac comb

$$m{g} = \sum_{k \in \mathbb{Z}} \delta_{k a}, m{a} > 0.$$

If $\mu(R) > 1$, then there exists no signal which identifies.



Introduction			
00000			

Work of Pfander and Walnut

Theorem (Pfander-Walnut [PW06a])

Let S be a set in the time-frequency plane. Consider a family of operators with spreading supports contained in S. If S is compact with $\mu(S) < 1$, then the operator family is identifiable by a periodically weighted Dirac comb

$$g = \sum_{k \in \mathbb{Z}} c_k \delta_{ka}, \ c_{k+L} = c_k, a > 0.$$

If S is open with $\mu(S) > 1$, then there exists no signal which identifies.

- Support sets for which identification by a periodically weighted Dirac comb is possible are characterized in [PW15] in addition to many other results and reconstruction formulas.
- Many of these results are generalized to arbitrary modulation spaces in [Pfa13b].

The Identification Problem		
00000000		

▶ Banach spaces X and Y

The Identification Problem		
00000000		

- ▶ Banach spaces X and Y
- $\blacktriangleright \text{ Banach space } \mathcal{O} \text{ of bounded linear maps } \mathcal{K}: X \to Y$

The Identification Problem		
00000000		

- Banach spaces X and Y
- Banach space \mathcal{O} of bounded linear maps $\mathcal{K}: X \to Y$
- $\begin{array}{l} \blacktriangleright \hspace{0.1cm} g \in X \\ \hspace{0.1cm} \text{Evaluation map} \hspace{0.1cm} e_g : \mathcal{O} \rightarrow Y, \hspace{0.1cm} \mathcal{K} \rightarrow \mathcal{K}g \end{array}$

The Identification Problem		
0000000		

- Banach spaces X and Y
- Banach space \mathcal{O} of bounded linear maps $\mathcal{K}: X \to Y$
- ▶ $g \in X$ Evaluation map $e_g : \mathcal{O} \to Y, \ \mathcal{K} \to \mathcal{K}g$
- If e_g is injective, then \mathcal{O} is weakly identifiable by g.

The Identification Problem		
00000000		

- Banach spaces X and Y
- Banach space \mathcal{O} of bounded linear maps $\mathcal{K}: X \to Y$
- ▶ $g \in X$ Evaluation map $e_g : \mathcal{O} \to Y$, $\mathcal{K} \to \mathcal{K}g$
- If e_g is injective, then \mathcal{O} is weakly identifiable by g.
- ▶ If e_g is continuous with a bounded inverse (bounded and stable), then O is strongly identifiable by g.

The Identification Problem		
00000000		

• Finite abelian group \mathbb{A} ($\widehat{\mathbb{A}} = \mathbb{A}$)

The Identification Problem		
00000000		

- Finite abelian group \mathbb{A} ($\widehat{\mathbb{A}} = \mathbb{A}$)
- $\begin{array}{l} \blacktriangleright \quad \eta \in \mathbb{C}^{\mathbb{A} \times \widehat{\mathbb{A}}} \\ \mathcal{K} : \mathbb{C}^{\mathbb{A}} \to \mathbb{C}^{\mathbb{A}} \end{array}$

The Identification Problem		
00000000		

- Finite abelian group \mathbb{A} $(\widehat{\mathbb{A}} = \mathbb{A})$
- $\begin{array}{l} \bullet \quad \eta \in \mathbb{C}^{\mathbb{A} \times \widehat{\mathbb{A}}} \\ \mathcal{K} : \mathbb{C}^{\mathbb{A}} \to \mathbb{C}^{\mathbb{A}} \end{array}$
- ► $g \in \mathbb{C}^{\mathbb{A}}$ $A(g) = \{M_{\tau}T_{\lambda}g\}_{\lambda \in \mathbb{A}, \tau \in \widehat{\mathbb{A}}}$ $\mathcal{K}g = |\mathbb{A}|^{-1}A(g)\eta$

The Identification Problem		
00000000		

- Finite abelian group \mathbb{A} ($\widehat{\mathbb{A}} = \mathbb{A}$)
- $\begin{array}{l} \bullet \quad \eta \in \mathbb{C}^{\mathbb{A} \times \widehat{\mathbb{A}}} \\ \mathcal{K} : \mathbb{C}^{\mathbb{A}} \to \mathbb{C}^{\mathbb{A}} \end{array}$
- ► $g \in \mathbb{C}^{\mathbb{A}}$ $A(g) = \{M_{\tau}T_{\lambda}g\}_{\lambda \in \mathbb{A}, \tau \in \widehat{\mathbb{A}}}$ $\mathcal{K}g = |\mathbb{A}|^{-1}A(g)\eta$
- ► $S \subseteq \mathbb{A} \times \widehat{\mathbb{A}}$ $\mathcal{O}_S = \{ \eta \in \mathbb{C}^{\mathbb{A} \times \widehat{\mathbb{A}}} : \operatorname{supp} \eta \subseteq S \}$

The Identification Problem		
00000000		

- Finite abelian group \mathbb{A} $(\widehat{\mathbb{A}} = \mathbb{A})$
- $\begin{array}{l} \bullet \quad \eta \in \mathbb{C}^{\mathbb{A} \times \widehat{\mathbb{A}}} \\ \mathcal{K} : \mathbb{C}^{\mathbb{A}} \to \mathbb{C}^{\mathbb{A}} \end{array}$
- ► $g \in \mathbb{C}^{\mathbb{A}}$ $A(g) = \{M_{\tau}T_{\lambda}g\}_{\lambda \in \mathbb{A}, \tau \in \widehat{\mathbb{A}}}$ $\mathcal{K}g = |\mathbb{A}|^{-1}A(g)\eta$
- $\begin{array}{l} \blacktriangleright \ S \subseteq \mathbb{A} \times \widehat{\mathbb{A}} \\ \mathcal{O}_S = \{\eta \in \mathbb{C}^{\mathbb{A} \times \widehat{\mathbb{A}}} : \operatorname{supp} \eta \subseteq S \} \end{array}$
- $e_g : \mathcal{O}_S \to \mathbb{C}^{\mathbb{A}}$

The Identification Problem		
00000000		

- Finite abelian group \mathbb{A} $(\widehat{\mathbb{A}} = \mathbb{A})$
- $\begin{array}{l} \bullet \quad \eta \in \mathbb{C}^{\mathbb{A} \times \widehat{\mathbb{A}}} \\ \mathcal{K} : \mathbb{C}^{\mathbb{A}} \to \mathbb{C}^{\mathbb{A}} \end{array}$
- ► $g \in \mathbb{C}^{\mathbb{A}}$ $A(g) = \{M_{\tau}T_{\lambda}g\}_{\lambda \in \mathbb{A}, \tau \in \widehat{\mathbb{A}}}$ $\mathcal{K}g = |\mathbb{A}|^{-1}A(g)\eta$
- $\begin{array}{l} \blacktriangleright \ S \subseteq \mathbb{A} \times \widehat{\mathbb{A}} \\ \mathcal{O}_S = \{ \eta \in \mathbb{C}^{\mathbb{A} \times \widehat{\mathbb{A}}} : \operatorname{supp} \eta \subseteq S \} \end{array}$
- $e_g : \mathcal{O}_S \to \mathbb{C}^{\mathbb{A}}$
- $A(g)_S$: A(g) with columns $(\mathbb{A} \times \widehat{\mathbb{A}}) \setminus S$ removed

The Identification Problem		
00000000		

- Finite abelian group \mathbb{A} $(\widehat{\mathbb{A}} = \mathbb{A})$
- $\begin{array}{l} \bullet \quad \eta \in \mathbb{C}^{\mathbb{A} \times \widehat{\mathbb{A}}} \\ \mathcal{K} : \mathbb{C}^{\mathbb{A}} \to \mathbb{C}^{\mathbb{A}} \end{array}$
- ► $g \in \mathbb{C}^{\mathbb{A}}$ $A(g) = \{M_{\tau}T_{\lambda}g\}_{\lambda \in \mathbb{A}, \tau \in \widehat{\mathbb{A}}}$ $\mathcal{K}g = |\mathbb{A}|^{-1}A(g)\eta$
- ► $S \subseteq \mathbb{A} \times \widehat{\mathbb{A}}$ $\mathcal{O}_S = \{\eta \in \mathbb{C}^{\mathbb{A} \times \widehat{\mathbb{A}}} : \operatorname{supp} \eta \subseteq S\}$
- $e_g : \mathcal{O}_S \to \mathbb{C}^{\mathbb{A}}$
- $A(g)_{S}$: A(g) with columns $(\mathbb{A} \times \widehat{\mathbb{A}}) \setminus S$ removed
- Matrix of e_g : $|\mathbb{A}|^{-1}A(g)_S$

The Identification Problem		
00000000		

- Finite abelian group \mathbb{A} $(\widehat{\mathbb{A}} = \mathbb{A})$
- $\begin{array}{l} \bullet \quad \eta \in \mathbb{C}^{\mathbb{A} \times \widehat{\mathbb{A}}} \\ \mathcal{K} : \mathbb{C}^{\mathbb{A}} \to \mathbb{C}^{\mathbb{A}} \end{array}$
- ► $g \in \mathbb{C}^{\mathbb{A}}$ $A(g) = \{M_{\tau}T_{\lambda}g\}_{\lambda \in \mathbb{A}, \tau \in \widehat{\mathbb{A}}}$ $\mathcal{K}g = |\mathbb{A}|^{-1}A(g)\eta$
- ► $S \subseteq \mathbb{A} \times \widehat{\mathbb{A}}$ $\mathcal{O}_S = \{\eta \in \mathbb{C}^{\mathbb{A} \times \widehat{\mathbb{A}}} : \text{supp } \eta \subseteq S\}$
- $e_g : \mathcal{O}_S \to \mathbb{C}^{\mathbb{A}}$
- $A(g)_S$: A(g) with columns $(\mathbb{A} \times \widehat{\mathbb{A}}) \setminus S$ removed
- Matrix of e_g : $|\mathbb{A}|^{-1}A(g)_S$
- ▶ Immediate observation: If \mathcal{O}_S is identifiable by g, then $|S| \leq |A|$ $(\mu_{A \times \widehat{A}}(S) \leq 1)$.

The Identification Problem		
00000000		

 $\blacktriangleright \mathbb{A} = \mathbb{Z}/N\mathbb{Z}$

The Identification Problem		
00000000		

• $\mathbb{A} = \mathbb{Z}/N\mathbb{Z}$ • $g \in \mathbb{C}^{\mathbb{Z}/N\mathbb{Z}}$

The Identification Problem		
00000000		

 $A = \mathbb{Z}/N\mathbb{Z}$ $g \in \mathbb{C}^{\mathbb{Z}/N\mathbb{Z}}$ $\omega_N = e^{2\pi i/N}$

$$W_{N} = (\omega_{N}^{pq})_{p,q=0}^{N} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \omega_{N} & \cdots & \omega_{N}^{N-1} \\ \vdots & \vdots & & \vdots \\ 1 & \omega_{N}^{N-1} & \cdots & \omega_{N}^{(N-1)^{2}} \end{pmatrix}$$

The Identification Problem		
00000000		

 $A = \mathbb{Z}/N\mathbb{Z}$ $g \in \mathbb{C}^{\mathbb{Z}/N\mathbb{Z}}$ $\omega_N = e^{2\pi i/N}$

$$W_{N} = (\omega_{N}^{pq})_{p,q=0}^{N} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \omega_{N} & \cdots & \omega_{N}^{N-1} \\ \vdots & \vdots & & \vdots \\ 1 & \omega_{N}^{N-1} & \cdots & \omega_{N}^{(N-1)^{2}} \end{pmatrix}$$
$$T_{k}(g) = \operatorname{diag}(g(k), g(k+1), \dots, g(k-1))$$

The Identification Problem		
00000000		

• $\mathbb{A} = \mathbb{Z}/N\mathbb{Z}$ • $g \in \mathbb{C}^{\mathbb{Z}/N\mathbb{Z}}$

• $\omega_N = e^{2\pi i/N}$

$$W_{N} = (\omega_{N}^{pq})_{p,q=0}^{N} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \omega_{N} & \cdots & \omega_{N}^{N-1} \\ \vdots & \vdots & & \vdots \\ 1 & \omega_{N}^{N-1} & \cdots & \omega_{N}^{(N-1)^{2}} \end{pmatrix}$$

• $T_k(g) = \operatorname{diag}(g(k), g(k+1), \ldots, g(k-1))$

 $\blacktriangleright A(g) = (T_0(g)W_N | T_1(g)W_N | \cdots | T_{N-1}(g)W_N)$

	The Identification Problem		
Cyclic Cas	se (cont.)		

Theorem (Lawrence-Pfander-Walnut [LPW05])

Suppose that N is prime. The product of all $K \times K$ $(1 \le K \le N)$ determinants of A(g), interpreted as a polynomial in the indeterminates $g(0), \ldots, g(N-1)$, does not vanish identically.

Theorem (Malikiosis [Mal15])

The product of all $N \times N$ determinants of A(g), interpreted as a polynomial in the indeterminates $g(0), \ldots, g(N-1)$, does not vanish identically.

- ► Choose g in the complement of the zero set of this polynomial. Then every N × N minor of A(g) is invertible.
- $|S| \leq N$ implies \mathcal{O}_S is identifiable by g.

The Identification Problem		
00000000		

Counterexample: $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$

 $\blacktriangleright \mathbb{A} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

The Identification Problem		
00000000		

Counterexample: $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$

• $\mathbb{A} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ • $g \in \mathbb{C}^{\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}}$

The Identification Problem		
00000000		

Counterexample: $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

- $\blacktriangleright \ \mathbb{A} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
- $g \in \mathbb{C}^{\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}}$
- $(c_1, c_2, c_3, c_4) = (g(0, 0), g(0, 1), g(1, 0), g(1, 1))$

The Identification Problem		
00000000		

Counterexample: $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

- $\blacktriangleright \ \mathbb{A} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
- $g \in \mathbb{C}^{\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}}$
- $(c_1, c_2, c_3, c_4) = (g(0, 0), g(0, 1), g(1, 0), g(1, 1))$

$$A(g) = \begin{pmatrix} c_1 & c_1 & c_1 & c_2 & c_2 & c_2 & c_2 & \cdots \\ c_2 & -c_2 & c_2 & -c_2 & c_1 & -c_1 & c_1 & -c_1 & \cdots \\ c_3 & c_3 & -c_3 & -c_3 & c_4 & c_4 & -c_4 & -c_4 & \cdots \\ c_4 & -c_4 & -c_4 & c_4 & c_3 & -c_3 & -c_3 & c_3 & \cdots \\ & \cdots & c_4 & -c_4 & c_4 & -c_4 & c_3 & -c_3 & -c_3 & c_3 & -c_3 \\ & \cdots & c_1 & c_1 & -c_1 & -c_1 & c_2 & c_2 & -c_2 & -c_2 \\ & \cdots & c_2 & -c_2 & -c_2 & c_2 & c_1 & -c_1 & -c_1 & c_1 \end{pmatrix}$$

The Identification Problem		
00000000		

Counterexample: $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

- $\blacktriangleright \ \mathbb{A} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
- $g \in \mathbb{C}^{\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}}$
- $(c_1, c_2, c_3, c_4) = (g(0, 0), g(0, 1), g(1, 0), g(1, 1))$

$$A(g) = \begin{pmatrix} c_1 & c_1 & c_1 & c_2 & c_2 & c_2 & c_2 & \cdots \\ c_2 & -c_2 & c_2 & -c_2 & c_1 & -c_1 & c_1 & -c_1 & \cdots \\ c_3 & c_3 & -c_3 & -c_3 & c_4 & c_4 & -c_4 & -c_4 & \cdots \\ c_4 & -c_4 & -c_4 & c_4 & c_3 & -c_3 & -c_3 & c_3 & \cdots \\ & \cdots & c_4 & -c_4 & c_4 & -c_4 & c_3 & -c_3 & -c_3 & c_3 & \cdots \\ & \cdots & c_1 & c_1 & -c_1 & -c_1 & c_2 & c_2 & -c_2 & -c_2 \\ & \cdots & c_2 & -c_2 & -c_2 & c_2 & c_1 & -c_1 & -c_1 & c_1 \end{pmatrix}$$

▶ 240 sets $S \subseteq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\widehat{}}$ with |S| = 4 for which \mathcal{O}_S is not identifiable

The Identification Problem		
00000000		

Theorem

The Identification Problem		
00000000		

$$A(c) = \begin{pmatrix} c_0 & c_0 & c_1 & c_1 \\ c_1 & -c_1 & c_0 & -c_0 \end{pmatrix}$$

Theorem

The Identification Problem		
00000000		

•
$$c \in \mathbb{C}^{\mathbb{Z}/2\mathbb{Z}}$$

$$\mathcal{A}(c) = egin{pmatrix} c_0 & c_0 & c_1 & c_1 \ c_1 & -c_1 & c_0 & -c_0 \end{pmatrix}$$

• Choose c so that $c_0c_1(c_0 - c_1)(c_0 + c_1) \neq 0$. Then every 2 × 2 minor is invertible.

Theorem

The Identification Problem		
00000000		

•
$$c \in \mathbb{C}^{\mathbb{Z}/2\mathbb{Z}}$$

$$\mathcal{A}(c) = egin{pmatrix} c_0 & c_0 & c_1 & c_1 \ c_1 & -c_1 & c_0 & -c_0 \end{pmatrix}$$

• Choose c so that $c_0c_1(c_0 - c_1)(c_0 + c_1) \neq 0$. Then every 2 × 2 minor is invertible.

•
$$\Gamma = \mathbb{Z}/2\mathbb{Z} \times \{0\}, \Lambda = \{0\} \times \{0\}$$

Theorem

The Identification Problem		
00000000		

•
$$c \in \mathbb{C}^{\mathbb{Z}/2\mathbb{Z}}$$

$A(c) = \begin{pmatrix} c_0 & c_0 & c_1 & c_1 \\ c_1 & -c_1 & c_0 & -c_0 \end{pmatrix}$

• Choose c so that $c_0c_1(c_0 - c_1)(c_0 + c_1) \neq 0$. Then every 2 × 2 minor is invertible.

•
$$\Gamma = \mathbb{Z}/2\mathbb{Z} \times \{0\}, \Lambda = \{0\} \times \{0\}$$

$$\blacktriangleright \ \Gamma^{\perp} = \{0\} \times \mathbb{Z}/2\mathbb{Z}, \ \Lambda^{\perp} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

Theorem

The Identification Problem		
00000000		

•
$$c \in \mathbb{C}^{\mathbb{Z}/2\mathbb{Z}}$$

$A(c) = \begin{pmatrix} c_0 & c_0 & c_1 & c_1 \\ c_1 & -c_1 & c_0 & -c_0 \end{pmatrix}$

• Choose c so that $c_0c_1(c_0 - c_1)(c_0 + c_1) \neq 0$. Then every 2 × 2 minor is invertible.

•
$$\Gamma = \mathbb{Z}/2\mathbb{Z} \times \{0\}, \Lambda = \{0\} \times \{0\}$$

$$\blacktriangleright \ \Gamma^{\perp} = \{0\} \times \mathbb{Z}/2\mathbb{Z}, \ \Lambda^{\perp} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

•
$$g = (c_0, c_1, c_0, c_1)$$

Theorem

The Identification Problem		

▶ 576 sets $S \subseteq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\widehat{}}$ with |S| = 4 satisfying both (a) and (b)

The Identification Problem		

- ▶ 576 sets $S \subseteq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\widehat{}}$ with |S| = 4 satisfying both (a) and (b)
- \blacktriangleright Corresponding 4 \times 4 determinants all belong to the list

$$\begin{split} \pm 16c_0^2 c_1^2, \quad \pm 8c_0 c_1 (c_0 - c_1) (c_0 + c_1), \quad \pm 8c_0 c_1 (c_0^2 + c_1^2), \\ \pm 4(c_0 - c_1)^2 (c_0 + c_1)^2, \quad \pm 4(c_0 - c_1) (c_0 + c_1) (c_0^2 + c_1^2), \\ \quad \pm 4(c_0^2 + c_1^2)^2. \end{split}$$

The Identification Problem		
	 - / / · · · ·	

- ▶ 576 sets $S \subseteq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\widehat{}}$ with |S| = 4 satisfying both (a) and (b)
- \blacktriangleright Corresponding 4 \times 4 determinants all belong to the list

$$\begin{split} \pm 16c_0^2c_1^2, \quad \pm 8c_0c_1(c_0-c_1)(c_0+c_1), \quad \pm 8c_0c_1(c_0^2+c_1^2), \\ \pm 4(c_0-c_1)^2(c_0+c_1)^2, \quad \pm 4(c_0-c_1)(c_0+c_1)(c_0^2+c_1^2), \\ \quad \pm 4(c_0^2+c_1^2)^2. \end{split}$$

• \mathcal{O}_S is indeed identifiable by g for these sets.

The Identification Problem		

- ▶ 576 sets $S \subseteq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\widehat{}}$ with |S| = 4 satisfying both (a) and (b)
- \blacktriangleright Corresponding 4 \times 4 determinants all belong to the list

$$\begin{split} \pm 16c_0^2c_1^2, \quad \pm 8c_0c_1(c_0-c_1)(c_0+c_1), \quad \pm 8c_0c_1(c_0^2+c_1^2), \\ \pm 4(c_0-c_1)^2(c_0+c_1)^2, \quad \pm 4(c_0-c_1)(c_0+c_1)(c_0^2+c_1^2), \\ \quad \pm 4(c_0^2+c_1^2)^2. \end{split}$$

- \mathcal{O}_S is indeed identifiable by g for these sets.
- Remaining 4×4 determinants are all zero.

The Identification Problem		

- ▶ 576 sets $S \subseteq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\widehat{}}$ with |S| = 4 satisfying both (a) and (b)
- \blacktriangleright Corresponding 4 \times 4 determinants all belong to the list

$$\begin{split} \pm 16c_0^2c_1^2, \quad \pm 8c_0c_1(c_0-c_1)(c_0+c_1), \quad \pm 8c_0c_1(c_0^2+c_1^2), \\ \pm 4(c_0-c_1)^2(c_0+c_1)^2, \quad \pm 4(c_0-c_1)(c_0+c_1)(c_0^2+c_1^2), \\ \quad \pm 4(c_0^2+c_1^2)^2. \end{split}$$

- \mathcal{O}_S is indeed identifiable by g for these sets.
- Remaining 4×4 determinants are all zero.
- For the remaining sets, \mathcal{O}_S is indeed not identifiable by g.

	The Identification Problem 0000000●0		
Technical	Interlude: STFT		

► ELCA group *G*:

 $G = \mathbb{R}^d \times \mathbb{T}^{d'} \times \mathbb{Z}^{d''} imes \mathbb{A}$

The Identification Problem 0000000●0		

► ELCA group *G*:

$$G = \mathbb{R}^{d} \times \mathbb{T}^{d'} \times \mathbb{Z}^{d''} \times \mathbb{A}$$

▶ $g \in S(G)$, $f \in S'(G)$

$$V_g f(a, \hat{a}) = \langle f, M_{\hat{a}} T_a g \rangle$$
 $(a \in G, \hat{a} \in \widehat{G})$

The Identification Problem		
000000000		

► ELCA group G:

$$G = \mathbb{R}^d \times \mathbb{T}^{d'} \times \mathbb{Z}^{d''} imes \mathbb{A}$$

▶ $g \in S(G)$, $f \in S'(G)$

$$V_g f(a, \hat{a}) = \langle f, M_{\hat{a}} T_a g \rangle$$
 $(a \in G, \hat{a} \in \widehat{G})$

▶ $g \in \mathcal{S}'(G), f \in \mathcal{S}'(G)$

$$V_g f = \mathcal{F}_2 \mathcal{T}_G (f \otimes \overline{g})$$

- \mathcal{T}_G : coordinate transform $(a, t) \rightarrow (t, t a)$ on $G \times G$
- \mathcal{F}_2 : Fourier transform in the second (t) variable

The Identification Problem		
000000000		

► ELCA group G:

$$G = \mathbb{R}^d imes \mathbb{T}^{d'} imes \mathbb{Z}^{d''} imes \mathbb{A}$$

▶ $g \in S(G)$, $f \in S'(G)$

$$V_g f(a, \hat{a}) = \langle f, M_{\hat{a}} T_a g \rangle$$
 $(a \in G, \hat{a} \in \widehat{G})$

• $g \in \mathcal{S}'(G), f \in \mathcal{S}'(G)$

$$V_g f = \mathcal{F}_2 \mathcal{T}_G (f \otimes \overline{g})$$

 \mathcal{T}_G : coordinate transform $(a, t) \rightarrow (t, t - a)$ on $G \times G$ \mathcal{F}_2 : Fourier transform in the second (t) variable

► $M^p(G) = \{f \in S'(G) : V_g f \in L^p(G \times \widehat{G})\}$ $\|f\|_{M^p} = \|V_g f\|_{L^p}$ (not depending on $g \in S(G) \setminus \{0\}$)

The Identification Problem		
000000000		

► ELCA group G:

$$G = \mathbb{R}^d imes \mathbb{T}^{d'} imes \mathbb{Z}^{d''} imes \mathbb{A}$$

▶ $g \in S(G)$, $f \in S'(G)$

$$V_g f(a, \hat{a}) = \langle f, M_{\hat{a}} T_a g \rangle$$
 $(a \in G, \hat{a} \in \widehat{G})$

• $g \in \mathcal{S}'(G), f \in \mathcal{S}'(G)$

$$V_g f = \mathcal{F}_2 \mathcal{T}_G (f \otimes \overline{g})$$

- ► $M^p(G) = \{f \in S'(G) : V_g f \in L^p(G \times \widehat{G})\}$ $\|f\|_{M^p} = \|V_g f\|_{L^p}$ (not depending on $g \in S(G) \setminus \{0\}$)
- ▶ M¹(G) = S₀(G): Feichtinger's algebra

The Identification Problem		
000000000		

► ELCA group G:

$$G = \mathbb{R}^d imes \mathbb{T}^{d'} imes \mathbb{Z}^{d''} imes \mathbb{A}$$

▶ $g \in S(G)$, $f \in S'(G)$

$$V_g f(a, \hat{a}) = \langle f, M_{\hat{a}} T_a g \rangle$$
 $(a \in G, \hat{a} \in \widehat{G})$

• $g \in \mathcal{S}'(G), f \in \mathcal{S}'(G)$

$$V_g f = \mathcal{F}_2 \mathcal{T}_G (f \otimes \overline{g})$$

- ► $M^p(G) = \{f \in S'(G) : V_g f \in L^p(G \times \widehat{G})\}$ $\|f\|_{M^p} = \|V_g f\|_{L^p}$ (not depending on $g \in S(G) \setminus \{0\}$)
- ► M¹(G) = S₀(G): Feichtinger's algebra
- $M^{\infty}(G) = M^1(G)^*$

The Identification Problem		
000000000		

► ELCA group G:

$$G = \mathbb{R}^d imes \mathbb{T}^{d'} imes \mathbb{Z}^{d''} imes \mathbb{A}$$

▶ $g \in S(G)$, $f \in S'(G)$

$$V_g f(a, \hat{a}) = \langle f, M_{\hat{a}} T_a g \rangle$$
 $(a \in G, \hat{a} \in \widehat{G})$

• $g \in \mathcal{S}'(G), f \in \mathcal{S}'(G)$

$$V_g f = \mathcal{F}_2 \mathcal{T}_G (f \otimes \overline{g})$$

- ► $M^p(G) = \{f \in S'(G) : V_g f \in L^p(G \times \widehat{G})\}$ $\|f\|_{M^p} = \|V_g f\|_{L^p}$ (not depending on $g \in S(G) \setminus \{0\}$)
- ► M¹(G) = S₀(G): Feichtinger's algebra
- $M^{\infty}(G) = M^1(G)^*$
- $M^1(G) \subseteq L^2(G) \subseteq M^\infty(G)$

The Identification Problem		
000000000		

► ELCA group G:

$$G = \mathbb{R}^d imes \mathbb{T}^{d'} imes \mathbb{Z}^{d''} imes \mathbb{A}$$

▶ $g \in S(G)$, $f \in S'(G)$

$$V_g f(a, \hat{a}) = \langle f, M_{\hat{a}} T_a g \rangle$$
 $(a \in G, \hat{a} \in \widehat{G})$

• $g \in \mathcal{S}'(G), f \in \mathcal{S}'(G)$

$$V_g f = \mathcal{F}_2 \mathcal{T}_G (f \otimes \overline{g})$$

- ► $M^p(G) = \{f \in S'(G) : V_g f \in L^p(G \times \widehat{G})\}$ $\|f\|_{M^p} = \|V_g f\|_{L^p}$ (not depending on $g \in S(G) \setminus \{0\}$)
- ► M¹(G) = S₀(G): Feichtinger's algebra
- $M^{\infty}(G) = M^1(G)^*$
- $M^1(G) \subseteq L^2(G) \subseteq M^\infty(G)$
- $M^1(G) \subseteq C_0(G)$

	The Identification Problem 00000000●		
Infinite D	imensional Theory		

▶ $\mathcal{O}^{\infty,1}(G)$: all linear maps $\mathcal{K} : M^{\infty}(G) \to M^1(G)$ continuous w.r.t the weak* topology of $M^{\infty}(G)$

	The Identification Problem 00000000●		
Infinite D	imensional Theory		

▶ $\mathcal{O}^{\infty,1}(G)$: all linear maps $\mathcal{K} : M^{\infty}(G) \to M^1(G)$ continuous w.r.t the weak* topology of $M^{\infty}(G)$

$$\mathcal{O}^{\infty,1}(G) \cong M^1(G \times \widehat{G}) \subseteq L^2(G \times \widehat{G}) \\ \|\mathcal{K}\|_2 = \|\eta_{\mathcal{K}}\|_2$$

	The Identification Problem 00000000●		
Infinite D	imensional Theory		

O^{∞,1}(*G*): all linear maps *K* : *M*[∞](*G*) → *M*¹(*G*) continuous w.r.t the weak* topology of *M*[∞](*G*)

$$\mathcal{O}^{\infty,1}(G) \cong M^1(G \times \widehat{G}) \subseteq L^2(G \times \widehat{G}) \\ \|\mathcal{K}\|_2 = \|\eta_{\mathcal{K}}\|_2$$

 $\blacktriangleright \langle \mathcal{K}g, f \rangle = \langle \eta, V_g f \rangle \qquad (f, g \in M^{\infty}(G))$

The Identification Problem 00000000●		
in an air an I Than an		

Infinite Dimensional Theory

▶ $\mathcal{O}^{\infty,1}(G)$: all linear maps $\mathcal{K} : M^{\infty}(G) \to M^1(G)$ continuous w.r.t the weak* topology of $M^{\infty}(G)$

$$\mathcal{O}^{\infty,1}(G) \cong M^1(G \times \widehat{G}) \subseteq L^2(G \times \widehat{G}) \\ \|\mathcal{K}\|_2 = \|\eta_{\mathcal{K}}\|_2$$

- $\blacktriangleright \langle \mathcal{K}g, f \rangle = \langle \eta, V_g f \rangle \qquad (f, g \in M^{\infty}(G))$
- ► $S \subseteq G \times \widehat{G}$ $\mathcal{O}^{\infty,1}(G)|S = \{\mathcal{K} \in \mathcal{O}^{\infty,1}(G) : \operatorname{supp} \eta_{\mathcal{K}} \subseteq S\}$

The Identification Problem 00000000●		

Infinite Dimensional Theory

▶ $\mathcal{O}^{\infty,1}(G)$: all linear maps $\mathcal{K}: M^{\infty}(G) \to M^1(G)$ continuous w.r.t the weak* topology of $M^{\infty}(G)$

$$\mathcal{O}^{\infty,1}(G) \cong M^1(G \times \widehat{G}) \subseteq L^2(G \times \widehat{G}) \\ \|\mathcal{K}\|_2 = \|\eta_{\mathcal{K}}\|_2$$

- $\blacktriangleright \langle \mathcal{K}g, f \rangle = \langle \eta, V_g f \rangle \qquad (f, g \in M^{\infty}(G))$
- ► $S \subseteq G \times \widehat{G}$ $\mathcal{O}^{\infty,1}(G)|S = \{\mathcal{K} \in \mathcal{O}^{\infty,1}(G) : \operatorname{supp} \eta_{\mathcal{K}} \subseteq S\}$

▶
$$g \in M^{\infty}(G)$$

 $e_g : \mathcal{O}^{\infty,1}(G) \to M^1(G) \subseteq L^2(G)$
 $e_g | S : \mathcal{O}^{\infty,1}(G) | S \to L^2(G)$

			Sufficient Conditions			
•••••••	00000	00000000	●000000	0000000	00	

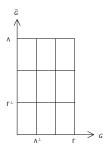
Zak Transform and Quasi-Periodization

• Zak transform of $f \in M^1(G)$:

$$Z_{\Gamma}f(a,\hat{a}) = \sum_{w\in\Gamma}f(a+w)(-w,\hat{a})$$

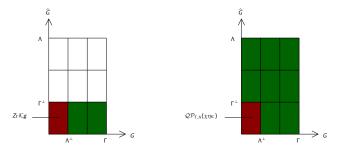
• Quasi-periodization of $\eta \in M^1(G \times \widehat{G})$:

$$\mathcal{QP}_{\Gamma,\Lambda}\eta(a,\hat{a}) = \sum_{w\in\Gamma}\sum_{\upsilon\in\Lambda}\eta(a+w,\hat{a}+\upsilon)(-w,\hat{a})$$



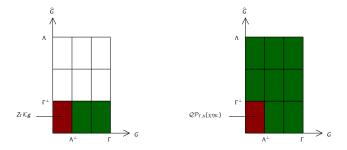
000000 0000000 00 00000 00			Sufficient Conditions			
	00000	00000000	000000	0000000	00	

▶ $\mathcal{K} \in \mathcal{O}^{\infty,1}(G)$



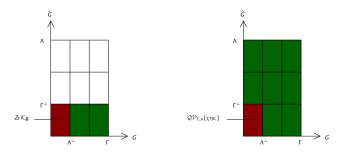
		Sufficient Conditions			
00000	00000000	000000	0000000	00	

• $\mathcal{K} \in \mathcal{O}^{\infty,1}(G)$ • $\chi(a, \hat{a}) = (a, \hat{a})$ for $a \in G$ and $\hat{a} \in \widehat{G}$



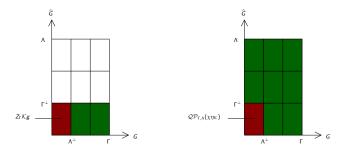
		Sufficient Conditions			
00000	00000000	000000	0000000	00	

 $\begin{aligned} & \mathcal{K} \in \mathcal{O}^{\infty,1}(G) \\ & \lambda(a,\hat{a}) = (a,\hat{a}) \text{ for } a \in G \text{ and } \hat{a} \in \widehat{G} \\ & \mathcal{F} g = \sum_{w \in \Gamma} T_w \delta_G \\ & Z_{\Gamma} \mathcal{K} g = \mu_{\widehat{G}}(D^{\perp}) \mathcal{Q} \mathcal{P}_{\Gamma \Gamma^{\perp}}(\chi \eta_{\mathcal{K}}) \end{aligned}$



		Sufficient Conditions			
00000	00000000	000000	0000000	00	

$$\begin{split} \mathcal{K} \in \mathcal{O}^{\infty,1}(G) \\ \mathcal{K}(a,\hat{a}) &= (a,\hat{a}) \text{ for } a \in G \text{ and } \hat{a} \in \widehat{G} \\ \mathcal{F}(g) &= \sum_{w \in \Gamma} T_w \delta_G \\ Z_{\Gamma} \mathcal{K}g &= \mu_{\widehat{G}}(D^{\perp}) \mathcal{QP}_{\Gamma,\Gamma^{\perp}}(\chi \eta_{\mathcal{K}}) \\ \mathcal{F}(g) &= \sum_{v^{\perp} + \Gamma \in \Lambda^{\perp}/\Gamma} c_{v^{\perp} + \Gamma} T_{v^{\perp}} \sum_{w \in \Gamma} T_w \delta_G \end{split}$$

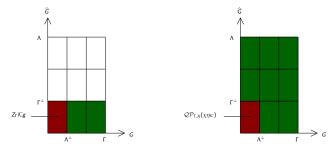


		Sufficient Conditions			
00000	00000000	000000	0000000	00	

$$\begin{aligned} & \mathcal{K} \in \mathcal{O}^{\infty,1}(G) \\ & \lambda(a,\hat{a}) = (a,\hat{a}) \text{ for } a \in G \text{ and } \hat{a} \in \widehat{G} \\ & \mathcal{F} g = \sum_{w \in \Gamma} T_w \delta_G \\ & Z_{\Gamma} \mathcal{K} g = \mu_{\widehat{G}}(D^{\perp}) \mathcal{Q} \mathcal{P}_{\Gamma,\Gamma^{\perp}}(\chi \eta_{\mathcal{K}}) \\ & \mathcal{F} g = \sum_{w \in \Gamma} c_{v^{\perp} + \Gamma} T_{v^{\perp}} \sum_{w \in \Gamma} T_w \delta_w \end{aligned}$$

$$\mathbf{g} = \sum_{\upsilon^{\perp} + \Gamma \in \Lambda^{\perp} / \Gamma} c_{\upsilon^{\perp} + \Gamma} T_{\upsilon^{\perp}} \sum_{w \in \Gamma} T_{w} \delta_{G}$$

•
$$\mathbf{Z}_{\Gamma}\mathcal{K}g = \mu_{\widehat{G}}(D^{\perp})A(c)\boldsymbol{\eta}_{\mathcal{K},\Gamma,\Lambda}$$



	Sufficient Conditions		
	000000		

Sufficient Conditions for Operator Identification

► Λ^{\perp}/Γ cyclic

	Sufficient Conditions		
	000000		

Sufficient Conditions for Operator Identification

• Λ^{\perp}/Γ cyclic

• $c \in \mathbb{C}^{\Lambda^{\perp}/\Gamma}$ such that A(c) is full spark

$$g = \sum_{\upsilon^{\perp} + \Gamma \in \Lambda^{\perp} / \Gamma} c_{\upsilon^{\perp} + \Gamma} T_{\upsilon^{\perp}} \sum_{w \in \Gamma} T_w \delta_G$$

	Sufficient Conditions		
	000000		

Sufficient Conditions for Operator Identification

 $\blacktriangleright \ \Lambda^{\perp}/\Gamma \ \text{cyclic}$

• $c \in \mathbb{C}^{\Lambda^{\perp}/\Gamma}$ such that A(c) is full spark

$$g = \sum_{\upsilon^{\perp} + \Gamma \in \Lambda^{\perp} / \Gamma} c_{\upsilon^{\perp} + \Gamma} T_{\upsilon^{\perp}} \sum_{w \in \Gamma} T_w \delta_G$$

▶ $S \subseteq G \times \widehat{G}$ open

$$\sum_{k\in\Gamma}\sum_{\ell\in\Lambda}\mathbb{1}_{\mathcal{S}+(k,\ell)}\leq 1$$
(1)

and

$$\sum_{\ell^{\perp} \in \Lambda^{\perp}} \sum_{k^{\perp} \in \Gamma^{\perp}} \mathbb{1}_{S+(\ell^{\perp},k^{\perp})} \le |\Lambda^{\perp}/\Gamma|$$
(2)

	Sufficient Conditions		
	0000000		

Sufficient Conditions for Operator Identification (cont.)

Theorem (generalizing [PW15])

The following statements are equivalent:

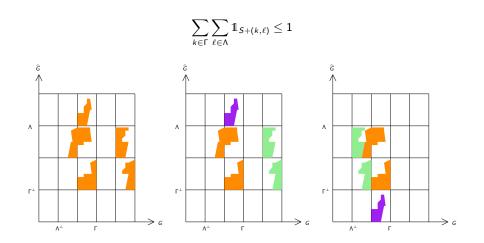
- 1. (1) and (2) hold pointwise everywhere.
- 2. $\mathcal{O}^{\infty,1}(G)|S$ is strongly identifiable by g.
- 3. $\mathcal{O}^{\infty,1}(G)|S$ is weakly identifiable by g.

Corollary (generalizing [PW06a, Theorem 3.1])

Suppose that G has at most one finite cyclic summand. Let $S \subseteq G \times \widehat{G}$ be compact with $\mu_{G \times \widehat{G}}(S) < 1$. Then $\mathcal{O}^{\infty,1}(G)|S$ is strongly identifiable.

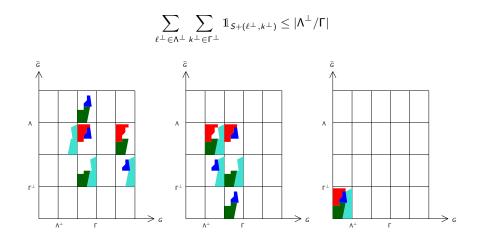
	Sufficient Conditions		
	0000000		

Description of (1)

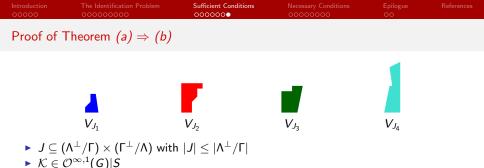


	Sufficient Conditions		

Description of (2)

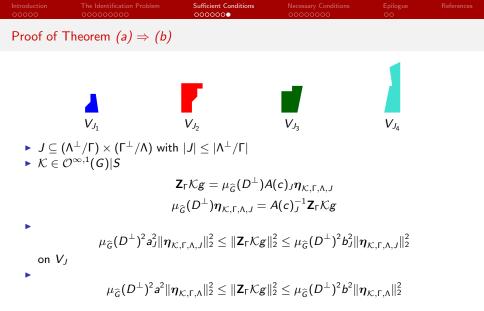


• $J \subseteq (\Lambda^{\perp}/\Gamma) \times (\Gamma^{\perp}/\Lambda)$ with $|J| \leq |\Lambda^{\perp}/\Gamma|$



$$\mathbf{Z}_{\mathsf{\Gamma}}\mathcal{K}g = \mu_{\widehat{G}}(D^{\perp})A(c)_{J}\boldsymbol{\eta}_{\mathcal{K},\mathsf{\Gamma},\Lambda,J}$$
$$\mu_{\widehat{G}}(D^{\perp})\boldsymbol{\eta}_{\mathcal{K},\mathsf{\Gamma},\Lambda,J} = A(c)_{J}^{-1}\mathbf{Z}_{\mathsf{\Gamma}}\mathcal{K}g$$

	The Identification Problem	Sufficient Conditions			
Proof of T	Theorem $(a) \Rightarrow (b)$				
	V _{J1}	V _{J2}	V _{J3}	V _{J4}	
- 、	$\Lambda^{\perp}/\Gamma) imes(\Gamma^{\perp}/\Lambda)$ with $\mathcal{P}^{\infty,1}(G) S$	$ J \leq \Lambda^{\perp}/\Gamma $			
		${\sf Z}_{\sf \Gamma}{\cal K}g=\mu_{\widehat{G}}(D^{\perp}){\cal A}$	$(c)_J \eta_{\mathcal{K}, {\sf \Gamma}, {\sf \Lambda}, J}$		
	Ļ	$\mu_{\widehat{G}}(D^{\perp})\boldsymbol{\eta}_{\mathcal{K},\Gamma,\Lambda,J}=0$	$A(c)_J^{-1} \mathbf{Z}_{\Gamma} \mathcal{K} g$		
ر on V	$\mu_{\widehat{G}}(D^{\perp})^2$ a $_J^2 \Vert oldsymbol{\eta}_{\mathcal{K}}$	$\ \mathbf{Z}_{\Gamma,\Lambda,J}\ _{2}^{2} \leq \ \mathbf{Z}_{\Gamma}\mathcal{K}_{\mathbf{g}}\ _{2}^{2}$	$\mu_{\widehat{G}}^2 \leq \mu_{\widehat{G}}(D^\perp)^2 b_J^2 \ \eta$	$\ \mathcal{K}, \Gamma, \Lambda, J\ _2^2$	



		Sufficient Conditions						
Proof of Theorem $(a) \Rightarrow (b)$								
	V _{J1}	V _{J2}	V _{J3}	V _{J4}				
•	$egin{array}{l} \Lambda^{ot}/{\sf \Gamma}) imes ({\sf \Gamma}^{ot}/{\sf \Lambda}) ext{ with } \mathcal{I}^{\infty,1}(G) S \end{array}$	$ J \leq \Lambda^{\perp}/\Gamma $						
		$oldsymbol{Z}_{\Gamma}\mathcal{K}g=\mu_{\widehat{G}}(D^{\perp})\mathcal{A}_{\widehat{G}}(D^{\perp})\eta_{\mathcal{K},\Gamma,\Lambda,J}=0$, . , . , . , .					
on V _J		$\ \mathbf{Z}_{\Gamma,\Lambda,J}\ _{2}^{2} \leq \ \mathbf{Z}_{\Gamma}\mathcal{K}_{g}\ _{2}^{2}$	$\ _2^2 \leq \mu_{\widehat{G}}(D^\perp)^2 b_J^2 \ oldsymbol{\eta}$	$\mathcal{K}, \Gamma, \Lambda, J \ _{2}^{2}$				
	$\mu_{\widehat{G}}(D^{\perp})^2a^2\ \eta$	$\ \boldsymbol{\mathcal{C}}_{\mathcal{K},\Gamma,\Lambda} \ _2^2 \leq \ \boldsymbol{Z}_{\Gamma} \mathcal{K}_{\boldsymbol{\mathcal{G}}} \ $	$\ _2^2 \leq \mu_{\widehat{G}}(D^\perp)^2 b^2 \ oldsymbol{\eta}$	$_{\mathcal{K},\Gamma,\Lambda}\ _{2}^{2}$				
•	$\mu_{\widehat{G}}(D^{\perp})$	$ \boldsymbol{a}^2 \ \eta_{\mathcal{K}} \ _2^2 \le \ \boldsymbol{e}_{\boldsymbol{g}} \mathcal{K} \ _2^2$	$\mu_{\widehat{G}}^2 \leq \mu_{\widehat{G}}(D^\perp) b^2 \ \eta_{\mathcal{K}}\ $	$ _{2}^{2}$				

	Necessary Conditions	
	●0000000	

• $\mathcal{K} \in \mathcal{O}^{\infty,1}(G)$

Theorem

	Necessary Conditions	
	0000000	

- $\mathcal{K} \in \mathcal{O}^{\infty,1}(G)$
- $\mathcal{K}_{\mathcal{F}} \in \mathcal{O}^{\infty,1}(\widehat{G})$ $\eta_{\mathcal{K}_{\mathcal{F}}}(\widehat{a},a) = (-a,\widehat{a})\eta_{\mathcal{K}}(-a,\widehat{a})$

Theorem

	Necessary Conditions	
	•0000000	

- $\mathcal{K} \in \mathcal{O}^{\infty,1}(G)$
- $\mathcal{K}_{\mathcal{F}} \in \mathcal{O}^{\infty,1}(\widehat{G})$ $\eta_{\mathcal{K}_{\mathcal{F}}}(\widehat{a},a) = (-a,\widehat{a})\eta_{\mathcal{K}}(-a,\widehat{a})$
- ► $S \subseteq G \times \widehat{G}$ $S_{\mathcal{F}} = \{(\hat{a}, a) \in \widehat{G} \times G : (-a, \hat{a}) \in S\}$

Theorem

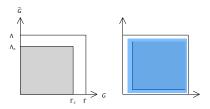
	Necessary Conditions	
	0000000	

- $\mathcal{K} \in \mathcal{O}^{\infty,1}(G)$
- $\mathcal{K}_{\mathcal{F}} \in \mathcal{O}^{\infty,1}(\widehat{G})$ $\eta_{\mathcal{K}_{\mathcal{F}}}(\widehat{a}, a) = (-a, \widehat{a})\eta_{\mathcal{K}}(-a, \widehat{a})$
- ► $S \subseteq G \times \widehat{G}$ $S_{\mathcal{F}} = \{(\hat{a}, a) \in \widehat{G} \times G : (-a, \hat{a}) \in S\}$

Theorem

	Necessary Conditions	
	0000000	

A Riesz Basis of Operators



Theorem

$$\{M_{v+w_c^{\perp}}T_{-v_c^{\perp}}\mathcal{P}T_{w+v_c^{\perp}}M_{-w_c^{\perp}}\}_{(w,v,w_c^{\perp},v_c^{\perp})\in\Gamma\times\Lambda\times\Gamma_c^{\perp}\times\Lambda_c^{\perp}}$$

is a Riesz basis for its closed linear span in $\mathcal{O}^2(G)$.

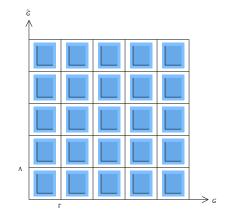
$$\eta_{M_{\upsilon+w_{c}^{\perp}}}\tau_{-\upsilon_{c}^{\perp}}\mathcal{P}\tau_{w+\upsilon_{c}^{\perp}}M_{-w_{c}^{\perp}} = (-\upsilon_{c}^{\perp},\upsilon)M_{(w_{c}^{\perp},\upsilon_{c}^{\perp})}T_{(w,\upsilon)}\eta_{\mathcal{P}}$$

$$U: \ell_{c}(\Gamma \times \Lambda \times \Gamma_{c}^{\perp} \times \Lambda_{c}^{\perp}) \to \mathcal{O}^{\infty,1}(G)$$

	Necessary Conditions	
	0000000	

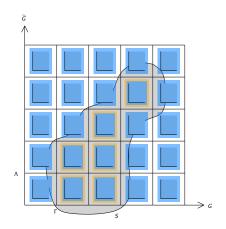
A Riesz Basis of Operators (cont.)

$$\eta_{M_{\upsilon+w_c^{\perp}}}\tau_{-\upsilon_c^{\perp}}\mathcal{P}\tau_{w+\upsilon_c^{\perp}}M_{-w_c^{\perp}} = (-\upsilon_c^{\perp},\upsilon)M_{(w_c^{\perp},\upsilon_c^{\perp})}T_{(w,\upsilon)}\eta_{\mathcal{P}}$$



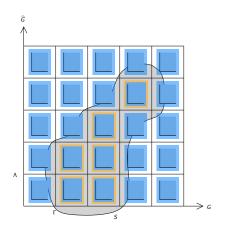
			Necessary Conditions		
00000	00000000	000000	0000000	00	

• $J \subseteq \Gamma \times \Lambda$ finite



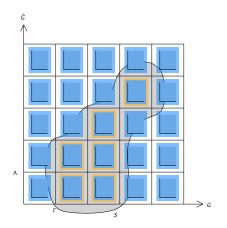
	Necessary Conditions	
	0000000	

- ▶ $J \subseteq \Gamma \times \Lambda$ finite
- \mathcal{V}_J : image of $U \circ i_J$



	Necessary Conditions	
	0000000	

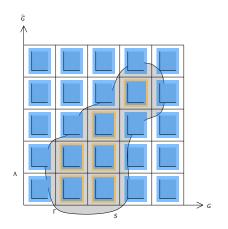
- ► $J \subseteq \Gamma \times \Lambda$ finite
- \mathcal{V}_J : image of $U \circ i_J$
- Arrange $\mathcal{V}_J \subseteq \mathcal{O}^{\infty,1}(G)|S$.



	Necessary Conditions	
	0000000	

- $J \subseteq \Gamma \times \Lambda$ finite
- \mathcal{V}_J : image of $U \circ i_J$
- Arrange $\mathcal{V}_J \subseteq \mathcal{O}^{\infty,1}(G)|S$.
- Restrict to V_J:

 $e_g \circ U \circ i_J = e_g | S \circ U \circ i_J$



	Necessary Conditions	

Simplifying the RHS

•
$$V: L^2(G) \to \ell^2(\mathbb{Z})$$

 $V \circ e_g | S \circ U \circ i_J$

Lemma ([KP05, Lemma 3.4])

Let $g \in M^{\infty}(G)$. There exists a nonnegative continuous function r on G, decreasing faster than any polynomial, such that $|\mathcal{P}M_{\hat{b}}T_{b}g| \leq r$. There exists a nonnegative continuous function $r_{\mathcal{F}}$ on \widehat{G} , decreasing faster than any polynomial, such that $|(\mathcal{P}M_{\hat{b}}T_{b}g)^{\widehat{}}| \leq r_{\mathcal{F}}$.

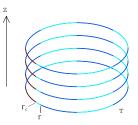
Proposition ([Pfa08, Theorem 2.1])

Let $A: \ell_c(\mathbb{Z}^d) \to \ell^2(\mathbb{Z}^d)$ be a (not necessarily bounded) linear map. Let $(a_{k',k})_{k',k\in\mathbb{Z}^d}$ be the matrix representation of A with respect to the orthonormal bases $\{T_{k'}\delta_{\mathbb{Z}^d}\}_{k'\in\mathbb{Z}^d}$ and $\{T_k\delta_{\mathbb{Z}^d}\}_{k\in\mathbb{Z}^d}$. Let \tilde{r} be a nonnegative Borel measurable function on \mathbb{R} , decreasing faster than any polynomial. Let $\lambda > 1$. Suppose that $|a_{k',k}| \leq \tilde{r}(||\lambda k' - k||_{\infty})$. In this case, there does not exist a bounded linear map $B: \ell^2(\mathbb{Z}^d) \to \ell^2(\mathbb{Z}^d)$ with BA = I.

	Necessary Conditions	
	00000000	

►
$$L > K$$

 $D = [0, 1/K), D_c = [0, 1/L)$



Theorem

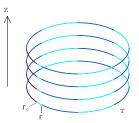
Let $S \subseteq \mathbb{T} \times \mathbb{Z}$ be open with $\mu_{\mathbb{T} \times \mathbb{Z}}(S) > 1$. There exists no $g \in M^{\infty}(\mathbb{T})$ for which $e_g|S$ is stable.

Corollary

	Necessary Conditions	
	00000000	

•
$$L > K$$

 $D = [0, 1/K), D_c = [0, 1/L)$
• $g \in M^{\infty}(\mathbb{T})$
 $A_g = \mathcal{F} \circ e_g \circ U$



Theorem

Let $S \subseteq \mathbb{T} \times \mathbb{Z}$ be open with $\mu_{\mathbb{T} \times \mathbb{Z}}(S) > 1$. There exists no $g \in M^{\infty}(\mathbb{T})$ for which $e_g|S$ is stable.

Corollary

	Necessary Conditions	
	00000000	

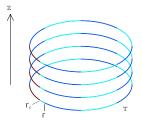
$$L > K$$

$$D = [0, 1/K), D_c = [0, 1/L)$$

$$g \in M^{\infty}(\mathbb{T})$$

$$A_g = \mathcal{F} \circ e_g \circ U$$

$$\bullet a_{\xi,(k,p,q)} = (\mathcal{P}T_{\omega_K^k}M_{-qL}g)^{\mathsf{T}}(\xi - p - qL)$$



Theorem

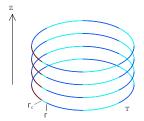
Let $S \subseteq \mathbb{T} \times \mathbb{Z}$ be open with $\mu_{\mathbb{T} \times \mathbb{Z}}(S) > 1$. There exists no $g \in M^{\infty}(\mathbb{T})$ for which $e_g|S$ is stable.

Corollary

	Necessary Conditions	
	00000000	

•
$$L > K$$

 $D = [0, 1/K), D_c = [0, 1/L)$
• $g \in M^{\infty}(\mathbb{T})$
 $A_g = \mathcal{F} \circ e_g \circ U$
• $a_{\xi,(k,p,q)} = (\mathcal{P}T_{\omega_K^k}M_{-qL}g)^{\widehat{}}(\xi - p - qL)$
• $J \subseteq \Gamma \times \Lambda$
 $\lambda = |J|/L > 1$



Theorem

Let $S \subseteq \mathbb{T} \times \mathbb{Z}$ be open with $\mu_{\mathbb{T} \times \mathbb{Z}}(S) > 1$. There exists no $g \in M^{\infty}(\mathbb{T})$ for which $e_g|S$ is stable.

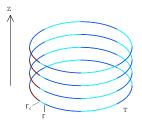
Corollary

	Necessary Conditions	
	00000000	

►
$$L > K$$

 $D = [0, 1/K), D_c = [0, 1/L)$
► $g \in M^{\infty}(\mathbb{T})$
 $A_g = \mathcal{F} \circ e_g \circ U$
► $a_{\xi,(k,p,q)} = (\mathcal{P}T_{\omega_K^k}M_{-qL}g)(\xi - p - qL)$
► $J \subseteq \Gamma \times \Lambda$
 $\lambda = |J|/L > 1$

$$\blacktriangleright ||a_{\xi,(k_j,p_j,q)}| \leq \tilde{r}(\lambda\xi - (q|J|+j))$$



Theorem

Let $S \subseteq \mathbb{T} \times \mathbb{Z}$ be open with $\mu_{\mathbb{T} \times \mathbb{Z}}(S) > 1$. There exists no $g \in M^{\infty}(\mathbb{T})$ for which $e_g|S$ is stable.

Corollary

	Necessary Conditions	
	00000000	

$$L > K$$

$$D = [0, 1/K), D_c = [0, 1/L)$$

$$g \in M^{\infty}(\mathbb{T})$$

$$A_g = \mathcal{F} \circ e_g \circ U$$

$$a_{\xi,(k,p,q)} = (\mathcal{P}T_{\omega_K^k}M_{-qL}g)(\xi - p - qL)$$

$$J \subseteq \Gamma \times \Lambda$$

$$\lambda = |J|/L > 1$$

$$|a_{\xi,(k,p,q)}| \leq \tilde{r}(\lambda\xi - (q|I| + i))$$

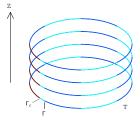
$$|a_{\xi,(k_j,p_j,q)}| \leq \tilde{r}(\lambda\xi - (q|J|+j))$$

• $e_g \circ U \circ i_J$ is not stable

Theorem

Let $S \subseteq \mathbb{T} \times \mathbb{Z}$ be open with $\mu_{\mathbb{T} \times \mathbb{Z}}(S) > 1$. There exists no $g \in M^{\infty}(\mathbb{T})$ for which $e_g|S$ is stable.

Corollary



	Necessary Conditions	

Product Groups

$$\blacktriangleright \eta = \eta_1 \otimes \eta_2 \Rightarrow \mathcal{K}(g_1 \otimes g_2) = (\mathcal{K}_1 g_1) \otimes (\mathcal{K}_2 g_2)$$

Theorem

Suppose that G_1 has the finely tuned overspreading property. Let $S \subseteq G_1 \times G_2 \times \widehat{G}_1 \times \widehat{G}_2$ be open. Suppose that there exists $(a_2, \hat{a}_2) \in G_2 \times \widehat{G}_2$ such that $\mu_{G_1 \times \widehat{G}_1}(S_{(a_2, \hat{a}_2)}) > 1$, where

$$S_{(a_2,\hat{a}_2)} = \{(a_1,\hat{a}_1) \in G_1 \times \widehat{G}_1 : (a_1,a_2,\hat{a}_1,\hat{a}_2) \in S\}$$

In this case, there exist no $g_1 \in M^{\infty}(G_1)$ and $g_2 \in M^{\infty}(G_2)$ for which $e_{g_1 \otimes g_2}|S$ is stable.

		Necessary Conditions 000000●0	
Product (Groups		

$$\blacktriangleright \ \eta = \eta_1 \otimes \eta_2 \Rightarrow \mathcal{K}(g_1 \otimes g_2) = (\mathcal{K}_1 g_1) \otimes (\mathcal{K}_2 g_2)$$

$$\blacktriangleright U: \ell_c(\Gamma_1 \times \Gamma_2 \times \Lambda_1 \times \Lambda_2 \times \Gamma_{1,c}^{\perp} \times \Gamma_{2,c}^{\perp} \times \Lambda_{1,c}^{\perp} \times \Lambda_{2,c}^{\perp}) \to \mathcal{O}^{\infty,1}(G_1 \times G_2)$$

Theorem

Suppose that G_1 has the finely tuned overspreading property. Let $S \subseteq G_1 \times G_2 \times \widehat{G}_1 \times \widehat{G}_2$ be open. Suppose that there exists $(a_2, \hat{a}_2) \in G_2 \times \widehat{G}_2$ such that $\mu_{G_1 \times \widehat{G}_1}(S_{(a_2, \hat{a}_2)}) > 1$, where

$$S_{(a_2, \hat{a}_2)} = \{(a_1, \hat{a}_1) \in G_1 \times \widehat{G}_1 : (a_1, a_2, \hat{a}_1, \hat{a}_2) \in S\}$$

In this case, there exist no $g_1 \in M^{\infty}(G_1)$ and $g_2 \in M^{\infty}(G_2)$ for which $e_{g_1 \otimes g_2}|S$ is stable.

		Necessary Conditions	
Product Gr			

$$\eta = \eta_1 \otimes \eta_2 \Rightarrow \mathcal{K}(g_1 \otimes g_2) = (\mathcal{K}_1 g_1) \otimes (\mathcal{K}_2 g_2)$$

$$U: \ell_c(\Gamma_1 \times \Gamma_2 \times \Lambda_1 \times \Lambda_2 \times \Gamma_{1,c}^{\perp} \times \Gamma_{2,c}^{\perp} \times \Lambda_{1,c}^{\perp} \times \Lambda_{2,c}^{\perp}) \rightarrow \mathcal{O}^{\infty,1}(G_1 \times G_2)$$

$$U: \ell_c(\Gamma_1 \otimes \Gamma_2 \times \Lambda_1 \times \Lambda_2 \times \Gamma_{1,c}^{\perp} \times \Gamma_{2,c}^{\perp} \times \Lambda_{1,c}^{\perp} \times \Lambda_{2,c}^{\perp}) \rightarrow \mathcal{O}^{\infty,1}(G_1 \times G_2)$$

$$= (U_1 \sigma 1) g_1 \otimes (U_2 T_{(w_2, v_2, w_{2,c}^{\perp}, v_{2,c}^{\perp})} \delta_{\Gamma_2 \times \Lambda_2 \times \Gamma_{2,c}^{\perp}} \delta_{\Gamma_2 \times \Lambda_2 \times \Gamma_{2,c}^{\perp}}) g_2$$

Theorem

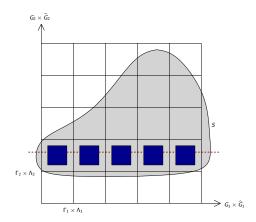
Suppose that G_1 has the finely tuned overspreading property. Let $S \subseteq G_1 \times G_2 \times \widehat{G}_1 \times \widehat{G}_2$ be open. Suppose that there exists $(a_2, \hat{a}_2) \in G_2 \times \widehat{G}_2$ such that $\mu_{G_1 \times \widehat{G}_1}(S_{(a_2, \hat{a}_2)}) > 1$, where

$$S_{(a_2,\hat{a}_2)} = \{(a_1,\hat{a}_1) \in G_1 imes \widehat{G}_1 : (a_1,a_2,\hat{a}_1,\hat{a}_2) \in S\}$$

In this case, there exist no $g_1 \in M^{\infty}(G_1)$ and $g_2 \in M^{\infty}(G_2)$ for which $e_{g_1 \otimes g_2}|S$ is stable.

	Necessary Conditions	
	0000000	

Product Groups (cont.)



			Epilogue ●O	
Further G	Juestions			

► The underspread condition is necessary for operator identification on R, T, Z, and A individually. What about in general?

Conjecture

Let G be an arbitrary ELCA group. Let $S \subseteq G \times \widehat{G}$ be open with $\mu_{G \times \widehat{G}}(S) > 1$. There exists no $g \in M^{\infty}(G)$ for which $e_g|S$ is stable.

- Explicit construction of vectors $c \in \mathbb{C}^{\mathbb{Z}/N\mathbb{Z}}$ such that A(c) is full spark
- Bounds on the Frobenius norms of the $N \times N$ minors and their inverses

		Epilogue	
		00	

Thank You

		References

References I

- P. A. Bello. "Measurement of Random Time-Variant Linear Channels". In: *IEEE Trans. Inf. Theory* 15.4 (1969), pp. 469–475.
- J. J. Benedetto. Harmonic Analysis and Applications. CRC Press, Inc., 1997.

- W. U. Bajwa, K. Gedalyahu, and Y. C. Eldar. "Identification of Parametric Underspread Linear Systems and Super-Resolution Radar". In: *IEEE Trans. Signal Process.* 59.6 (2011), pp. 2548–2561.
- F. F. Bonsall. "A General Atomic Decomposition Theorem and Banach's Closed Range Theorem". In: *Q. J. Math.* 42.1 (1991), pp. 9–14.
- A. Benedek and R. Panzone. "The Space L^p , with Mixed Norm". In: Duke Math. J. 28.3 (1961), pp. 301–324.
- J. J. Benedetto and G. Zimmermann. "Sampling Multipliers and the Poisson Summation Formula". In: *J. Fourier Anal. Appl.* 3.5 (1997), pp. 505–523.
- E. Cordero and K. Gröchenig. "Time-Frequency Analysis of Localization Operators". In: *J. Funct. Anal.* 205.1 (2003), pp. 107–131.

			References
D.C			

References II

- G. Civan. "Operator Identification on the Circle". In: 2015 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2015, pp. 583–587.
- D. L. Donoho and M. Elad. "Optimally Sparse Representation in General (Nonorthogonal) Dictionaries via ℓ^1 Minimization". In: *Proc. Natl. Acad. Sci. U.S.A.* 100.5 (2003), pp. 2197–2202.
- H. G. Feichtinger. "Banach Convolution Algebras of Wiener Type". In: *Proc. Conf. Functions, Series, Operators, Budapest.* 1980, pp. 509–524.
- H. G. Feichtinger. "On a New Segal Algebra". In: *Mh. Math.* 92.4 (1981), pp. 269–289.
- H. G. Feichtinger and W. Kozek. "Quantization of TF Lattice-Invariant Operators on Elementary LCA Groups". In: *Gabor Analysis and Algorithms: Theory and Applications*. Ed. by H. G. Feichtinger and T. Strohmer. Birkhäuser, 1998. Chap. 7, pp. 233–266.

		References

References III

- G. B. Folland. A Course in Abstract Harmonic Analysis. CRC Press, Inc., 1995.
 - G. B. Folland. *Real Analysis: Modern Techniques and Their Applications*. 2nd. John Wiley & Sons, Inc., 1999.

- H. G. Feichtinger and G. Zimmermann. "A Banach Space of Test Functions for Gabor Analysis". In: *Gabor Analysis and Algorithms: Theory and Applications.* Ed. by H. G. Feichtinger and T. Strohmer. Birkhäuser, 1998. Chap. 3, pp. 123–170.
- K. Gröchenig. Foundations of Time-Frequency Analysis. Birkhäuser, 2001.
- K. Gröchenig. "Aspects of Gabor Analysis on Locally Compact Abelian Groups". In: *Gabor Analysis and Algorithms: Theory and Applications*. Ed. by H. G. Feichtinger and T. Strohmer. Birkhäuser, 1998. Chap. 6, pp. 211–231.
- C. Heil. "An Introduction to Weighted Wiener Amalgams". In: *Wavelets and Their Applications*. Ed. by M. Krishna, R. Radha, and S. Thangavelu. New Delhi: Allied Publishers, 2003, pp. 183–216.

		References

References IV

- L. Hörmander. *The Analysis of Linear Partial Differential Operators I.* 2nd. Springer-Verlag, 1990.
 - T. Kailath. "Measurements on Time-Variant Communication Channels". In: *IEEE Trans. Inf. Theory* 8.5 (1962), pp. 229–236.
 - W. Kozek and G. E. Pfander. "Identification of Operators with Bandlimited Symbols". In: *SIAM J. Math. Anal.* 37.3 (2005), pp. 867–888.
 - F. Krahmer and G. E. Pfander. "Local Sampling and Approximation of Operators with Bandlimited Kohn-Nirenberg Symbols". In: *Constr. Approx.* 39.3 (2014), pp. 541–572.
 - J. Lawrence, G. E. Pfander, and D. Walnut. "Linear Independence of Gabor Systems in Finite Dimensional Vector Spaces". In: *J. Fourier Anal. Appl.* 11.6 (2005), pp. 715–726.
 - R.-D. Malikiosis. "A Note on Gabor Frames in Finite Dimensions". In: *Appl. Comput. Harmon. Anal.* 38.2 (2015), pp. 318–330.

		References

References V

- L. Nachbin. "Sur les algèbres denses de fonctions différentiables sur une variété". In: *C. R. Acad. Sci. Paris* 228 (1949), pp. 1549–1551.
 - K. A. Okoudjou. "A Beurling-Helson Type Theorem for Modulation Spaces". In: *J. Funct. Spaces Appl.* 7.1 (2009), pp. 33–41.
 - G. E. Pfander. "On the Invertibility of "Rectangular" Bi-Infinite Matrices and Applications in Time-Frequency Analysis". In: *Linear Algebra Appl.* 429.1 (2008), pp. 331–345.
 - G. E. Pfander. "Gabor Frames in Finite Dimensions". In: *Finite Frames: Theory and Applications.* Ed. by P. G. Casazza and G. Kutyniok. Birkhäuser, 2013. Chap. 6, pp. 193–239.
 - G. E. Pfander. "Sampling of Operators". In: *J. Fourier Anal. Appl.* 19.3 (2013), pp. 612–650.
 - G. E. Pfander and D. F. Walnut. "Measurement of Time-Variant Linear Channels". In: *IEEE Trans. Inf. Theory* 52.11 (2006), pp. 4808–4820.

			References
Deference	• \/l		

References VI

- G. E. Pfander and D. F. Walnut. "Operator Identification and Feichtinger's Algebra". In: *Sampl. Theory Signal Image Process.* 5.2 (2006), pp. 183–200.
- G. E. Pfander and D. Walnut. "Regular Operator Sampling for Parallelograms". In: 2015 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2015, pp. 44–47.
- G. E. Pfander and D. Walnut. "Sampling and Reconstruction of Operators". Preprint. 2015.
- H. Reiter. Classical Harmonic Analysis and Locally Compact Groups. Oxford University Press, 1968.
- W. Rudin. Fourier Analysis on Groups. Interscience Publishers, 1962.
- W. Rudin. Functional Analysis. 2nd. McGraw-Hill, Inc., 1991.
- M. A. Shubin. *Pseudodifferential Operators and Spectral Theory*. 2nd. Springer-Verlag, 2001.

		References

References VII

T. Strohmer. "Pseudodifferential Operators and Banach Algebras in Mobile Communications". In: *Appl. Comput. Harmon. Anal.* 20.2 (2006), pp. 237–249.

D. Walnut, G. E. Pfander, and T. Kailath. "Cornerstones of Sampling of Operator Theory". In: *Excursions in Harmonic Analysis, Volume 4.* Ed. by R. Balan et al. Invited Chapter. Birkhäuser, 2015.