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Introduction

This work focuses on the implications of signal sparsity in
biology, from two very different perspectives.

CS-ET: in what sense are nanometer-scale images of
biological structures sparse? Can that sparsity be exploited by
compressed sensing?

Sparse olfactory coding: How, and why, do Kenyon cells in
locust olfactory processing networks generate sparse sensory
codes?
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Compressed sensing for electron tomography

Electron tomography served as a focal point for understanding
compressed sensing and sparse mathematical signal
processing.

Signals are vectors in a space of voxel intensities,
measurements and representations are linear transforms of the
signal.

Question: Can we use compressed sensing to better recover
tomograms from undersampled measurement data?
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Sparse olfactory coding in locusts

Locust olfaction serves as a common model system for
studying sparse sensory coding in neuroscience.

Lifetime sparsity: An active Kenyon cell spikes only at onset
and possibly offset of a stimulus.

Population sparsity: A small percentage of the Kenyon cell
population emit spikes in response to an odor stimulus.

Question: How do locust olfactory population dynamics give
rise to this behavior?
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Signal representation

Signal: A vector f ∈ RM for some M .

A signal model describes the relationships between signals and
their measurements and representations.

Linear signal model: Used in the CS-ET project. Signals are
represented as linear combinations of basis or frame vectors.

Dynamical system signal model: Used in the locust olfaction
project. Signal representations are time-varying states of
populations of neurons, whose relationships to the signal are
described by nonlinear ODEs.
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Sparse signal representation

A vector x is sparse if its `0 norm:

||x||0 = #{xi ∈ x |xi 6= 0} (1)

is small.

Sparse linear signal representations aid machine learning by
capturing statistical regularities within a class of signals of
interest.

Sparse neural signal representations evidently aid organisms
for this and additional reasons.
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Compressed sensing

Compressed sensing (CS): The recovery of a sparse signal
f ∈ RM from appropriately-chosen measurements.

Measurement vectors: A collection of D vectors
{ϕi}Di=1 ⊆ RM . Each measurement i is 〈f ,ϕi〉.

Representation vectors: A basis or frame {ψj}Nj=1 for RM .

Stack measurement vectors in rows of a measurement matrix
Φ ∈ RD×M . Stack representation vectors in rows of a
representation matrix Ψ ∈ RN×M .
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Compressed sensing

Sparse signal model: An a priori assumption that f = Ψc for
some c ∈ RN with small `0 norm.

In the presence of noise or modeling error, signals are more
likely compressible: f ≈ Ψc to some suitable level of accuracy.

ε-compressibility ratio of a vector x is the proportion of vector
components with magnitude greater than ε||x||∞.

Most existing CS results focus on the cases where Ψ is an
orthonormal basis or tight frame, where f = ΨTΨf .
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Compressed sensing

Goal: Given measurements y = Φf , recover f even if
D << M as:

f∗ = arg min
f∈RM

||Ψf ||0 such that y = Φf . (2)

Equivalent for some choice of λ to the more useful:

f∗ = arg min
f∈RM

||Φf − y||22 + λ||Ψf ||0 (3)

Equation (3) is computationally intractible, we focus on the
convex relaxation (Basis Pursuit Denoising):

f∗ = arg min
f∈RM

||Φf − y||22 + λ||Ψf ||1 (4)
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Mutual coherence

Mutual coherence can be used to obtain an upper bound on
the number of measurements required for Equation (4) to
recover an s-sparse signal f .

Mutual coherence: Given an orthogonal measurement matrix
Φ with ||ϕi||2 =

√
M for all i ∈ [1, D], and an orthonormal

representation basis Ψ, the mutual coherence of Φ and Ψ is

µ(Φ,Ψ) = max
i,j
|〈ϕi,ψj〉| . (5)

Theorem (Candés, Romberg, 2007): Given D measurements
of an s-sparse signal f , Equation (4) recovers f if

D ≥ C · s · µ2(Φ,Ψ) · logM, (6)

for some small constant C.
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The sparse coding hypothesis

The sparse coding hypothesis: Information within a neural
population is encoded in a small number of active neurons at
each point in time.

Population sparsity: At a fixed point in time, a small
proportion of neurons in a population are active.

Lifetime sparsity: A fixed neuron is active for a small
proportion of time within an interval of interest.

Sparse codes minimize overlap between representations of
distinct stimuli, useful for associative memory. They are
energy efficient, and exploit the statistics of sensory input.

Found in sensory processing layers across the animal
taxonomy, for all sensory modalities.
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The sparse coding hypothesis

Why can sparse codes represent natural stimuli?

Hypothesis: Measurement vectors derived from natural
environments lie along a low-dimensional subspace of the
ambient measurement space.

Sparse, overcomplete representations efficiently decompose
signal information as a combination of a small number of
features.

In this work, I investigate the mechanisms which drive
populations of nonlinear dynamical systems to produce sparse
representations of olfactory sense data.
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The sparse coding hypothesis

Figure: A stylized depiction of measurement state spaces and the
subspace occupied by natural environments. Taken from (Olshausen,
Field, 2004).
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Tomography

Tomography - Producing a 3D reconstruction of a specimen
by measuring changes in penetrating waves (or particles)
which are sent through it.

Computed tomography (CT), using X-rays.

Electron tomography (ET), using electrons.

Electron tomography (ET) - 3D imaging using electron beams
via a transmission electron microscope (TEM) or scanning
transmission electron microscope (STEM).
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Our ET data

Each image is a projection of the rotated object, a sequence
of images indexed by rotation angle is a tilt series.

Bright field (BF) STEM imaging: detectors measure
unscattered electrons passing through the specimen.

Dark field (DF) STEM imaging: detectors measure electrons
scattered by the specimen.

Projection contrast comes from density-dependent differences
in electron scattering within the specimen.

Simulated phantom datasets were used to compare the
efficacy of our CS-ET implementation with similar previous
work.
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From tomography to Radon transforms

A beam of n0 electrons travels along line L through the
specimen at each measurement location. Some n electrons
pass through undeviated.

The ratio n
n0

can be related to line integrals of an electron

density function f(x) : R3 → R via the Beer-Lambert law:

log

(
n

n0

)
∝
∫
L
f(x) |dx| (7)

The function f forms the tomogram recovered from the
projection data.
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From tomography to Radon transforms

Radon transform - for f : R2 → R and any line L ⊆ R2,

Rf(L) =

∫
L
f(x) |dx|. (8)

This space of lines can be parametrized by a normal angle θ
and a distance coordinate s:

Rf(θ, s) =

∫ ∞
−∞

f((t sin θ + s cos θ), (−t cos θ + s sin θ)) dt.
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From tomography to Radon transforms

Parallel beam tomography used in ET decomposes 3D
reconstruction into multiple independent 2D reconstruction
problems.

For each plane normal to the rotation axis, tomographic
measurements provide samples {Rf(θi, sj)}i∈I,j∈J for some
finite sets I, J .

Measurement limitations make tomogram recovery an
ill-posed Radon transform inversion problem.
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CS for tomography

Each sample Rf(θi, sj) corresponds to a measurement vector
ϕij ∈ RD, all stacked in a measurement matrix Φ.

Representation operators Ψ used in this work: Identity
mapping, discrete DB8 wavelet transform, or the total
variation operator TV .

For a 2D discrete image f ,

TV f ,
√

∆+
x f + ∆+

y f

for forward finite x− and y−differences ∆+.
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Theoretical challenges

There is little existing theory for CS recovery of signals with
sparse images under nonlinear transforms (e.g. TV ).

ET measurement matrices R are deterministic. R and the
sparsifying transforms studied here do not possess mutual
coherences useful for theoretical analysis of the procedure.
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CS-ET mutual coherence

Figure: A histogram of 〈ϕi, ψj〉 for ϕi ∈ R and ψj ∈ I, an identity
matrix. These values are equivalent to the components of Radon
transform measurement vectors, taken from a Radon transform of a
256× 256 image at angles from −70◦ to 70◦ at 5◦ increments.
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CS-ET mutual coherence

Figure: A histogram of 〈ϕi, ψj〉 for ϕi ∈ R and ψj ∈W , the DB8

discrete wavelet transform on R2562 . Due to computational limitations,
only 10% of the possible 〈ϕi, ψj〉 combinations were computed.
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Numerical methods

Our CS-ET algorithm computes each x− z slice f∗ of a
tomogram as

f∗ = arg min
f∈RD

||Rf −y||22 +λ1||f ||1 +λ2||TV f ||1 +λ3||Wf ||1.

(9)

R is a digital Radon transform, y is measurement data, and
the λi are regularization weights.

1024 x− z slices, each approximately 1024× 100.

We use the split Bregman algorithm, a GPU-based library for
Radon transform computation, and concurrent computations
for multiple x− z slices to solve this problem efficiently.
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Tomogram coordinate system

Figure: An illustration of the coordinate system used with 3D
tomograms. A tomogram is assembled from independent 2D
reconstructions parallel to the x− z plane. An overhead view, parallel to
the x− y plane, is useful for visually inspecting tomogram structure.
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Nanoparticle phantom reconstruction comparison
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BF STEM reconstruction x− z comparison
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DF STEM reconstruction x− z comparison
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BF STEM reconstruction x− y comparison
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DF STEM reconstruction x− y comparison
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CS-ET and structural sparsity

The x− z slices of the biological STEM datasets are markedly
less sparse than the nanoparticle phantom.

This is a likely source for the disparity in CS-ET performance
compared to other reconstruction methods, between the
phantom and STEM datasets.

The correlation between application domain and the structural
complexity of specimens is important for determining where
CS-ET will be most relevant.
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CS-ET and structural sparsity

BF-STEM and DF-STEM dataset compressibility expressed as %,
defined as the STEM datasets’ compressibility ratios divided by the
nanoparticle phantom’s sparsity ratios in each of the three transform
domains studied.

All STEM dataset compressibility values were calculated separately
for each x− z slice and ordered by decreasing compressibility.
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Sensory processing

Long-standing question: How do brains capture, filter, and
integrate the information about the environment provided by
the senses?

Sensory receptors: neurons whose membrane potentials are
directly influenced by external (vision, olfaction) or internal
(nociception, proprioception) environmental state.

Receptors form the first level in a hierarchy of sensory
processing centers within brains.



36/66

Preliminaries
Compressed Sensing for Electron Tomography

Sparse Olfactory Coding in the Locust

Background
Modeling offset spiking
KC population sparsity

Locust olfaction

Olfactory systems in insects provide useful models for studying
neuron population dynamics.

Insect olfactory processing systems exhibit complex behavior,
but contain relatively few (∼ 106 − 107) neurons and are
well-characterized.

This research focuses on locust olfaction as a model system.

What network properties cause Kenyon cells (KCs) to exhibit
both lifetime and population sparsity?
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Locust olfaction

Figure: ∼ 50000 olfactory receptor neurons (ORNs) synapse onto ∼ 830
projection neurons (PNs) and ∼ 300 local neurons (LNs). PNs synapse
onto ∼ 50000 KCs. Used with permission, (DiLorenzo et al., 2014)
Chapter 11.
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KC lifetime sparsity

In the locust, an active KC emits a small number of spikes in
response to changes in stimulus identity and concentration,
i.e., onset spiking and offset spiking.

Sensory adaptation in ORNs drives ORN activity levels
towards a baseline during prolonged exposure to a stimulus.

The time course of this adaptation creates a window of
elevated PN activity after a stimulus change.

Relevant to insect behavior, e.g., for detecting boundaries in
odor plumes.
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Onset and offset spiking

Figure: PN activity data taken from (Mazor, Laurent 2005). All PN
population statistics are calculated over time using activity binned into
50ms windows.
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Onset and offset spiking

During stimulation, increased LN→PN feedback inhibition
creates oscillatory PN activity which enforces temporal
synchrony among active PNs.

At stimulus onset, increased PN firing rates and synchronous
activity patterns lead to onset spiking in KCs.

LN activity tracks stimulus offset closely, but some PNs
continue to spike due to ORNs exhibiting offset activity.

Stimulus offset creates increased PN firing rates, but
decreased temporal coherence.
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Modeling offset spiking

Question: What is the relationship between the temporal
coherence of a KC’s active PN inputs, and the number of
active PNs required to elicit a KC spike?

A suitably-accurate computational model can be used to
describe this relationship.

Modeling goal: use a simulation of a KC and its PN synapses
to determine how responsive KCs are to different numbers of
PN spikes arriving in temporal windows of different lengths.

How to verify that the model is an accurate reflection of
biological KCs?
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Model overview

One KC neuron with a variable number (0-430) of PN→KC
synapses.

N synapses activate randomly within a specified time window
[t0, t+ 0 + ∆t] for varying values of N and ∆t.

KC membrane potential is modeled by a Hodgkin-Huxley-type
ODE. Synapses are modeled by a standard first-order ODE.

Implemented in C++ using a 4-step Runge-Kutta (RK4)
numerical integrator, time-step h = 0.03ms.
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KC model

KC model: A single-compartment Hodgkin-Huxley-type
neuron.

KC membrane potential V is governed by the an ODE of the
form:

C
dV

dt
= −(Ileak + Iint + Isyn) (10)

C is a capacitance constant, Ileak is a leakage current, Iint is
an intrinsic ionic current, Isyn is a synaptic current.
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KC model

Ileak consists of two components: a “general” leakage current
IL = gL(V − EL) and a potassium leakage current
IKL = gKL(V − EKL).

Each g is a conductance variable and E a reversal potential.

Iint has five components: Iint =
∑5

i=1 gim
Mi
i hNi

i (V − Ei),
with gi, Ei as before, mi(t) and hi(t) are activation and
inactivation variables, and Mi, Ni are
experimentally-determined integers.
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KC model

Ionic current conductances:

INa gNa = 26.1µS IK gK = 2.9µS
IK(Ca) gK(Ca) = 0.29µS ICa gCa = 0.029µS

IK,A gK,A = 0.0145µS

Isyn is a sum of individual synaptic currents of the form
g[O](V − E), one for each PN→KC synapse. Here, g and E
are the same as before, and [O](t) is a proportion of open
synaptic channels.
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Synaptic model

[O](t) for each PN→KC synapse is updated as

d[O]

dt
= α(1− [O])[T ]− β[O]. (11)

[T ](t) measures transmitter concentration, α is a synaptic
current rise rate parameter, and β is a synaptic current decay
rate parameter.

Synapse strength g is not uniform across PN→KC
connections.
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Synaptic model

To test the effect of coordinated PN spiking on the KC, each
of N synapses is set to activate at a time drawn uniformly at
random from the interval [t0, t0 + ∆t].

Biological PNs exhibit nonzero baseline firing rates (∼ 2.5Hz)
which may be important for tuning the KC’s responsiveness to
coordinated spikes.

Model this by adding 415−N synapses with no coordinated
spiking time, to all 415 synapses assign random spiking events
with exponentially-distributed interarrival times (λ = 0.0025).
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Simulation protocol

For each N in {50 : 10 : 200} and each ∆t in
{10 : 10 : 60} ∪ {100 : 15 : 400}, simulate N synapses with
activation times in [t0, t0 + ∆t]. Run the simulation for
K = 100 trials.

Using the K trials, for each parameter configuration construct
a KC peristimulus time histogram (PSTH).

PSTH: For each trial, bin spike counts in time, then average
the binned counts across all trials.
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KC PSTHs
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KC PSTHs
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Model validation

Computational modeling indicates that the 150-200 PNs
spiking across a 150-300ms interval (like at stimulus offset)
are unlikely to trigger a KC spike.

Is this modeling error? How do we assess the biological
relevance of this model?

Goal: Model should conform with known activity statistics for
PN→KC interactions and KC behavior.

Focuses so far: parameter selection, synaptic conductance
distribution, KC resting potential and firing threshold, KC
membrane time constant.
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Explaining KC population sparsity

Useful KC population analysis is difficult to analyze as a large
nonlinear ODE model.

To what extent can KC population activity be explained more
simply?

Goal: Produce activity statistic distributions for KCs, in a
simplified PN and KC network.

Choose statistics to explain how KC activity is sparse, and
how KC activity is a representation of sensory information.
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Binary time series model

Simple model: KC activity is binned over time. Within each
time bin, use a binary active/silent model for each PN and
KC.

A KC is connected to K = 415 of the 830 PNs. The PN
target set is chosen uniformly at random from the possible
subsets of PNs.

A KC is active in a time bin if τ = 100 or more PNs are active.
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KC population sparsity

Derive that

%(M) = P (active KC|M active PNs) =

M∑
k=τ

(
M
k

)(
830−M
K−k

)(
830
k

) .

(12)

For this model, 150 active PNs marks a transition from a low
probability of KC activity to a high probability.

For a fixed M and 50000 KCs, we compute that

P (s total KC spikes) =

(
50000

s

)
%(M)s(1− %(M))50000−s.

(13)
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KC population sparsity

Figure: Single time bin plot of P (s total KC spikes) for several values of
M , the number of active PNs.
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KC response distinguishability

Define Bi as the binary time series of a KC population in
response PN population time series Ai.

Goal: Compute the distribution of ||B1 −B2||1, for two PN
activity series A1, A2.

A1 and A2 have a fixed number of active PNs in each time
bin, chosen uniformly at random from the population.

Result: ||B1 −B2||1 is large with high probability, but
specifics are dependent on a number of parameters.
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End

Thank you!
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Appendix: Model parameter selection

(Perez-Orive et al. 2004) describes a Hodgkin-Huxley model
of the locust KC. Our model is based on this one.

Errors in the paper required communication with Maxim
Bazhenov to obtain their model source code.

Our model uses an ICa current and calcium dynamics
described in the source code, differing from the paper.

Leakage conductance gL has been increased from 2.9× 10−3

to 2.9× 10−2, fixing the KC resting potential and making the
KC less quiescent.
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Appendix: Synaptic conductance distribution

PN→KC synaptic conductances are not uniform across the
population. Their distribution may be estimated from the
EPSP amplitude distributions recorded in (Jortner et al.
2007).

I created a conductance distribution function matching this
distribution, then computed a simulated EPSP amplitude
distribution to verify its match with the Jortner et al. data.
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Appendix: Synaptic conductance distribution

Figure: A comparison of a simulated peak EPSP distribution (left) and
the equivalent data from (Jortner et al., 2007) (right).
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Appendix: KC firing threshold

Figure: A comparison of a simulated KC’s firing threshold with a firing
threshold distribution measured in (Jortner et al., 2007). A neuron’s
firing threshold is defined here as the difference between resting potential
and the point with largest second derivative during a spike response.
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Appendix: KC membrane time constant

Membrane time constant: Amount of time required for a
neuron to transition (1− 1/e) ≈ 63.2% of the distance from a
membrane potential depolarized by as quare current pulse,
back to equilibrium.

Current (nA) 0.025 0.05 0.1 0.2 0.25

STC (ms) 6.89 6.83 6.77 6.89 7.37

Table: Simulated KC membrane time constant measurements from
square current pulses of several amplitudes. Comparisons with biological
experiments are forthcoming.
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Appendix: Future validation work

Current validation procedures give little explicit comparison
between simulated ionic current behaviors and their biological
counterparts.

A voltage clamp experiment gives more detailed information
about the magnitude of ionic current flowing through a
neuron at a variety of membrane potentials.

Voltage clamps can be simulated - code is currently written,
awaiting electrophysiological data to use for comparison.
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