Expedition in Data and Harmonic Analysis on Graphs

Matthew Begué begue@math.umd.edu

Norbert Wiener Center for Harmonic Analysis and Applications Department of Mathematics University of Maryland, College Park

April 6, 2016

Wikipedia graph

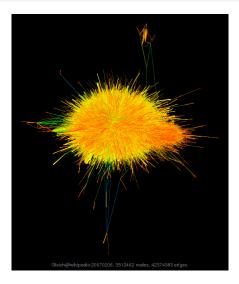


Image Source: Sparse Matrix collection, http://www.cise.ufl.edu/research/sparse/matrices/Gleich/index.html

Expedition in Data and Harmonic Analysis on Graphs

Facebook graph

Image Source: Facebook, https://www.facebook.com/note.php?note_id=469716398919

Matthew Begué (NWC//UMCP)

Expedition in Data and Harmonic Analysis on Graphs

Graph Preliminaries and the Laplacian

Graph Time-Frequency operators

Support of eigenvectors

Outline

Graph Preliminaries and the Laplacian

Graph Time-Frequency operators

Support of eigenvectors

Graph Preliminaries

- Denote a graph by G = G(V, E).
- Vertex set $V = \{x_i\}_{i=1}^N$. $|V| = N < \infty$.
- Edge set, E:

$$E = \{(x, y) : x, y \in V \text{ and } x \sim y\}.$$

- A graph is *connected* if for any x, y ∈ V there exists a path (sequence of adjacent edges) from x to y.
- ▶ We consider functions on a graph defined on the vertex set, V.

 $f:V
ightarrow\mathbb{C}$

• Since $|V| = N < \infty$, can view *f* as a vector in \mathbb{C}

Graph Preliminaries

- Denote a graph by G = G(V, E).
- Vertex set $V = \{x_i\}_{i=1}^N$. $|V| = N < \infty$.
- Edge set, E:

$$E = \{(x, y) : x, y \in V \text{ and } x \sim y\}.$$

- A graph is *connected* if for any x, y ∈ V there exists a path (sequence of adjacent edges) from x to y.
- ▶ We consider functions on a graph defined on the vertex set, *V*.

$$f:V
ightarrow\mathbb{C}$$

• Since $|V| = N < \infty$, can view f as a vector in \mathbb{C}^N

Graph Laplacian Matrix

Definition

The pointwise formulation for the graph Laplacian acting on $f: V \to \mathbb{R}$ is

$$Lf(x) = \sum_{y \sim x} f(x) - f(y).$$

- For a finite graph, the Laplacian can be represented as a matrix.
- D denotes the diagonal $N \times N$ degree matrix, $D = \text{diag}(d_x)$.
- ► A denotes the N × N adjacency matrix,

$$\mathcal{A}(i,j) = \left\{ egin{array}{cc} 1, & ext{if } x_i \sim x_j \ 0, & ext{otherwise.} \end{array}
ight.$$

Then the graph Laplacian matrix can be written as

$$L = D - A$$

Spectrum of the Laplacian

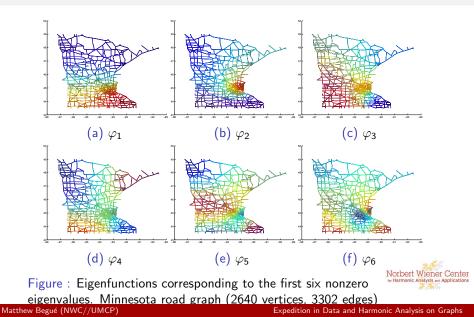
- *L* is symmetric and positive semidefinite.
- By the spectral theorem, L has real eigenvalues

$$\lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_{N-1}$$

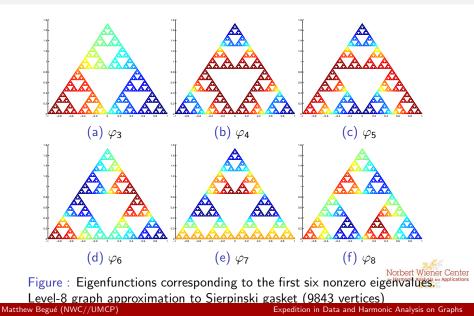
and real-valued orthonormal eigenvectors $\{\varphi_k\}_{k=0}^{N-1}$.

- ▶ Fact: If G is connected then $\lambda_0 = 0$, $\varphi_0 = 1/\sqrt{N}$, and $\lambda_k > 0$ for all $k \in \{1, ..., N 1\}$.
- In general the multiplicity of eigenvalue 0 gives the number of connected components of the graph.
- The spectrum of the Laplacian is fixed but one's choice of eigenvectors can vary. We assume that the choice of eigenvectors is fixed.

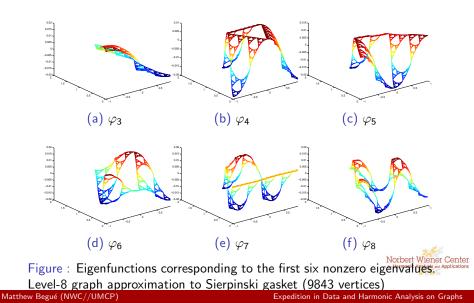
Data Sets - Minnesota Road Network



Data Sets - Sierpinski gasket graph approximation



Data Sets - Sierpinski gasket graph approximation



Graph Preliminaries and the Laplacian

Graph Time-Frequency operators

Support of eigenvectors

Graph Fourier Transform

Shuman, D.I., Ricaud, B., and Vandergheynst, P., "Vertex-frequency analysis on graphs", Applied and Computational Harmonic Analysis, 2016, vol. 40(2), pp.260-291.

• The Fourier transform on \mathbb{R} is given by

$$\widehat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i \xi t} \, dt = \langle f, e^{2\pi i \xi t}
angle.$$

This is precisely the inner product of f with an eigenfunction of the Laplace operator.

Analogously, we define the graph Fourier transform of a function, f : V → ℝ, as

$$\hat{f}(\lambda_k) = \langle f, \varphi_k \rangle = \sum_{n=1}^N f(n) \varphi_k^*(n).$$

Graph Modulation and Graph Convolution

Motivated by modulation in ℝ, M_k = e^{2πikx} f(x) we define graph modulation by

$$M_k f = \varphi_k f.$$

► Motivated by the identity in \mathbb{R} , $\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$, we define graph convolution by

$$f * g = (\hat{f}\hat{g})^{\vee}$$

Nice Properties

- Parseval's Identity: $\langle f,g
 angle = \langle \hat{f},\hat{g}
 angle$
- Plancherel's Identity: $||f|| = ||\hat{f}||$
- Commutativity, associativity, and distributivity of graph convolution:

$$f * g = g * f,$$

 $(f * g) * h = f * (g * h),$
 $f * (g + h) = f * g + f * h$

Graph Translation

► Translation by vector u in \mathbb{R} can be viewed as convolution with δ_u .

$$T_u f(x) = f(x - u) = f * \delta u$$

• δ_u has Fourier transform $\hat{\delta}_u(\xi) = e^{-2\pi i \xi u} = \overline{\varphi_{\xi}(u)}$

Definition

For $f: V \to \mathbb{R}$ the graph translation operator, T_i , is defined as

$$T_i f = (\widehat{f}\widehat{\Phi_i})^{\vee},$$

where Φ_i is the vector

$$\Phi_i = [\varphi_0(i), \varphi_1(i), \cdots, \varphi_{N-1}(i)]^\top.$$

Graph Translation

► Translation by vector u in \mathbb{R} can be viewed as convolution with δ_u .

$$T_u f(x) = f(x-u) = f * \delta u$$

• δ_u has Fourier transform $\hat{\delta}_u(\xi) = e^{-2\pi i \xi u} = \overline{\varphi_{\xi}(u)}$

Definition

For $f: V \to \mathbb{R}$ the graph translation operator, T_i , is defined as

$$T_i f = (\widehat{f}\widehat{\Phi_i})^{\vee},$$

where Φ_i is the vector

$$\Phi_i = [\varphi_0(i), \varphi_1(i), \cdots, \varphi_{N-1}(i)]^\top.$$

Graph Translation

► Translation by vector u in \mathbb{R} can be viewed as convolution with δ_u .

$$T_u f(x) = f(x-u) = f * \delta u$$

• δ_u has Fourier transform $\hat{\delta}_u(\xi) = e^{-2\pi i \xi u} = \overline{\varphi_{\xi}(u)}$

Definition

For $f: V \to \mathbb{R}$ the graph translation operator, T_i , is defined as

$$T_i f = (\hat{f} \widehat{\Phi_i})^{\vee},$$

where Φ_i is the vector

$$\Phi_i = [\varphi_0(i), \varphi_1(i), \cdots, \varphi_{N-1}(i)]^\top.$$

Not nice properties of graph translation

• T_i is generally not isometric. $||T_i f||_{\ell^2} \neq ||f||_{\ell^2}$.

• The graph translation operators do not form a group like in the classical Euclidean setting.

$$T_i T_j \neq T_{i+j}$$

Theorem

Graph translation is a semigroup, i.e., $T_i T_j = T_{i \circ j}$ for some semigroup operator \bullet : $\{1, ..., N\} \times \{1, ..., N\} \rightarrow \{1, ..., N\}$, only if the eigenvector matrix $\Phi = (1/\sqrt{N})H$, where H is a Hadamard matrix.

Not nice properties of graph translation

- T_i is generally not isometric. $||T_i f||_{\ell^2} \neq ||f||_{\ell^2}$.
- The graph translation operators do not form a group like in the classical Euclidean setting.

$$T_i T_j \neq T_{i+j}$$

Theorem Graph translation is a semigroup, i.e., $T_i T_j = T_{i \bullet j}$ for some semigroup operator $\bullet : \{1, ..., N\} \times \{1, ..., N\} \rightarrow \{1, ..., N\}$, only if the eigenvector matrix $\Phi = (1/\sqrt{N})H$, where H is a Hadamard matrix.

Not nice properties of graph translation

- T_i is generally not isometric. $||T_i f||_{\ell^2} \neq ||f||_{\ell^2}$.
- The graph translation operators do not form a group like in the classical Euclidean setting.

$$T_i T_j \neq T_{i+j}$$

Theorem

Graph translation is a semigroup, i.e., $T_i T_j = T_{i \bullet j}$ for some semigroup operator $\bullet : \{1, ..., N\} \times \{1, ..., N\} \rightarrow \{1, ..., N\}$, only if the eigenvector matrix $\Phi = (1/\sqrt{N})H$, where H is a Hadamard matrix.

Invertibility of Translation operator T_i

► *T_i* need not be injective.

Theorem

The graph translation operator T_i is invertible if and only if $\varphi_k(i) \neq 0$ for all k = 1, ..., N - 1.

Furthermore, the nullspace of T_i has a basis equal to those eigenvectors that vanish on the *i*th vertex.

This theorem stresses the importance of characterizing vertices in which eigenvectors of the Laplacian vanish.

Graph Preliminaries and the Laplacian

Graph Time-Frequency operators

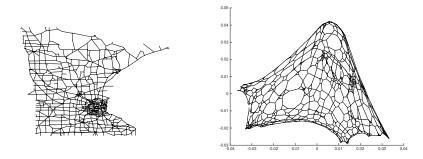
Support of eigenvectors

The Fiedler vector: φ_1

$$0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_{N-1}$$

- The first nonzero eigenvalue, λ₁, is called the *algebraic* connectivity.
- The eigenvector φ₁ corresponding to λ₁ is called the *Fiedler* vector.
- The Fiedler vector is of great importance in nonlinear dimension reduction techniques, image segmentation, and graph drawing.

Spectral graph drawing



Hall, K. "An *r*-dimensional quadratic placement algorithm", Management science, 1970, vol 17(3), pp. 219–229, Norbert Wiener Center to Harmonic Analysis on Applications

Characteristic vertices

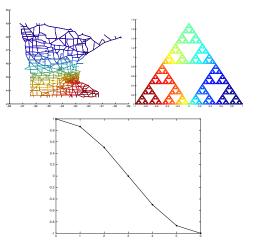
► For a Fiedler eigenvector \u03c6₁, decompose the vertieces into disjoint subsets

$$V=V_+\cup V_-\cup V_0.$$

- V_+ is the set of vertices $x \in V$ where $\varphi_1(x) > 0$.
- V_{-} is the set of vertices $x \in V$ where $\varphi_{1}(x) < 0$.
- V₀ is the set of vertices x ∈ V where φ₁(x) = 0.
 V₀ is known as nodal set, or *characteristic vertices*.
- We wish to describe the size and structure of V_0 .

Support of Fiedler vector

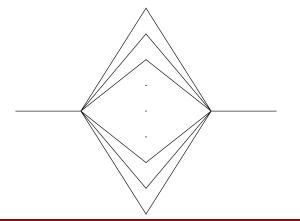
It is perhaps a misconception that the Fiedler vector must have (near) full support.



Arbitrarily many characteristic verties possible

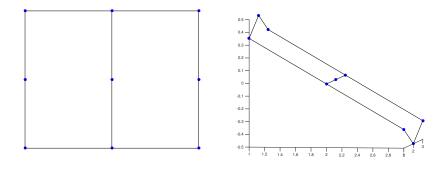
It was shown in 1998 that the set V_0 may be arbitrarily large.

Bapart, R. and Pati, S. "Algebraic connectivity and the characteristic set of a graph", Linear and Multilinear Algebra, 1998, vol. 45(2-3), pp. 247–273.



Arbitrarily large and connected V_0

We can show that the family of generalized ladders can have an arbitrarily large characteristic set that is also connected.



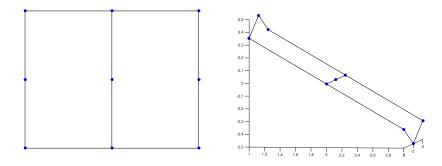
Can there exist a vertex $x \in V_0$ with 3 or more neighbors a vertex where Center V_0 ?

Matthew Begué (NWC//UMCP)

Expedition in Data and Harmonic Analysis on Graphs

Arbitrarily large and connected V_0

We can show that the family of generalized ladders can have an arbitrarily large characteristic set that is also connected.



Can there exist a vertex $x \in V_0$ with 3 or more neighbors a social vertex V_0 ?

Matthew Begué (NWC//UMCP)

Expedition in Data and Harmonic Analysis on Graphs

Graph balls

Definition

A graph ball centered at vertex $x \in V$ with radius r is defined as

$$B_r(x) = \{y \in V : d(x,y) \le r\}.$$

Question

Restate the orginal question as

```
Can there exist a graph ball B_1(x) \subseteq V_0 with |B_1(x)| \ge 4?
```

Answer:

- Yes, it is possible in general.
- The result is not possible for planar graphs

Restate the orginal question as

Can there exist a graph ball $B_1(x) \subseteq V_0$ with $|B_1(x)| \ge 4$?

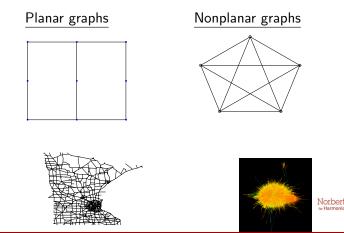
Answer:

- Yes, it is possible in general.
- The result is not possible for planar graphs

Planar graphs

Definition

A *planar graph* is a graph whose vertices and edges can be embedded in \mathbb{R}^2 with edges intersection only at vertices.



Matthew Begué (NWC//UMCP)

Expedition in Data and Harmonic Analysis on Graphs

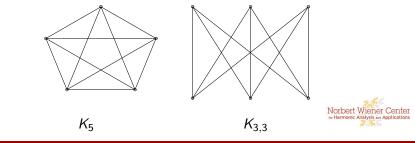
Characterizing Planar Graphs

Definition

Contracting an edge (u, v) entials deleting edge e and identifying u and v as the same vertex. A graph H, formed by a contraction of G, is known as a *minor* of G.

Theorem (Wagner's Theorem)

G is a planar graph if and only if it does not contain a K_5 or $K_{3,3}$ as a minor.



Main Theorem

Theorem

Let G(V, E) be a planar graph with Fiedler vector φ_1 . Then V_0 contains no balls of radius 1 with more than 3 vertices.

Strategy: Proof by contradiction. Suppose V_0 contains such a ball and demonstrate that the graph G will contain one of the forbidden minors.

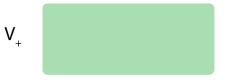
Main Theorem

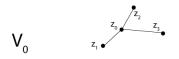
Theorem

Let G(V, E) be a planar graph with Fiedler vector φ_1 . Then V_0 contains no balls of radius 1 with more than 3 vertices.

Strategy: Proof by contradiction.

Suppose V_0 contains such a ball and demonstrate that the graph G will contain one of the forbidden minors.

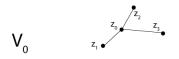


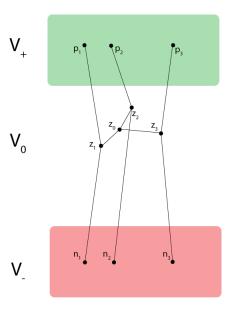


Lemma

Every vertex $x \in V_0$ either has

- 1. all neighbors in V_0 or
- 2. at least one neighbor in V_+ and one in V_- .

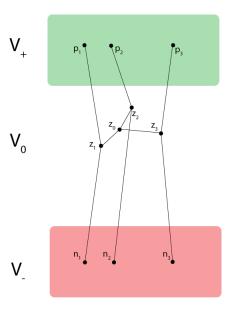




Lemma: Connectedness of V_+ and V_-

1975: Miroslav Fiedler proves $V_+ \cup V_0$ forms a connected subgraph.

Fiedler, M. "A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory.", Czechoslovak Mathematical Journal, 1975, vol. 25(4), pp. 619–633



Lemma: Connectedness of V_+ and V_-

1975: Miroslav Fiedler proves $V_+ \cup V_0$ forms a connected subgraph.

Fiedler, M. "A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory.", Czechoslovak Mathematical Journal, 1975, vol. 25(4), pp. 619–633

2014: John Urschell proves that V_+ forms a connected subgraph.

Urschel, J.C., Zikatanov, L.T., "Spectral bisection of graphs bidroon-enter winamonic Analysis or Application nectedness", 2014, Linear Algebra and its Applications, vol.449, pp.1-

Expedition in Data and Harmonic Analysis on Graphs

Matthew Begué (NWC//UMCP)

Lemma: Connectedness of V_+ and V_-



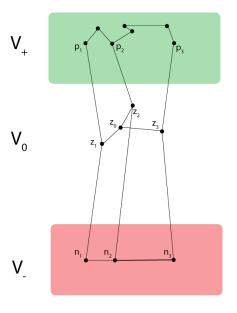
Matthew Begué (NWC//UMCP)

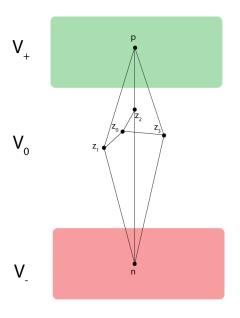
1975: Miroslav Fiedler proves $V_+ \cup V_0$ forms a connected subgraph.

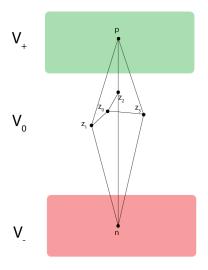
Fiedler, M. "A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory.", Czechoslovak Mathematical Journal, 1975, vol. 25(4), pp. 619–633

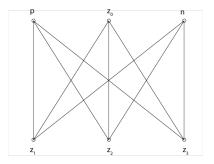
2014: John Urschell proves that V_+ forms a connected subgraph.

Urschel, J.C., Zikatanov, L.T., "Spectral bisection of graphs and con-Norbert Wiener Center nectedness", 2014, Linear Algebra and its Applications, vol.1449, pp. 4









Matthew Begué (NWC//UMCP)

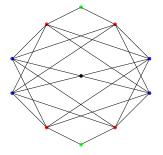
Expedition in Data and Harmonic Analysis on Graphs

Nonplanar graphs with large balls contained in V_0

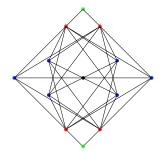
- For $N \ge 3$, we construct a family of graphs called the barren graph, Barr(N), with |V| = N + 7.
- ▶ Barr(N) has characteristic set V₀ that is a graph ball of radius 1 and |V₀| = N + 1.
- Let {V_i}⁶_{i=1} denote distinct vertex sets with given cardinalities {|V_i|}⁶_{i=1} = {N, 1, 2, 2, 1, 1}. Barr(N) is the following graph sum of the 5 complete bipartite graphs

 $\mathsf{Barr}(N) = K(V_1, V_2) + K(V_1, V_3) + K(V_1, V_4) + K(V_3, V_5) + K(V_4, V_6).$

Barren graphs



Barr(4)



Barr(6)

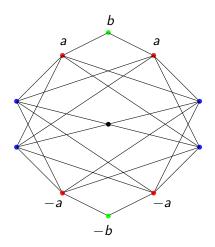
Spectrum of Barren graph

λ_k	value
λ_0	0
λ_1	$\frac{1}{2}\left(N+3-\sqrt{N^2-2N+9}\right)$
λ_2	<i>y</i> 1
$\lambda_3 = \cdots = \lambda_{N+1}$	5
λ_{N+2}	<i>y</i> 2
$\lambda_{N+3} = \lambda_{N+4}$	N+1
λ_{N+5}	$\frac{1}{2}\left(N+3+\sqrt{N^2-2N+9}\right)$
λ_{N+6}	<i>У</i> 3

 y_1 , y_2 , and y_3 are the roots of the polynomial

$$\lambda^3 + (-2N-8)\lambda^2 + (N^2+10N+15)\lambda + (-2N^2-14M)$$
rt Winner Center in Harringer Analytic an Applications - Appli

Fiedler vector of the barren graph



$$4a^{2} + 2b^{2} = 1 \quad (\|\varphi\| = 1)$$

$$2(b - a) = \lambda b \quad (green)$$

$$Na + (a - b) = \lambda a \quad (red)$$

Thank You

