LOCAL AND GLOBAL STABILITY OF FUSION

FRAMES

Jerry Emidih

Norbert Wiener Center Department of Mathematics University of Maryland, College Park

November 22 2016

< 口 > < 同 >

OUTLINE

- **2** GLOBAL FRAME STABILITY
- **3** DUAL FUSION FRAMES
- 4 LOCAL FRAME STABILITY
- **5** POTENTIAL APPLICATIONS

OUTLINE

- OLOBAL FRAME STABILITY
- **3** DUAL FUSION FRAMES
- 4 LOCAL FRAME STABILITY
- **5** POTENTIAL APPLICATIONS

DEFINITION

A frame $\mathcal{F} = \{f_i\}_{i \in I}$ in a Hilbert space \mathcal{H} is a countable sequence $\{f_i\} \subseteq \mathcal{H}$ for which there exist A, B > 0 such that

$$\forall f \in \mathcal{H}, \qquad A \|f\|^2 \leq \sum_{i \in I} |\langle f, f_i \rangle|^2 \leq B \|f\|^2.$$

- Developed by Richard Duffin and Albert Schaeffer in 1952
- Generalization of orthonormal bases which allow for possibly redundant decompositions
- Frames have varied use in applications including image processing, wireless communication, and digital signal quantization because they are naturally robust to erasures

DEFINITION

A frame $\mathcal{F} = \{f_i\}_{i \in I}$ in a Hilbert space \mathcal{H} is a countable sequence $\{f_i\} \subset \mathcal{H}$ for which there exist A, B > 0 such that

$$\forall f \in \mathcal{H}, \qquad A \|f\|^2 \leq \sum_{i \in I} |\langle f, f_i \rangle|^2 \leq B \|f\|^2.$$

- Developed by Richard Duffin and Albert Schaeffer in 1952
- Generalization of orthonormal bases which allow for possibly redundant decompositions
- Frames have varied use in applications including image processing, wireless communication, and digital signal quantization because they are naturally robust to erasures

DEFINITION

A frame $\mathcal{F} = \{f_i\}_{i \in I}$ in a Hilbert space \mathcal{H} is a countable sequence $\{f_i\} \subseteq \mathcal{H}$ for which there exist A, B > 0 such that

$$\forall f \in \mathcal{H}, \qquad A \|f\|^2 \leq \sum_{i \in I} |\langle f, f_i \rangle|^2 \leq B \|f\|^2.$$

- Developed by Richard Duffin and Albert Schaeffer in 1952
- Generalization of orthonormal bases which allow for possibly redundant decompositions
- Frames have varied use in applications including image processing, wireless communication, and digital signal quantization because they are naturally robust to erasures

FRAME BASICS

- Frame operator $S_{\mathcal{F}} : \mathcal{H} \to \mathcal{H}$ by $S_{\mathcal{F}}(f) = \sum_{i \in I} \langle f, f_i \rangle f_i$,
- A dual frame $\{\tilde{f}_i\}_{i \in I}$ for \mathcal{F} is a frame which satisfies $f = \sum_{i \in I} \langle f, f_i \rangle \tilde{f}_i = \sum_{i \in I} \langle f, \tilde{f}_i \rangle f_i$ for all $f \in \mathcal{H}$.
- By invertibility of the frame operator S_F, {S_F⁻¹ f_i} is a dual frame, known as the canonical dual frame.

< ロ > < 同 > < 三 > .

• In 2004, Peter Casazza and Shidong Li developed *frames of subspaces* for simple constructions of frames

DEFINITION

A **fusion frame** $\mathcal{W} = \{(W_i, c_i)\}_{i \in I}$ in a separable Hilbert space \mathcal{H} is a countable sequence of closed subspaces $W_i \subseteq \mathcal{H}$ and a sequence of weights $\{c_i\}_{i \in I} \subseteq \mathbb{R}, c_i > 0$ for all $i \in I$ for which there exist C, D > 0 such that

$$orall f \in \mathcal{H}, \qquad C \|f\|^2 \leq \sum_{i \in I} c_i^2 \|P_{W_i}(f)\|^2 \leq D \|f\|^2,$$

where P_{W_i} is the orthogonal projection onto W_i .

• In 2004, Peter Casazza and Shidong Li developed frames of

subspaces for simple constructions of frames

DEFINITION

A fusion frame $W = \{(W_i, c_i)\}_{i \in I}$ in a separable Hilbert space H is a

countable sequence of closed subspaces $W_i \subseteq H$ and a sequence of weights $\{c_i\}_{i \in I} \subseteq \mathbb{R}$, $c_i > 0$ for all $i \in I$ for which there exist C, D > 0 such that

$$orall f \in \mathcal{H}, \qquad C \|f\|^2 \leq \sum_{i \in I} c_i^2 \|\mathcal{P}_{W_i}(f)\|^2 \leq D \|f\|^2,$$

where P_{W_i} is the orthogonal projection onto W_i .

DISTRIBUTED SENSING

- Casazza, Li, and Gitta Kutyniok give an example of a sensor network spread over a forest to measure temperature, where the sensors are divided into smaller sub-networks for processing.
 Within the fusion frame paradigm, the sub-networks form a set of redundant subspaces, so the signals can be processed globally, at one central processing center, or locally, at stations for each network.
- This example suggests that it's useful to consider fusion frames as a special case of frames rather than a generalization. Norbert Wiener Centralization and the second sec

• □ ▶ • □ ▶ • □ ▶

- **Tight fusion frames** are defined to be fusion frames for which the bounds *C* and *D* can be chosen to be equal.
- A fusion frame system $\{(W_i, c_i, \{f_{ij}\}_{j \in J_i})\}_{i \in I}$ is a fusion frame $\{(W_i, c_i)\}_{i \in I}$ for which $\mathcal{F}_i = \{f_{ij}\}_{j \in J_i}$ is a frame for W_i for each $i \in I$, known as a local frame.

- **Tight fusion frames** are defined to be fusion frames for which the bounds *C* and *D* can be chosen to be equal.
- A fusion frame system $\{(W_i, c_i, \{f_{ij}\}_{j \in J_i})\}_{i \in I}$ is a fusion frame $\{(W_i, c_i)\}_{i \in I}$ for which $\mathcal{F}_i = \{f_{ij}\}_{j \in J_i}$ is a frame for W_i for each $i \in I$, known as a local frame.

- For a fusion frame \mathcal{W} , define the *analysis operator* by $T_{\mathcal{W}}(f) := \{c_i P_{W_i} f\}_{i \in I}$ and its adjoint, the *synthesis operator*, by $T_{\mathcal{W}}^*(\{v_i\}_{i \in I}) := \sum_{i \in I} c_i v_i$, where $f \in \mathcal{H}$ and $v_i \in W_i$ for each $i \in I$.
- Similar to the case of frames, the fusion frame operator
 S_W : H → H given by S_W(f) = T^{*}_WT_W(f) = ∑_{i∈I} c²_iP_{W_i}(f) is a positive, self-adjoint, and invertible operator.

- For a fusion frame \mathcal{W} , define the *analysis operator* by $T_{\mathcal{W}}(f) := \{c_i P_{W_i} f\}_{i \in I}$ and its adjoint, the *synthesis operator*, by $T^*_{\mathcal{W}}(\{v_i\}_{i \in I}) := \sum_{i \in I} c_i v_i$, where $f \in \mathcal{H}$ and $v_i \in W_i$ for each $i \in I$.
- Similar to the case of frames, the fusion frame operator
 S_W : H → H given by S_W(f) = T^{*}_W T_W(f) = ∑_{i∈I} c²_i P_{W_i}(f) is a positive, self-adjoint, and invertible operator.

2 GLOBAL FRAME STABILITY

- **3** DUAL FUSION FRAMES
- **4** LOCAL FRAME STABILITY

5 POTENTIAL APPLICATIONS

PERTURBATION THEORY

- Let $T : \mathcal{X} \to \mathcal{X}$ be a bounded linear map on a Banach space \mathcal{X} .
- $\|(I-T)x\| \le \lambda(\|x\| + \|Tx\|) \implies \frac{1-\lambda}{1+\lambda}\|Tx\| \le \|x\| \le \frac{1+\lambda}{1-\lambda}\|Tx\|$ for $\lambda < 1$.
- Paley and Wiener (1934) showed that if
 ||Sx − Tx|| ≤ λ₁||Sx|| + λ₂||Tx|| then their codimensions are equal.

PERTURBATION THEORY

- Let $T : \mathcal{X} \to \mathcal{X}$ be a bounded linear map on a Banach space \mathcal{X} .
- $\|(I-T)x\| \le \lambda(\|x\| + \|Tx\|) \implies \frac{1-\lambda}{1+\lambda} \|Tx\| \le \|x\| \le \frac{1+\lambda}{1-\lambda} \|Tx\|$ for $\lambda < 1$.
- Paley and Wiener (1934) showed that if $||Sx - Tx|| \le \lambda_1 ||Sx|| + \lambda_2 ||Tx||$ then their codimensions are equal.

PERTURBATION THEORY

- Let $T : \mathcal{X} \to \mathcal{X}$ be a bounded linear map on a Banach space \mathcal{X} .
- $\|(I-T)x\| \le \lambda(\|x\| + \|Tx\|) \implies \frac{1-\lambda}{1+\lambda} \|Tx\| \le \|x\| \le \frac{1+\lambda}{1-\lambda} \|Tx\|$ for $\lambda < 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Paley and Wiener (1934) showed that if $||Sx - Tx|| \le \lambda_1 ||Sx|| + \lambda_2 ||Tx||$ then their codimensions are equal.

FUSION FRAME PERTURBATIONS

 If P and Q are orthogonal projections on H with 0 ≤ λ₁, λ₂ < 1 such that ||Pf − Qf|| ≤ λ₁ ||Pf|| + λ₂ ||Qf|| for all f ∈ H, then P = Q.

Definition

Let $\{W_i\}_{i \in I}$ and $\{V_i\}_{i \in I}$ be collections of closed subspaces in \mathcal{H} with $\{c_i\}$ a positive real sequence, and let $0 \le \lambda_1, \lambda_2 < 1$ and $\epsilon > 0$. $\{(W_i, c_i)\}$ is a $(\lambda_1, \lambda_2, \epsilon)$ -perturbation of $\{(V_i, c_i)\}$ if

$$\|(P_{W_i} - P_{V_i})f\| \le \lambda_1 \|P_{W_i}f\| + \lambda_2 \|P_{V_i}f\| + \epsilon \|f\|$$

for all $f \in \mathcal{H}$.

Only the sub-stations are changed, not the weight

FUSION FRAME PERTURBATIONS

• If *P* and *Q* are orthogonal projections on \mathcal{H} with $0 \le \lambda_1, \lambda_2 < 1$

such that $\|Pf - Qf\| \le \lambda_1 \|Pf\| + \lambda_2 \|Qf\|$ for all $f \in \mathcal{H}$, then P = Q.

DEFINITION

Let $\{W_i\}_{i \in I}$ and $\{V_i\}_{i \in I}$ be collections of closed subspaces in \mathcal{H} with $\{c_i\}$ a positive real sequence, and let $0 \le \lambda_1, \lambda_2 < 1$ and $\epsilon > 0$. $\{(W_i, c_i)\}$ is a $(\lambda_1, \lambda_2, \epsilon)$ -perturbation of $\{(V_i, c_i)\}$ if

$$\|(\boldsymbol{P}_{W_i} - \boldsymbol{P}_{V_i})f\| \leq \lambda_1 \|\boldsymbol{P}_{W_i}f\| + \lambda_2 \|\boldsymbol{P}_{V_i}f\| + \epsilon \|f\|$$

for Harmonic Analysis and Applications

for all $f \in \mathcal{H}$.

Only the sub-stations are changed, not the weight

FUSION FRAME PERTURBATIONS

• If *P* and *Q* are orthogonal projections on \mathcal{H} with $0 \le \lambda_1, \lambda_2 < 1$

such that $\|Pf - Qf\| \le \lambda_1 \|Pf\| + \lambda_2 \|Qf\|$ for all $f \in \mathcal{H}$, then P = Q.

DEFINITION

Let $\{W_i\}_{i \in I}$ and $\{V_i\}_{i \in I}$ be collections of closed subspaces in \mathcal{H} with $\{c_i\}$ a positive real sequence, and let $0 \le \lambda_1, \lambda_2 < 1$ and $\epsilon > 0$. $\{(W_i, c_i)\}$ is a $(\lambda_1, \lambda_2, \epsilon)$ -perturbation of $\{(V_i, c_i)\}$ if

$$\|(\boldsymbol{P}_{W_i} - \boldsymbol{P}_{V_i})f\| \leq \lambda_1 \|\boldsymbol{P}_{W_i}f\| + \lambda_2 \|\boldsymbol{P}_{V_i}f\| + \epsilon \|f\|$$

for Harmonic Analysis and Applications

for all $f \in \mathcal{H}$.

Only the sub-stations are changed, not the weights.

PERTURBATION FUSION FRAME BOUNDS

PROPOSITION (CASAZZA, LI, KUTYNIOK)

Let $\{(W_i, c_i)\}_{i \in I}$ be a fusion frame for \mathcal{H} with bounds C, D. Let $\{(V_i, c_i)\}_{i \in I}$ be a $(\lambda_1, \lambda_2, \epsilon)$ -perturbation of $\{(W_i, c_i)\}_{i \in I}$ where $0 \le \lambda_1, \lambda_2 < 1, \epsilon > 0$, and $(1 - \lambda_1)\sqrt{C} - \epsilon(\sum_{i \in I} c_i^2)^{1/2} > 0$. Then $\{(V_i, c_i)\}_{i \in I}$ is a fusion frame of \mathcal{H} with fusion frame bounds $\left[\frac{(1 - \lambda_1)\sqrt{C} - \epsilon(\sum_{i \in I} c_i^2)^{1/2}}{1 + \lambda_2}\right]^2$ and $\left[\frac{(1 + \lambda_1)\sqrt{D} + \epsilon(\sum_{i \in I} c_i^2)^{1/2}}{1 - \lambda_2}\right]^2$.

Norbert Wiener Center

< ロ > < 同 > < 回 > < 回 > .

• In the case of a fusion frame system, we can also perturb the local frames:

For $\{f_i\}_{i \in I}$ and $\{g_i\}_{i \in I}$ are sequences in \mathcal{H} and $0 \le \lambda_1, \lambda_2 < 1$, $\{g_i\}_{i \in I}$ is a (λ_1, λ_2) -perturbation of $\{f_i\}_{i \in I}$ if

$$\|\sum_{i \in I} a_i(f_i - g_i)\| \le \lambda_1 \|\sum_{i \in I} a_i f_i\| + \lambda_2 \|\sum_{i \in I} a_i g_i\| \text{ for all } \{a_i\}_{i \in I} \in \ell^2(I).$$

Norbert W

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Useful lemma: Let $W = span_{i \in I}\{f_i\}$ and $V = span_{i \in I}\{g_i\}$, then $\|P_W P_V(f)\| \ge \left(\frac{1-\lambda_1}{1+\lambda_2} - \lambda_1 \frac{1+\lambda_2}{1-\lambda_1} - \lambda_2\right) \|P_V(f)\|$ for all $f \in \mathcal{H}$.

• In the case of a fusion frame system, we can also perturb the local frames:

For $\{f_i\}_{i \in I}$ and $\{g_i\}_{i \in I}$ are sequences in \mathcal{H} and $0 \le \lambda_1, \lambda_2 < 1$, $\{g_i\}_{i \in I}$ is a (λ_1, λ_2) -perturbation of $\{f_i\}_{i \in I}$ if

$$\|\sum_{i\in I} a_i(f_i - g_i)\| \le \lambda_1 \|\sum_{i\in I} a_i f_i\| + \lambda_2 \|\sum_{i\in I} a_i g_i\| \text{ for all } \{a_i\}_{i\in I} \in \ell^2(I).$$

• Useful lemma: Let $W = span_{i \in I} \{f_i\}$ and $V = span_{i \in I} \{g_i\}$, then $\|P_W P_V(f)\| \ge \left(\frac{1-\lambda_1}{1+\lambda_2} - \lambda_1 \frac{1+\lambda_2}{1-\lambda_1} - \lambda_2\right) \|P_V(f)\|$ for all $f \in \mathcal{H}$.

< ロ > < 同 > < 回 > < 回 >

THEOREM 1

THEOREM (CASAZZA, LI, KUTYNIOK)

Let $\{(W_i, c_i, \{f_{ij}\}_{j \in J_i})\}_{i \in I}$ be a fusion frame system for \mathcal{H} with fusion frame bounds C, D. Choose $0 \leq \lambda_1, \lambda_2 < 1$ and $\epsilon > 0$ such that $(1 - \lambda_1)\sqrt{C} - \epsilon(\sum_{i \in I} c_i^2)^{1/2} > 0$ and $1 - \frac{\epsilon^2}{2} = \frac{1 - \lambda_1}{1 + \lambda_2} - \lambda_1 \frac{1 + \lambda_2}{1 - \lambda_1} - \lambda_2$. For every i, let $\{g_{ij}\}_{j \in J_i}$ be a (λ_1, λ_2) -perturbation of $\{f_{ij}\}_{j \in J_i}$ and let $V_i = span\{g_{ij}\}_{j \in J_i}$. Then $\{(V_i, c_i,)\}_{i \in I}$ is a fusion frame for \mathcal{H} with fusion frame bounds

$$\left[\sqrt{C} - \epsilon \left(\sum_{i \in I} c_i^2\right)^{1/2}\right]^2$$
 and $\left[\sqrt{D} + \epsilon \left(\sum_{i \in I} c_i^2\right)^{1/2}\right]^2$.

Center

THEOREM 1 PROOF

• Use the useful lemma to get two estimates: $\|(I - P_{V_i})(P_{W_i}f)\|^2 \le \frac{\epsilon^2}{2} \|P_{W_i}f\|^2 \text{ and vice versa.}$

 $\|(P_{W_i} - P_{V_i})f\|^2 = \langle (P_{W_i} - P_{V_i})^2 f, f \rangle = \langle (P_{W_i} - P_{V_i}P_{W_i} + P_{V_i} - P_{W_i}P_{V_i})f, f \rangle \le 1$

 $\leq \|(I - P_{V_i})(P_{W_i}f) + (I - P_{W_i})(P_{V_i}f)\| \cdot \|f\| \leq$

$$\leq \frac{\epsilon^2}{2} \|P_{W_i}f\| \cdot \|f\| + \frac{\epsilon^2}{2} \|P_{V_i}f\| \cdot \|f\| \leq \epsilon^2 \|f\|^2.$$
Norbert Wiener Center Viewer Center V

THEOREM 1 PROOF

• Use the useful lemma to get two estimates: $\|(I - P_{V_i})(P_{W_i}f)\|^2 \le \frac{\epsilon^2}{2} \|P_{W_i}f\|^2 \text{ and vice versa.}$

$$\|(P_{W_i} - P_{V_i})f\|^2 = \langle (P_{W_i} - P_{V_i})^2 f, f \rangle = \langle (P_{W_i} - P_{V_i}P_{W_i} + P_{V_i} - P_{W_i}P_{V_i})f, f \rangle \le 0$$

and Applications

$$\leq \| (I - P_{V_i})(P_{W_i}f) + (I - P_{W_i})(P_{V_i}f) \| \cdot \| f \| \leq$$

$$\leq \frac{\epsilon^2}{2} \| \boldsymbol{P}_{W_i} f \| \cdot \| f \| + \frac{\epsilon^2}{2} \| \boldsymbol{P}_{V_i} f \| \cdot \| f \| \leq \epsilon^2 \| f \|^2.$$

• Hence, W is a $(0, 0, \epsilon)$ -perturbation of V.

OUTLINE

- OLOBAL FRAME STABILITY
- **3** DUAL FUSION FRAMES
- **4** LOCAL FRAME STABILITY
- **5** POTENTIAL APPLICATIONS

FUSION FRAME DUAL

• Canonical fusion frame dual is $\widetilde{W} = \{(S_{W}^{-1}W_{i}, c_{i}||S_{W}^{-1}|W_{i}||)\}_{i \in I},$ where $S_{W}^{-1}|W_{i}$ is the inverse of the fusion frame operator restricted to W_{i} .

WEIGHTED FUSION FRAME PERTURBATION

DEFINITION

Let $\mu > 0$ and let $\mathcal{W} = \{(W_i, c_i)\}_{i \in I}$ and $\mathcal{V} = \{(V_i, d_i)\}_{i \in I}$ be fusion

frames on \mathcal{H} . \mathcal{V} is said to be a μ -perturbation of \mathcal{W} if

 $\|T_{\mathcal{W}} - T_{\mathcal{V}}\| \le \mu$, where $T_{\mathcal{W}}$ and $T_{\mathcal{V}}$ are the analysis operators of \mathcal{W} and \mathcal{V} , respectively.

- This implies $\|c_i P_{W_i} d_i P_{V_i}\| \le \mu$ for every $i \in I$.
- In finite dimensions, when the sequences of weights are the same, both definitions are equivalent.

WEIGHTED FUSION FRAME PERTURBATION

DEFINITION

Let $\mu > 0$ and let $\mathcal{W} = \{(W_i, c_i)\}_{i \in I}$ and $\mathcal{V} = \{(V_i, d_i)\}_{i \in I}$ be fusion

frames on \mathcal{H} . \mathcal{V} is said to be a μ -perturbation of \mathcal{W} if

 $\|T_{\mathcal{W}} - T_{\mathcal{V}}\| \le \mu$, where $T_{\mathcal{W}}$ and $T_{\mathcal{V}}$ are the analysis operators of \mathcal{W} and \mathcal{V} , respectively.

- This implies $\|c_i P_{W_i} d_i P_{V_i}\| \le \mu$ for every $i \in I$.
- In finite dimensions, when the sequences of weights are the same, both definitions are equivalent.

THEOREM 2

THEOREM (KUTYNIOK, PATERNOSTRO, PHILIPP)

Let $\mathcal{W} = \{(W_i, c_i)\}_{i \in I}$ be a fusion frame for \mathcal{H} with frame bounds $A \leq B$ and let $\mathcal{V} = \{(V_i, d_i)\}_{i \in I}$ be a μ -perturbation of \mathcal{W} , where $0 < \mu < \sqrt{A}$. If there exists $\tau > 0$ such that τ is a lower bound for both $\{c_i\}_{i \in I}$ and $\{d_i\}_{i \in I}$, then the canonical fusion frame dual $\widetilde{\mathcal{V}}$ of \mathcal{V} is a $C\mu$ -perturbation of the canonical fusion frame dual $\widetilde{\mathcal{W}}$ of \mathcal{W} , where

$$C = \frac{\alpha^2 + \beta^2}{A} \Big[\frac{1 + (A^{-1} + B)^2}{\sqrt{A}} \Big(\frac{\sqrt{2}}{\tau} + \alpha \beta^2 \Big) + \beta^2 \Big(1 + \alpha^2 \beta^2 \Big) \Big]$$

with $\alpha := 2\sqrt{B} + \mu$ and $\beta := (\sqrt{A} - \mu)^{-1}$.

OUTLINE

- OLOBAL FRAME STABILITY
- **3** DUAL FUSION FRAMES
- **4** LOCAL FRAME STABILITY

5 POTENTIAL APPLICATIONS

- Perhaps only one or a few subspaces are perturbed.
- What about when an entire subspace is erased? Major strength of frames is robustness to erasure.
- Robert Calderbank, Taotao Liu, Gitta Kutyniok, and Ali Pezeshki considered conditions for finite fusion frames that optimize recovery.

- Perhaps only one or a few subspaces are perturbed.
- What about when an entire subspace is erased? Major strength of frames is robustness to erasure.
- Robert Calderbank, Taotao Liu, Gitta Kutyniok, and Ali Pezeshki considered conditions for finite fusion frames that optimize recovery.

FINITE FUSION FRAMES

• For the rest of the talk, all finite dimensional real Hilbert spaces $\mathcal{H} = \mathbb{R}^{M}$.

- We also want to consider equally weighted spaces to simplify the problem.
- Let m_i denote the dimension of subspace W_i .

< D > < A >

FINITE FUSION FRAMES

- For the rest of the talk, all finite dimensional real Hilbert spaces $\mathcal{H} = \mathbb{R}^{M}$.
- We also want to consider equally weighted spaces to simplify the problem.
- Let *m_i* denote the dimension of subspace *W_i*.

< D > < A >

MODEL OF VECTOR RECOVERY

- $z_i = U_i^T x + n_i$, for i = 1, ..., N is the fusion frame measurement at each subspace.
- *x* is a random zero-mean vector with variance σ²_x, n_i is a realization of an additive white noise vector with variance σ²_n
- U_i is a left orthogonal $N \times m_i$ -matrix such that $U_i^T U_i = I_{m_i}$ and $U_i U_i^T = P_{W_i}$.

< ロ > < 同 > < 回 > < 回 >

MEAN-SQUARED RECOVERY ERROR

- Want to minimize mean-squared error (MSE) in linearly estimating x from z_i.
- Let *MSE_k* denote the MSE when *k* subspaces are erased.
- Minimum is achieved when fusion frame is tight, given by

$$MSE_0 = \frac{M\sigma_n^2 \sigma_x^2}{\sigma_n^2 + \frac{L\sigma_x^2}{M}}.$$

MEAN-SQUARED RECOVERY ERROR

- Want to minimize mean-squared error (MSE) in linearly estimating *x* from *z_i*.
- Let *MSE_k* denote the MSE when *k* subspaces are erased.
- Minimum is achieved when fusion frame is tight, given by

$$MSE_0 = \frac{M\sigma_n^2\sigma_x^2}{\sigma_n^2 + \frac{L\sigma_x^2}{M}}.$$

ONE ERASURE, *MSE*₁

- We consider where $m_i = m$ is constant for all *i*, since MSE_1 naturally increases with m_i .
- $MSE_1 = MSE_0 + Erasure Term$
- MSE₁ is then a function of m which has a maximum at m*

$$m^* = \begin{cases} m_{min}, & \text{if } m_{max} \leq \tilde{m} \text{ or} \\ & \text{if } m_{min} \leq \tilde{m} \leq m_{max} \text{ and } MSE(m_{min}) \leq MSE(m_{max}), \\ & m_{max}, & \text{otherwise.} \end{cases}$$

for Harmonic Analysis and Application

ONE ERASURE, *MSE*₁

- We consider where $m_i = m$ is constant for all *i*, since MSE_1 naturally increases with m_i .
- MSE₁ = MSE₀ + Erasure Term

MSE₁ is then a function of m which has a maximum at m^{*}

< ロ > < 同 > < 回 > < 回 > < 回 > <

ONE ERASURE, *MSE*₁

- We consider where m_i = m is constant for all i, since MSE₁ naturally increases with m_i.
- $MSE_1 = MSE_0 + Erasure Term$
- MSE₁ is then a function of m which has a maximum at m*

 $m^* = \begin{cases} m_{min}, & \text{if } m_{max} \leq \tilde{m} \text{ or} \\ & \text{if } m_{min} \leq \tilde{m} \leq m_{max} \text{ and } MSE(m_{min}) \leq MSE(m_{max}), \\ & m_{max}, & \text{otherwise.} \end{cases}$

・ロッ ・雪 ・ ・ ヨ ・ ・

ONE ERASURE, *MSE*₁

- We consider where m_i = m is constant for all i, since MSE₁ naturally increases with m_i.
- $MSE_1 = MSE_0 + Erasure Term$
- MSE₁ is then a function of m which has a maximum at m*

$$m^* = \begin{cases} m_{min}, & \text{if } m_{max} \leq \tilde{m} \text{ or} \\ & \text{if } m_{min} \leq \tilde{m} \leq m_{max} \text{ and } MSE(m_{min}) \leq MSE(m_{max}), \\ & m_{max}, & \text{otherwise.} \end{cases}$$

for Harmonic Analysis and Application

Two Erasures, *MSE*₂

• $MSE_2 = MSE_1$ + Cross Term from mixed projections $P_{W_i} P_{W_i}$

- Want to minimize the trace of P_{Wi}P_{Wj}, which is equivalent to minimizing eigenvalues
- Define *principal angles* θ_k(i, j) for 1 ≤ k ≤ M as inverse cosines of eigenvalues and *chordal distance* between W_i and W_j, as d_c(i, j) := (Σ^M_{k=1} sin² θ_k(i, j))^{1/2}

< ロ > < 同 > < 回 > < 回 >

Two Erasures, *MSE*₂

- $MSE_2 = MSE_1$ + Cross Term from mixed projections $P_{W_i} P_{W_i}$
- Want to minimize the trace of P_{Wi}P_{Wj}, which is equivalent to minimizing eigenvalues
- Define *principal angles* θ_k(i, j) for 1 ≤ k ≤ M as inverse cosines of eigenvalues and *chordal distance* between W_i and W_j, as d_c(i, j) := (Σ^M_{k=1} sin² θ_k(i, j))^{1/2}

< ロ > < 同 > < 回 > < 回 > < 回 > <

Two Erasures, *MSE*₂

- $MSE_2 = MSE_1$ + Cross Term from mixed projections $P_{W_i} P_{W_i}$
- Want to minimize the trace of P_{Wi}P_{Wj}, which is equivalent to minimizing eigenvalues
- Define *principal angles* θ_k(i, j) for 1 ≤ k ≤ M as inverse cosines of eigenvalues and *chordal distance* between W_i and W_j, as d_c(i, j) := (Σ^M_{k=1} sin² θ_k(i, j))^{1/2}

< ロ > < 同 > < 回 > < 回 > < 回 > <

Two Erasures, *MSE*₂

- $MSE_2 = MSE_1$ + Cross Term from mixed projections $P_{W_i} P_{W_i}$
- Want to minimize the trace of P_{Wi}P_{Wj}, which is equivalent to minimizing eigenvalues
- Define *principal angles* θ_k(i, j) for 1 ≤ k ≤ M as inverse cosines of eigenvalues and *chordal distance* between W_i and W_j, as d_c(i, j) := (Σ^M_{k=1} sin² θ_k(i, j))^{1/2}

< ロ > < 同 > < 回 > < 回 > < 回 > <

MORE THAN TWO ERASURES

- For equidistant tight fusion frame with constant *m*^{*} dimension,
 MSE_k = *MSE*₃ for *k* ≥ 3.

OUTLINE

- OLOBAL FRAME STABILITY
- **3** DUAL FUSION FRAMES
- 4 LOCAL FRAME STABILITY
- **5** POTENTIAL APPLICATIONS

HETEROGENEOUS DATA FUSION

- We want to combine heterogenous information, not homogeneous like in distributed processing example.
- How do we combine different information to make up for gaps in knowledge of one?
- Studying stability explains the applicability of fusion frames as a data fusion model.

HETEROGENEOUS DATA FUSION

- We want to combine heterogenous information, not homogeneous like in distributed processing example.
- How do we combine different information to make up for gaps in knowledge of one?
- Studying stability explains the applicability of fusion frames as a data fusion model.

< □ > < 同 > < 三

HETEROGENEOUS DATA FUSION

- We want to combine heterogenous information, not homogeneous like in distributed processing example.
- How do we combine different information to make up for gaps in knowledge of one?
- Studying stability explains the applicability of fusion frames as a data fusion model.

PRIMARY REFERENCES

- Casazza, P. G., Kutyniok, G., & Li, S. (2008). Fusion frames and distributed processing. Applied and computational harmonic analysis, 25(1), 114-132.
- Kutyniok, G., Paternostro, V., & Philipp, F. (2015). The Effect of Perturbations of Frame Sequences and Fusion Frames on Their Duals. arXiv preprint arXiv:1509.04160.
- Kutyniok, G., Pezeshki, A., Calderbank, R., & Liu, T. (2009).
 Robust dimension reduction, fusion frames, and
 Grassmannian packings. Applied and Computational Harmonic
 Analysis, 26(1), 64-76.

ADDITIONAL REFERENCES

- Casazza, P. G., Fickus, M., Mixon, D. G., Wang, Y., & Zhou, Z. (2011). Constructing tight fusion frames. Applied and Computational Harmonic Analysis, 30(2), 175-187.
- Casazza, P. G., & Kalton, N. J. (1999). Generalizing the Paley-Wiener perturbation theory for Banach spaces.
 Proceedings of the American Mathematical Society, 519-527.
- Casazza, P. G., & Kutyniok, G. (2004). Frames of subspaces.
 Contemporary Mathematics, 345, 87-114.

< D > < P > < P > < P >