Super-resolution by means of Beurling minimal extrapolation

John J. Benedetto and Weilin Li

Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu

Acknowledgements
ARO W911NF-16-1-0008 and ARO W911NF17-1-0014

Outline

- Introduction
- 2 Theorems
- 3 Examples
- 4 Conclusion

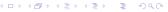
What is super-resolution?

Broadly speaking, super-resolution is concerned with recovering fine details (high-frequency) from coarse information (low-frequency).

There are two main categories of super-resolution:

- Spectral extrapolation Optical, radar, geophysics, astronomy, medical imaging, e.g., MRI, problems;
- Spatial interpolation Geometrical or image-processing, e.g., in-painting problems.

Remark We shall deal with spectral extrapolation. We shall not deal with the critical setting of noisy environments. Also, we shall not deal with the highly motivated spatial setting of super-resolution, where non-uniform sampling and multiple measurements can play an essential role.



Background and notation

Our super-resolution model is based on the theory of Candès and Fernandez-Granda [5], [6] for discrete measures, *and* our main idea was inspired by classical work of Beurling [3], [4].

- \mathbb{T}^d is the *d*-dimensional torus group.
- $M(\mathbb{T}^d)$ is the space of complex Radon measures on the torus.
- $\bullet \parallel \cdot \parallel$ is the total variation norm.
- The Fourier transform of μ is the function $\widehat{\mu} \colon \mathbb{Z}^d \to \mathbb{C}$, defined as

$$\widehat{\mu}(m) = \int_{\mathbb{T}^d} e^{-2\pi i m x} d\mu(x).$$

• $\Lambda \subset \mathbb{Z}^d$ is a finite set.

The super-resolution problem

The *unknown information* is modeled as $\mu \in M(\mathbb{T}^d)$, not only discrete measures. There are two reasons for $\mu \in M(\mathbb{T}^d)$:

- Objects (images) are not necessarily supported by discrete sets;
- Fine features can be supported in measure 0 non-discrete sets.

The given low-frequency information is modeled as spectral data, $F(n), n \in \Lambda$, i.e., there is $\nu \in M(\mathbb{T}^d)$ such that $\widehat{\nu} = F$ on Λ . To recover μ from F, we pose the super-resolution problem,

inf
$$\|\nu\|$$
 subject to $\nu \in M(\mathbb{T}^d)$ and $\widehat{\nu} = F$ on Λ . (SR)

The super-resolution problem, continued

Remark

- a. Using weak-* compactness arguments, we can show that Problem (SR) is well-posed (the inf can be replaced with a min), but not without significant theoretical and computational challenges.
- b. Problem (SR) is a convex minimization problem, and we interpret a solution as a *least complicated* high resolution extrapolation of *F*.
- c. Independently, DeCastro-Gamboa [7] also use Beurling [3], [4], but to super-resolve a discrete measure μ , whose support is contained in the level set of a certain family of generalized polynomials, given partial generalized moments of μ . In contrast to their problem and techniques, we use Beurling's ideas to obtain super-resolution reconstruction of an arbitrary bounded measure μ , given a finite subset of its Fourier coefficients.

Connection with compressed sensing

If the unknown measure μ is of the form,

$$\mu=\sum_{m=0}^{N-1}x_m\delta_{\frac{m}{N}}\in M(\mathbb{T}),$$

where $x \in \mathbb{C}^N$, $x = (x_0, \dots, x_{N-1})$, then

$$\widehat{\mu}(n) = \sum_{m=0}^{N-1} x_m e^{-2\pi i m n/N} = \mathcal{F}_N(x)(n),$$

the DFT of x. This shows that Problem (SR) is a generalization of the basis pursuit algorithm [9] for under-sampled DFT data F:

For given
$$F(n)$$
, $n \in \Omega \subseteq \mathbb{Z}/N\mathbb{Z}$, solve

 $\min \|y\|_{\ell^1}$ subject to $y \in \mathbb{C}^N$ and $\mathcal{F}_N y = F$ on $\Omega \subset \mathbb{Z}/N\mathbb{Z}$,

For this reason, super-resolution is a continuous theory of Norbert Wiener Center Wiener Wiener Center Wiener Center Wiener Center Wiener Wiener Center Wiener Wien compressed sensing.

Outline

- Introduction
- 2 Theorems
- 3 Examples
- Conclusion

A theorem of Candès and Fernandez-Granda, d = 1

The following theorem for d = 1 shows that one can reconstruct a discrete measure whose support satisfies a minimum separation condition.

Theorem, Candès and Fernandez-Granda [6]

Let $\Lambda_M = \{-M, -M+1, \dots, M\}$ for some integer $M \geq 128$ and let $F = \widehat{\mu}$ on Λ_M , where $\mu \in M(\mathbb{T})$ is a discrete measure for which

$$\inf_{x,y\in\operatorname{supp}(\mu),\ x\neq y}|x-y|\geq \frac{2}{M}.$$

Then, μ is the unique solution to Problem (SR) given F on Λ_M .

A theorem of Candès and Fernandez-Granda, d > 1

The following theorem for d > 1 shows that one can reconstruct a discrete measure whose support satisfies a minimum separation condition.

Theorem, Candès and Fernandez-Granda [6]

Given $S = \{s_j\}_{j=1}^J \subseteq \mathbb{T}^d$ and $\mu \in M(\mathbb{T}^d)$ for which supp $(\mu) \subseteq S$. Let $\Lambda_M = \{-M, -M+1, \ldots, M\}^d$, let F be spectral data on Λ_M , and let $\widehat{\mu} = F$ on Λ_M . There exist C_d , $M_d > 0$ such that if $M \ge M_d$ and

$$\inf_{1 \leq j < k \leq J} \|s_j - s_k\|_{\ell^{\infty}(\mathbb{T}^d)} \geq \frac{C_d}{M},$$

then μ is the *unique solution* to Problem (SR).

Norbert Wiener Center

for Harmonic Analysis and Applications

Definitions based on Beurling's theory

• Let ϵ be the smallest value attained by Problem (SR), i.e.,

$$\epsilon = \epsilon(\Lambda, F) = \inf\{\|\nu\| : \widehat{\nu} = F \text{ on } \Lambda\}.$$

• Let \mathcal{E} be the set of all solutions to Problem (SR), i.e.,

$$\mathcal{E} = \mathcal{E}(\Lambda, F) = \{ \nu \in M(\mathbb{T}^d) \colon \|\nu\| = \epsilon \text{ and } \widehat{\nu} = F \text{ on } \Lambda \}.$$

If $\nu \in \mathcal{E}$, then we say ν is a *minimal extrapolation* from Λ .

Our theory depends essentially on the set,

$$\Gamma = \Gamma(\Lambda, F) = \{ m \in \Lambda \colon |F(m)| = \epsilon \}.$$

Functional analysis properties of $\epsilon = \epsilon(\Lambda, F)$ and $\mathcal{E} = \mathcal{E}(\Lambda, F)$

Definitions for $\mu \in M(\mathbb{T}^d)$, $\Lambda \subseteq \mathbb{Z}^d$ finite, and $\widehat{\mu} = F$ on Λ .

$$C(\mathbb{T}^d;\Lambda)=\{f\in C(\mathbb{T}^d)\colon f(x)=\sum_{m\in\Lambda}a_m\;e^{2\pi im\cdot x},\;a_m\in\mathbb{C}\}.$$

$$U = U(\mathbb{T}^d; \Lambda) = \{ f \in C(\mathbb{T}^d; \Lambda) \colon ||f||_{\infty} \le 1 \}.$$

$$L_{\mu} \in C(\mathbb{T}^d; \Lambda)'$$
 defined as

$$\forall f \in C(\mathbb{T}^d; \Lambda), \quad L_{\mu}(f) = \int_{\mathbb{T}^d} f(x) \ \overline{d\mu(x)} = \sum_{m \in \Lambda} a_m F(m).$$

$$||L_{\mu}|| = \sup_{f \in U} |L_{\mu}(f)|.$$

Functional analysis properties of $\epsilon = \epsilon(\Lambda, F)$ and $\mathcal{E} = \mathcal{E}(\Lambda, F)$, continued

Properties for $\mu \in M(\mathbb{T}^d)$, $\Lambda \subseteq \mathbb{Z}^d$ finite, and $\widehat{\mu} = F$ on Λ .

- $\mathcal{E} \subseteq M(\mathbb{T}^d)$ is non-empty, weak-* compact, and convex.
- $C(\mathbb{T}^d; \Lambda)$ is a closed subspace of $C(\mathbb{T}^d)$.
- *U* is a compact subset of $C(\mathbb{T}^d; \Lambda)$.
- $\bullet \ \epsilon = \|L_{\mu}\| = \max_{f \in U} |\langle f, \mu \rangle|.$
- There exists $\varphi(x) = \sum_{m \in \Lambda} a_m e^{2\pi i m \cdot x} \in U$ such that $\langle \varphi, \mu \rangle = \epsilon$.
- If $\varphi \in U$ and $\langle \varphi, \mu \rangle = \epsilon$, then

$$\forall \nu \in \mathcal{E}, \ \varphi = \operatorname{sign}(\nu) \ \nu\text{-a.e.}, \quad \text{and} \quad \operatorname{supp}(\nu) \subseteq \{x \in \mathbb{T}^d \colon |\varphi(x)| = 1\},$$

where $|sign(\nu)| = 1$ arises in R-N Theorem.

Theorem

Theorem [1]

Let $\Lambda \subset \mathbb{Z}^d$ be a finite set and let F be spectral data defined on Λ .

- (a) Suppose $\Gamma = \emptyset$. Then, there exists a closed set S of d-dimensional Lebesgue measure zero such that each minimal extrapolation is a singular measure supported in S.
- (b) Suppose $\#\Gamma \geq 2$. For each distinct pair $m, n \in \Gamma$, define $\alpha_{m,n} \in \mathbb{R}/\mathbb{Z}$ by $e^{2\pi i \alpha_{m,n}} = F(m)/F(n)$. Define the closed set.

$$S = \bigcap_{\substack{m,n \in \Gamma \\ m \neq n}} \{ x \in \mathbb{T}^d \colon x \cdot (m-n) + \alpha_{m,n} \in \mathbb{Z} \},$$

which is an intersection of $\binom{\#\Gamma}{2}$ periodic hyperplanes. Then, each minimal extrapolation is a singular measure supported in S.

Center

Illustration of the theorem

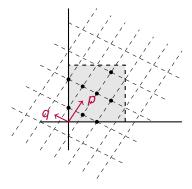


Figure: Second case of the Theorem for d=2 and $\#\Gamma=3$. Note $\binom{\#\Gamma}{2}$ takes the values $1,3,6,10,\ldots$. Thus, for this case, the 3 hyperplanes of the Theorem are not unique, and are represented by the 2 periodic sets of dashed lines. The vectors p=(1/4,3/8) and q=(-1/4,1/8) are normalitoire centre the hyperplanes and their lengths determine the separation of the hyperplanes.

Admissibility range

A numerical approximation of ϵ can be obtained by solving Problem (SR), but its exact value is typically unknown. On the other hand, if we are given finite $\Lambda \subseteq \mathbb{Z}^d$, spectral data F on Λ , and $\mu \in \mathbb{T}^d$ for which $\widehat{\mu} = F$ on Λ , then

$$\sup_{m\in\Lambda}|F(m)|\leq\epsilon(\Lambda,F)\leq\|\mu\|.$$

- If the lower bound is attained, then $\Gamma \neq \emptyset$. Our theory is particularly strong for large $\#\Gamma$.
- The upper bound $\epsilon = \|\mu\|$ is a necessary condition for uniqueness of the super-resolution of μ from F.

The role of uniqueness

Why uniqueness is important:

- If μ ∈ E(Λ, F) is unique, then any numerical solution to Problem (SR) approximates μ.
- Without uniqueness, even if μ ∈ ε(Λ, F), it is possible that a numerical solution to Problem (SR) does not approximate μ.

Uniqueness and Meyer's theory (1970) of quasi-crystals

Define $\alpha \in (0, 1/2)$ and define the sampling set

$$\Lambda_{\alpha} = \{ (\textit{m},\textit{n}) \in \mathbb{Z} \times \mathbb{Z} : \exists \textit{r} \in \mathbb{Z}, \, \text{such that} \, |\textit{m}\sqrt{2} + \textit{n}\sqrt{3} - \textit{r}| \leq \alpha \}.$$

Let $M_{d,+,N}(\mathbb{T}^2)$ be the set of positive discrete measures ν on \mathbb{T}^2 , where card $\operatorname{supp}(\nu) \leq N$.

Theorem (Basarab Matei 2014)

Let $\mu \in M_{d,+,N}(\mathbb{T}^2)$. If ν is a positive measure on \mathbb{T}^2 and $\widehat{\nu} = \widehat{\mu}$ on Λ_{α} , then $\nu = \mu$.

Remark Besides Matei's theorem, see the following collaborative work of Matei and Meyer: [11], [12], [13]

Outline

- Introduction
- 2 Theorems
- 3 Examples
- Conclusion

Uniqueness and super-resolution reconstruction

Let $\Lambda = \{-1, 0, 1\}$. Define F in the following ways.

- F(0) = 0, $F(\pm 1) = 2$. Define $\mu = \delta_0 \delta_{1/2} \in M(\mathbb{T})$. $\Gamma = \{-1, 1\}$.
- $F(0) = 0, F(\pm 1) = 1 \pm i$. Define $\mu = \delta_0 \delta_{1/4} \in M(\mathbb{T})$. $\Gamma = \{-1, 1\}$.
- F(-1) = 0, $F(0) = 1 + e^{\pi i/3}$, $F(1) = 1 + e^{-\pi i/3}$. Define $\mu = \delta_0 + e^{\pi i/3} \delta_{1/3} \in M(\mathbb{T})$. $\Gamma = \{0, 1\}$.

In each case μ can be proved to be the unique minimal extrapolation, and so super-resolution reconstruction of μ from the values of F on Λ is possible.

Cantor measures and $\#\Gamma = 1$

 $C_q = \bigcap_{k=0}^{\infty} C_{q,k}$, integer $q \ge 3$, is the *middle* 1/q-Cantor set, where

$$C_{q,0} = [0,1] ext{ and } C_{q,k+1} = rac{C_{q,k}}{q} \cup (1-q) + rac{C_{q,k}}{q},$$

and let σ_q be the continuous singular Cantor-Lebesgue measure with

$$\widehat{\sigma_q}(m) = (-1)^m \prod_{k=1}^{\infty} \cos(\pi m q^{-k} (1-q)),$$

 $\forall n \in \mathbb{Z} \setminus \{0\}, \quad \widehat{\sigma_q}(q^n) \neq 0 \quad \text{takes the same constant value}.$

Let $\Lambda\subseteq\mathbb{Z}$ be finite, assume $0\in\Lambda$, and suppose F defined on Λ satisfies F(0)=1, noting $\widehat{\sigma_q}(0)=\|\sigma_q\|=1$. If $\sigma_q\in\mathcal{E}(\Lambda,F)$, then $\#\Gamma=1$, and our present theory does not determine if σ_q is the unique minimal extrapolation.

Non-uniqueness: $\mu = \delta_0 + \delta_{1/2} \in M(\mathbb{T})$ and $\#\Gamma = 1$

- Given $\Lambda = \{-1, 0, 1\}$ and F(0) = 2, $F(\pm 1) = 0$. If $\mu = \delta_0 + \delta_{1/2} \in M(\mathbb{T})$, then $\widehat{\mu} = F$ on Λ .
- μ is a minimal extrapolation, $\epsilon = 2$, and $\Gamma = \{0\}$.
- There are uncountably many discrete minimal extrapolations. In fact, $x \in \mathbb{T}$ and any integer $N \ge 2$ define the discrete measure

$$\nu_{N,x} = \frac{2}{N} \sum_{n=0}^{N-1} \delta_{x+\frac{n}{N}},$$

and each $\nu_{N,x}$ is a minimal extrapolation.

$\mu = \delta_0 + \delta_{1/2} \in M(\mathbb{T})$ and $\#\Gamma = 1$, continued

• There are also uncountably many positive absolutely continuous minimal extrapolations. In fact, for any integer $N \ge 2$ and constant $0 < c \le (2N+2)/(3N+1)$, extend F on Λ to the sequence $\{(a_{N,c})_n\}_{n\in\mathbb{Z}}$, where

$$(a_{N,c})_n = \left\{ egin{array}{ll} 2 & ext{if } n=0, \ c\Big(1-rac{|n|}{N+1}\Big) & ext{if } 2 \leq |n| \leq N, \ 0 & ext{otherwise}. \end{array}
ight.$$

The non-negative real-valued function

$$f_{N,c}(x) = 2 + \sum_{n=-N}^{-2} (a_{N,c})_n \ e^{2\pi i n x} + \sum_{n=2}^{N} (a_{N,c})_n \ e^{2\pi i n x}$$

is a positive absolutely continuous minimal extrapolation.

Optimality in higher dimensions

In higher dimensions, geometry plays an important role.

- Let $\Lambda = \{-1,0,1\}^2 \setminus \{(1,-1),(-1,1)\}$ and let $\mu = \delta_{(0,0)} + \delta_{(1/2,1/2)} \in M(\mathbb{T}^2)$.
- Then, μ is a minimal extrapolation, $\epsilon = 2$, and $\Gamma = \{(0,0), (1,1), (-1,-1)\}.$
- We can construct other discrete minimal extrapolations. For any $x \in \mathbb{R}$ and any integer $N \ge 2$, define the measure

$$\nu_{N,x} = \frac{2}{N} \sum_{n=0}^{N-1} \delta_{\left(x + \frac{n}{N}, 1 - x - \frac{n}{N}\right)}.$$

Then, each $\nu_{N,x}$ is a minimal extrapolation.

Optimality in higher dimensions, continued

• For this example, with d=2 and $\#\Gamma=3$, we can also construct a continuous singular minimal extrapolation. According to the Theorem, each minimal extrapolation is supported in the set,

$$S = \{x \in \mathbb{T}^2 \colon x_1 + x_2 = 1\}.$$

In particular, all 3 hyperplanes are identical. Let $\sigma = \sqrt{2}\sigma_S$, where σ_S is the *surface measure* of the Borel set S. We readily verify that σ is a minimal extrapolation.

This example shows that the second statement of our theorem is optimal.

On minimum separation

In view of the CFG theorem, it natural to ask whether separation is necessary in order to recover a discrete measure. We show that if two Dirac masses are too close, super-resolution is impossible.

- Let $\Lambda \subseteq \mathbb{Z}^d$ be a finite set and let $\mu_y = \delta_0 \delta_y$ for some non-zero $y \in \mathbb{T}^d$.
- Let $\nu_{\rm V}$ be the absolutely continuous measure,

$$\nu_{y}(x) = \sum_{m \in \Lambda} \widehat{\mu_{y}}(m) e^{2\pi i m \cdot x}.$$

By construction, $\widehat{\nu_y} = \widehat{\mu_y}$ on Λ . As $y \to 0$,

$$\|
u_y\| = \int_{\mathbb{T}^d} \Big| \sum_{m \in \Lambda} \widehat{\mu_y}(m) e^{2\pi i m \cdot x} \Big| dx o 0.$$

For |y| sufficiently small, we see that $\mu_y \notin \mathcal{E}$.

Outline

- Introduction
- 2 Theorems
- 3 Examples
- 4 Conclusion

Epilogue

- And lest one thinks it is all 20th century spectral estimation theory – from the profound underlying harmonic analysis to MEM, MUSIC, ESPRIT, well
- Our theory shows that Γ provides significant information about the minimal extrapolations. In particular, when $\#\Gamma \neq 1$, they are always singular measures, but when $\#\Gamma = 1$, they could be absolutely continuous.
- We have not discussed how to solve Problem (SR) computationally. Candès and Fernandez-Granda provided an algorithm, that is effective in some situations.
- The theorem opens up the possibility of the super-resolution of continuous singular measures. Since we are concerned with Fourier samples, medical imaging is a natural application of this theory.

Epilogue, continued

- For example, consider the case of fast MRI signal reconstruction in the spatial domain using spectral data from spiral-scan echo planar imaging (SEPI), e.g., [8]. A new frame-based theoretical and computational methodology for fast data acquisition on interleaving spirals in k-space (the spectral domain) was developed with Alfredo Nava-Tudela, Alex Powell, Yang Wang, and Hui-Chuan Wu [2].
- In terms of super-resolution, this approach can be considered resolution by means of multiple spectral snapshots from bounded subsets of k-space, and because of the frame theoretic modeling there are inherent noise reduction and stability features.
- Dynamic MRI machines are now made by Siemens using David Donoho's patents on compressed sensing and sparsity to gather data 15 times faster than previous machines! See [10].

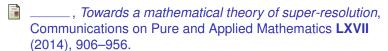
Epilogue, continued

- Our theorem does not require additional assumptions on $\mu \in M(\mathbb{T}^d)$ or on the finite subset $\Lambda \subseteq \mathbb{Z}^d$. Since the theorem also describes the support set of the minimal extrapolations of μ from Λ , it is useful for determining whether a given μ can be recovered by solving the super-resolution problem.
- The second statement of the theorem provides sufficient conditions for when the minimal extrapolations are supported in a lattice. As we have seen, such measures correspond to vectors solving the discrete compressed sensing problem. Thus, our theorem is a continuous-discrete correspondence result.
- Our results are closely related to Beurling's work on minimal extrapolation. He dealt with \mathbb{R}^1 instead of \mathbb{T}^d , so our theorem is an adaptation to the torus and a generalization to higher dimensions. There are non-trivial technical differences between working with \mathbb{R}^1 and \mathbb{T}^d .

References I

- John J. Benedetto, Alfredo Nava-Tudela, Alex Powell, and Yang Wang, MRI, the Beurling density theory, and finite frame algorithms, (2016), invited chapter in Mayeli–Pesenson book.
- Arne Beurling, *Balayage of Fourier-Stieltjes transforms*, The Collected Works of Arne Beurling **2** (1989), 341–350.
- _____, Interpolation for an interval in \mathbb{R}^1 , The Collected Works of Arne Beurling **2** (1989), 351–365.
- Emmanuel J. Candès and Carlos Fernandez-Granda, Super-resolution from noisy data, The Journal of Fourier Analysis and Applications 19 (2013), no. 6, 1229–1254.

References II



- Yohann De Castro and Fabrice Gamboa, *Exact reconstruction using Beurling minimal extrapolation*, Journal of Mathematical Analysis and Applications **395** (2012), no. 1, 336–354.
- B. M. Delattre, R. M. Heidemann, L. A. Crowe, J. P. Valle, and J. N. Hyacinthe, *Spiral demystified*, Magnetic Resonance Imaging **28** (6) (2010), 862–881.
- David L. Donoho and Philip B. Stark, *Uncertainty principles and signal recovery*, SIAM Journal on Applied Mathematics **49** (1989), no. 3, 906–931.

References III

Michael Lustig, David Donoho, and John M. Pauly, *Sparse MRI:* the application of compressed sensing to rapid MR imaging, Magnetic Resonance in Medicine **58** (2007), 1182–1195.

Basarab Matei and Yves Meyer, *A variant of compressed sensing*, Rev. Mat. Iberoam. **25** (2009), 669–692.

_____, Simple quasicrystals are sets of stable sampling, Complex Variables and Elliptic Equations **55** (2010), no. 8-10, 947–964.

Basarab Matei, Yves Meyer, and Ortega-Cerda, *Stable sampling* and Fourier multipliers, (2013).

That's all folks!

