A Characterization of Shift-invariant Spaces on LCA Groups

Shujie Kang

Norbert Wiener Center Department of Mathematics University of Maryland, College Park

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Frames of H-invariant Spaces

2 Preliminary

- 3 Shift-Invariant Spaces
- Frames of H-invariant Spaces
- 5 References

Shift-invariant Spaces on \mathbb{R}

- A shift-invariant space V is a closed subspace of L²(ℝ) that is invariant under integer translation,
 i.e., if φ ∈ V, then τ_kφ = φ(· − k) ∈ V, ∀k ∈ ℤ.
- Define the mapping $\mathcal{T}: L^2(\mathbb{R}) \to L^2(\mathbb{T}, \ell^2(\mathbb{Z}))$ as

$$\mathcal{T}f(x) = \{\hat{f}(x+k)\}_{k\in\mathbb{Z}}.$$

Then V is shift-invariant $\Leftrightarrow TV$ is closed under integer modulation. Where modulation by k is define as $e_k(x)\phi(x) = e^{2\pi i k \cdot x}\phi(x)$.

• Q: Can we extend this result to LCA groups? A: Yes.

Shift-invariant Spaces on \mathbb{R}

- A shift-invariant space V is a closed subspace of L²(ℝ) that is invariant under integer translation,
 i.e., if φ ∈ V, then τ_kφ = φ(· − k) ∈ V, ∀k ∈ ℤ.
- Define the mapping $\mathcal{T}: L^2(\mathbb{R}) \to L^2(\mathbb{T}, \ell^2(\mathbb{Z}))$ as

$$\mathcal{T}f(x) = \{\hat{f}(x+k)\}_{k\in\mathbb{Z}}.$$

Then V is shift-invariant $\Leftrightarrow TV$ is closed under integer modulation. Where modulation by *k* is define as $e_k(x)\phi(x) = e^{2\pi i k \cdot x}\phi(x)$.

 Q: Can we extend this result to LCA groups? A: Yes.

(a) < (a) < (b) < (b)

Definition

The sequence $\{u_i\}_{i \in I}$ is a frame for the Hilbert space \mathcal{H} with constants A > 0 and B > 0 if $A \|f\|^2 \le \sum_{i \in I} |\langle f, u_i \rangle|^2 \le B \|f\|^2$, for all $f \in \mathcal{H}$.

Intro (cont'd)

Theorem [Benedetto & Li (1994)]

Let $\phi \in L^2(\mathbb{R}^d)$ and let

$$V \equiv \overline{Span} \{ \tau_k \phi : k \in \mathbb{Z}^d \}$$

be a closed subspace of $L^2(\mathbb{R}^d)$. The sequence $\{\tau_k \phi\}$ is a frame for V if and only if there are positive constants A and B such that

 $A \leq \Phi(\gamma) \leq B$ a.e. on $\mathbb{T}^d \setminus N$,

where $\Phi(\gamma) \equiv \sum_{m \in \mathbb{Z}^d} |\hat{\phi}(\gamma + m)|^2$ and $N \equiv \{\gamma \in \mathbb{T}^d : \Phi(\gamma) = 0\}.$

6/36

Norbert Wiener Center

(a) < (a) < (b) < (b)

Frames of H-invariant Spaces

5 References

Assumptions and Notations

- G is a second countable, locally compact abelian, Hausdorff group.
- A uniform lattice H in G is a discrete subgroup of G such that the quotient group G/H is compact.
 Note: We only consider countable uniform lattice.
- A section of G/H is a set of representatives of this quotient.

Assumptions and Notations (cont'd)

• Dual group of G,

$$\hat{G} = \Gamma = \{ \gamma : G \to \mathbb{C} : \gamma \text{ is continuous character of } G \}.$$

Where a character is a function such that $|\gamma(x)| = 1, \forall x \in G$ and $\gamma(x + y) = \gamma(x)\gamma(y), \forall x, y \in G$.

- Denote $(x, \gamma) = \gamma(x)$.
- Annihilator of H,

$$\Delta = \{\gamma \in \Gamma : (h, \gamma) = 1, \forall h \in H\}.$$

nter

9/36

(a)

Theorem

 Δ is a countable uniform lattice in Γ .

If we consider the group to be \mathbb{R} , we have:

Haar Measure on LCA Groups

- A Haar measure exists for each G.
- There exist a Borel measurable section of G/H.
- $L^{p}(G)$ can be defined as

 $L^p(G) = \{f: G \to \mathbb{C} : f \text{ is measurable and } \int_G |f(x)|^p dm_G(x) < \infty\}.$

• We focus on $L^2(G)$.

Fourier Transform

Definition

Given $f \in L^1(G)$, the Fourier transform is $\hat{f}(\gamma) = \int_G f(x)(x, -\gamma) dm_G(x), \gamma \in \Gamma.$

- The Haar measure of Γ and G can be chosen that the following inversion formula holds for certain class of functions $f(x) = \int_{\Gamma} \hat{f}(\gamma)(x, \gamma) dm_{\Gamma}(\gamma).$
- the Fourier transform on L¹(G) ∩ L²(G) can be extended to a unitary operator from L²(G) onto L²(Γ).

•
$$y \in G$$
, then $\widehat{\tau_y f}(\gamma) = (y, -\gamma)\hat{f}(\gamma)$.

Hilbert Space Properties of $L^2(\Omega)$

- Fix Ω a Borel section of Γ/Δ .
- Define η_h(γ) = (h, −γ)χ_Ω(γ), then {η_h}_{h∈H} is an orthogonal basis for L²(Ω).
- m_H and $m_{\Gamma/\Delta}$ can be chosen such that

$$\|\boldsymbol{a}\|_{\ell^{2}(H)} = \frac{m_{H}(\{0\})^{1/2}}{m_{H}(\Omega)^{1/2}} \|\sum_{h \in H} a_{h} \eta_{h}\|_{L^{2}(\Omega)}$$

for each $a = \{a_h\}_{h \in H} \in \ell^2(H)$.

Frames of H-invariant Spaces

5 References

H-invariant Spaces

Definition

A closed subspace $V \subseteq L^2(G)$ is H-invariant if

$$f \in V \Rightarrow \tau_h f \in V \quad \forall h \in H,$$

where $\tau_y f(x) = f(x - y)$ denotes the translation of *f* by an element *y* of G.

- For a subset A ⊆ L²(G), denote
 E_H(A) = {τ_hφ : φ ∈ A, h ∈ H} and S(A) = spanE_H(A).
 Call S(A) the H-invariant space generated by A.
- If A contains only one element φ, then we call S(A) = Sφ a principle H-invariant space.

Fiber Map

• $L^2(\Omega, \ell^2(\Delta))$ is the space of all measurable functions $\Phi: \Omega \to \ell^2(\Delta)$ such that

 $\int_{\Omega} \|\Phi(\omega)\|_{\ell^{2}(\Delta)}^{2} dm_{\Gamma}(\omega) < \infty.$

Proposition

The mapping $\mathcal{T} : L^2(G) \to L^2(\Omega, \ell^2(\Delta))$ defined as $\mathcal{T}f(\omega) = \{\hat{f}(\omega + \delta)\}_{\delta \in \Delta},$ is an isomorphism that satisfies $\|\mathcal{T}f\|_2 = \|f\|_{L^2(G)}.$

•
$$\mathcal{T}\tau_h f(\omega) = (h, -\omega)\mathcal{T}f(\omega).$$

for Harmonic Analysis and Apr

Range Function

Definition

A range function is a mapping,

```
J: \Omega \to \{ closed spaces of \ell^2(\Delta) \}.
```

The subspace $J(\omega)$ is called the fiber space associated to ω .

Note:

- This concept was first developed by Helson in [6] .
- Denote the orthogonal projection onto J(ω), P_ω : ℓ²(Δ) → J(ω).
- J is a measurable range function if and only if for all Φ ∈ L²(Ω, ℓ²(Δ)) and all b ∈ ℓ²(Δ), ω ↦ ⟨P_ω(Φ(ω)), b⟩ is measurable.

17/36

(a) < (a) < (b) < (b)

Orthogonal Projection

• Define the set *M_J* as

$$M_J = \{ \Phi \in L^2(\Omega, \ell^2(\Delta)) : \Phi(\omega) \in J(\omega) \mid a.e. \ \omega \in \Omega \}.$$

Proposition

Let J be a measurable range function and P_{ω} the associated orthogonal projections. Denote by \mathcal{P} the orthogonal projection onto M_J . Then, $(\mathcal{P}\Phi)(\omega) = P_{\omega}(\Phi(\omega)), a.e. \ \omega \in \Omega, \ \forall \Phi \in L^2(\Omega, \ell^2(\Delta)).$

Proof of Proposition

- Define $Q: L^2(\Omega, \ell^2(\Delta)) \to L^2(\Omega, \ell^2(\Delta))$ as $(Q\Phi)(\omega) = P_{\omega}(\Phi(\omega))$, Claim: Q = P.
- \mathcal{Q} is a well defined and has norm \leq 1 since

$$\|\mathcal{Q}\Phi\|_2^2 = \int_\Omega \|\mathcal{P}_\omega(\Phi(\omega))\|_{\ell^2(\Delta)}^2 dm_{\Gamma}(\omega) \leq \|\Phi\|_2^2.$$

- Q satisfies Q² = Q and Q^{*} = Q by definition
 ⇒ It is an orthogonal projection.
- M := Ran(Q) equals $M_J \Rightarrow Q$ is orthogonal projection onto M_J .

Main Result

Theorem 1 [Cabrelli & Paternostro (2010)]

Let $V \subseteq L^2(G)$ be a closed subspace. Then V is H-invariant if and only if there exist a measurable range function J such that

$$V = \{ f \in L^2(G) : \mathcal{T}f(\omega) \in J(\omega) \mid a.e. \ \omega \in \Omega \}.$$

If two range functions which are equal almost everywhere are identified, the correspondence is one-to-one and onto.

If V = S(A) where A is a countable subset of $L^2(G)$, then

$$J(\omega) = \overline{span} \{ \mathcal{T}\phi(\omega) : \phi \in \mathcal{A} \}.$$

Norbert Wiener Center for Harmonic Analysis and Applications

Proof of Theorem 1

We will need the following lemma:

Lemma

If J and K are two measurable range functions such that $M_J = M_K$, then $J(\omega) = K(\omega) a.e. \omega \in \Omega$.

21/36

Proof:

• Denote P_{ω} and Q_{ω} projections correspond to J, K; \mathcal{P} the orthogonal projection onto $M_J = M_K$.

•
$$P_{\omega}(\Phi(\omega)) = (\mathcal{P}\Phi)(\omega) = Q_{\omega}(\Phi(\omega)).$$

• P_{ω} and Q_{ω} map basis of $\ell^2(\Delta)$ onto same image.

Proof of Theorem 1

(⇒) $L^2(G)$ is separable, then $\exists A$ countable such that V = S(A). Define $J(\omega) = \overline{span} \{ T\phi(\omega) : \phi \in A \}.$

Step 1:
$$V = \{ f \in L^2(G) : \mathcal{T}f(\omega) \in J(\omega) \text{ a.e. } \omega \in \Omega \}$$

• Need:
$$M := \mathcal{T}V = M_J$$
.

• For
$$\Phi \in M$$
,
 $\exists \{g_j\}_{j \in \mathbb{N}} \subseteq span E_H(\mathcal{A}) \text{ such that } \mathcal{T}g_j = \Phi_j \to \Phi \text{ in } L^2(\Omega, \ell^2(\Delta)).$
 $\Phi_j(\omega) \in J(\omega) \Rightarrow \Phi(\omega) \in J(\omega).$

Proof of Theorem 1

Suppose there exists a non-zero Ψ ∈ L²(Ω, ℓ²(Δ)) orthogonal to M.
 Since V is H-invariant, for any Φ ∈ TA ⊆ M

$$\mathsf{0} = \int_{\Omega} (h,-\omega) \langle \Phi(\omega), \Psi(\omega)
angle_{\ell^2(\Delta)} dm_{\mathsf{\Gamma}}(\omega)$$

 $\Psi(\omega) \perp J(\omega)$ a.e. $\omega \in \Omega$, thus $\Psi \perp M_J$.

Proof of Theorem 1

Step 2: J is measurable

Let *I* be identity mapping on L²(Ω, ℓ²(Δ));
 P : L²(Ω, ℓ²(Δ)) → M be the orthogonal projection onto M.

• For
$$\Psi \in L^2(\Omega, \ell^2(\Delta)), (\mathcal{I} - \mathcal{P})\Psi(\omega) \perp J(\omega)$$
, a.e. $\omega \in \Omega$, then

$${\it P}_{\omega}((\mathcal{I}-\mathcal{P})\Psi(\omega))={\it P}_{\omega}(\Psi(\omega)-\mathcal{P}\Psi(\omega))=0.$$

•
$$P_{\omega}(\Psi(\omega)) = \mathcal{P}\Psi(\omega).$$

Proof of Theorem 1

(⇐)

- We need: $V := T^{-1}(M_J)$ is H-invariant.
- For any $f \in V$, $\mathcal{T}(\tau_h f)(\omega) = (h, -\omega)\mathcal{T}f(\omega)$ for almost every $\omega \in \Omega$ $\Rightarrow (h, -\omega)\mathcal{T}f(\omega) \in J(\omega).$

•
$$\mathcal{T}(\tau_h f) \in M_J \Rightarrow \tau_h f \in \mathcal{T}^{-1}(M_J).$$

Shift-invariant Spaces on $L^2(\mathbb{R})$

Theorem [Helson (1964)]

The doubly invariant subspaces of $L^2_{\mathcal{H}}$ are precisely the subspace M_J , where J is a measurable range function.

The correspondence between J and M_J is one-to-one, under the convention that range functions are identified if they are equal almost everywhere.

From Shift-invariant Spaces to Frames

Theorem [Bownik (2000)]

Suppose $\mathcal{A} \subseteq L^2(\mathbb{R}^n)$ is countable. Then the following are equivalent:

- $E_H(A)$ is a frame for its close span S(A) with constants A and B.
- Por a.e. x ∈ Tⁿ, {Tφ(ω) : φ ∈ A} ⊆ ℓ²(Zⁿ) is a frame for its closed span with constants A and B.

Theorem [Gol & Tousi (2008)]

Let $\phi \in L^2(G)$. $E_H{\phi}$ form a Parseval frame for the space $S\phi$ if and only if $\|\mathcal{T}\phi(\omega)\|_2 = 1$ a.e. on $\Omega \setminus N$ where $N \equiv {\omega \in \Omega : \|\mathcal{T}\phi(\omega)\|_2 = 0}$.

27/36

Characterization of Frames for H-invariant Spaces

Theorem 2 [Cabrelli & Paternostro (2010)]

Let A be a countable subset of $L^2(G)$, J the measurable range function associated, and $A \leq B$ positive constants. Then the following are equivalent:

- The set *E_H(A)* is a frame for its closed span *S(A)* with contants A and B.
- Por a.e. ω ∈ Ω, the set {Tφ(ω) : φ ∈ A} ⊆ ℓ²(Δ) is a frame for J(ω) with constants A and B.

29/36

Proof of Theorem 2

Assuming either (i) or (ii), we have

$$\begin{split} &\sum_{\phi \in \mathcal{A}} \sum_{h \in H} |\langle t_h \phi, f \rangle_{L^2(G)}|^2 \\ &= \sum_{\phi \in \mathcal{A}} \sum_{h \in H} |\int_{\Omega} (h, -\omega) \langle \mathcal{T} \phi(\omega), \mathcal{T} f(\omega) \rangle_{\ell^2(\Delta)} dm_{\Gamma}(\omega)|^2 \qquad (1) \\ &= \sum_{\phi \in \mathcal{A}} \int_{\Omega} |\langle \mathcal{T} \phi(\omega), \mathcal{T} f(\omega) \rangle_{\ell^2(\Delta)}|^2 dm_{\Gamma}(\omega) \qquad (2) \end{split}$$

Norbert Wiener Center • Harmonic Analysis et Applications

30/36

Proof of Theorem 2

 $(ii) \Rightarrow (i)$

- We need: $A \|f\|^2 \leq \sum_{\phi \in \mathcal{A}} \sum_{h \in H} |\langle t_h \phi, f \rangle_{L^2(G)}|^2 \leq B \|f\|^2$ for $f \in S(\mathcal{A})$.
- For any $f \in S(\mathcal{A})$, we have $\mathcal{T}f \in J(\omega)$, then

$$\|\mathcal{T}f(\omega)\|^2 \leq \sum_{\phi \in \mathcal{A}} |\langle \mathcal{T}\phi(\omega), \mathcal{T}f(\omega) \rangle|^2 \leq B \|\mathcal{T}f(\omega)\|^2.$$

• T is an isometry, by (1), we get $(ii) \Rightarrow (i)$.

Proof of Theorem 2

 $(i) \Rightarrow (ii)$

 Let *D* be a dense countable subset of ℓ²(Δ), then (ii) is equivalent to: For all *d* ∈ *D*,

$$oldsymbol{A} \|oldsymbol{P}_{\omega}oldsymbol{d}\|^2 \leq \sum_{\phi \in \mathcal{A}} |\langle \mathcal{T}\phi(\omega), oldsymbol{P}_{\omega}oldsymbol{d}
angle|^2 \leq oldsymbol{B} \|oldsymbol{P}_{\omega}oldsymbol{d}\|^2, \ oldsymbol{a}.oldsymbol{e}.\omega \in \Omega.$$

• Suppose above statement is not true, then $\exists d_0 \in D$ such that either

$$\sum_{\phi \in \mathcal{A}} |\langle \mathcal{T}\phi(\omega), \mathcal{P}_{\omega} \mathbf{d}_{0} \rangle|^{2} > (\mathbf{B} + \epsilon) \|\mathcal{P}_{\omega} \mathbf{d}_{0}\|^{2}$$
(3)

or

$$\sum_{\phi \in \mathcal{A}} |\langle \mathcal{T} \phi(\omega), \mathcal{P}_{\omega} \mathcal{d}_0
angle|^2 < (\mathcal{A} - \epsilon) \|\mathcal{P}_{\omega} \mathcal{d}_0\|^2$$

on a measurable set $W \subseteq \Omega$ with positive measure.

Norbert Wiener Center for Harmonic Analysis and Applications

32/36

< 日 > < 同 > < 回 > < 回 > < □ > <

Proof of Theorem 2

- Suppose (3) holds, take f ∈ S(A) such that Tf(ω) = χ_W(ω)P_ωd₀.
- By (i) and (1),

$$\boldsymbol{A} \| \mathcal{T} \boldsymbol{f} \|^{2} \leq \sum_{\phi \in \mathcal{A}} \int_{\Omega} |\langle \mathcal{T} \phi(\omega), \mathcal{T} \boldsymbol{f}(\omega) \rangle_{\ell^{2}(\Delta)} |^{2} dm_{\Gamma}(\omega) \leq \boldsymbol{B} \| \mathcal{T} \boldsymbol{f} \|^{2}$$

Integrate (3) we get

$$\sum_{\phi \in \mathcal{A}} \int_{\Omega} |\langle \mathcal{T}\phi(\omega), \chi_{W}(\omega) \mathcal{P}_{\omega} d_{0} \rangle_{\ell^{2}(\Delta)}|^{2} dm_{\Gamma}(\omega) \geq (B + \epsilon) \|\mathcal{T}f\|^{2}$$

This gives a contradiction.

for Harmonic Analysis and Appl

Frames of H-invariant Spaces

References I

John J. Benedetto.

Gabor frames for L^2 and related spaces.

In John J. Benedetto and Michael W. Frazier, editors, *Wavelets: Mathematics and Applications*, pages 97–162. CRC Press, Boca Raton, FL, 1994.

< ロ > < 同 > < 三 > < 三 >

35/36

Marcin Bownik.

The structure of shift-invariant subspaces of $L^2(\mathbb{R}^n)$. J. Funct. Anal., 177(2):282–309, 2000.

Carlos Cabrelli and Victoria Paternostro. Shift-invariant spaces on LCA groups. *J. Funct. Anal.*, 258(6):2034–2059, 2010.

References II

Carl de Boor, Ronald A.DeVore and Amos Ron.
 The structure of finitely generated shift-invariant spaces in L²(R^d).
 J. Funct. Anal., 119:37–78, 1994.

R.A. Kamyabi Gol and R.Raisi Tousi.
 The structure of shift invariant spaces on a locally compact abelian group.
 J. Math. Anal. Appl. 340(1):219–225, 2008.

Henry Helson.

Lectures on Invariant Subspaces. Academic Press, New York, NY, 1964.

Walter Rudin.

Fourier Analysis on Groups.

John Wiley & Sons, New York - London, 1962.

36/36

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >