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What is super-resolution?

Broadly speaking, super-resolution is concerned with recovering fine
details (high-frequency) from coarse information (low-frequency).

There are two main categories of super-resolution:

Spectral extrapolation – Optical, radar, geophysics, astronomy,
medical imaging, e.g., MRI, problems;
Spatial interpolation – Geometrical or image-processing, e.g.,
in-painting, problems.

Remark We shall deal with spectral extrapolation, and we shall not
deal with the important role of non-uniform sampling and multiple
measurements, nor the critical setting of noisy environments.
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Background and notation

Our super-resolution model is based on the theory of Candès and
Fernandez-Granda [4], [5] for discrete measures, and our main idea
was inspired by classical work of Beurling [2], [3].

Td is the d-dimensional torus group.
M(Td ) is the space of complex Radon measures on the torus.
‖ · ‖ is the total variation norm.
The Fourier transform of µ is the function µ̂ : Zd → C, defined as

µ̂(m) =

∫
Td

e−2πimx dµ(x).

Λ ⊆ Zd is a finite set.
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The super-resolution problem

The unknown information is modeled as µ ∈ M(Td ), not only discrete
measures. There are two reasons for µ ∈ M(Td ):

Objects (images) are not necessarily supported by discrete sets;
Fine features can be supported in measure 0 non-discrete sets.

The given low-frequency information is modeled as spectral data,
F (n), n ∈ Λ. To recover µ from F , we pose the super-resolution
problem,

inf ‖ν‖ subject to ν ∈ M(Td ) and ν̂ = F on Λ. (SR)

Remark Using weak-∗ compactness arguments, we can show that
this problem is well-posed (the inf can be replaced with a min), but
not without significant theoretical and computational challenges.
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Connection with compressed sensing
If the unknown measure µ is of the form,

µ =
N−1∑
m=0

xmδm
N
∈ M(T),

where x ∈ CN , x = (x0, . . . , xN−1), then

µ̂(n) =
N−1∑
m=0

xm e−2πimn/N = FN(x)(n),

the DFT of x . This shows that Problem (SR) is a generalization of the
basis pursuit algorithm for under-sampled DFT data F :

For given F (n), n ∈ Ω ⊆ Z/NZ, solve

min ‖y‖`1 subject to y ∈ CN and FNy = F on Ω ⊆ Z/NZ,

For this reason, super-resolution is a continuous theory of
compressed sensing.
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A theorem of Candès and Fernandez-Granda, d = 1

The following theorem for d = 1 shows that one can reconstruct a
discrete measure whose support satisfies a minimum separation
condition.

Theorem, Candès and Fernandez-Granda [5]

Let ΛM = {−M,−M + 1, . . . ,M} for some integer M ≥ 128 and let
F = µ̂ on ΛM , where µ ∈ M(T) is a discrete measure for which

inf
x,y∈supp(µ), x 6=y

|x − y | ≥ 2
M
.

Then, µ is the unique solution to Problem (SR) given F on ΛM .
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A theorem of Candès and Fernandez-Granda, d > 1

The following theorem for d > 1 shows that one can reconstruct a
discrete measure whose support satisfies a minimum separation
condition.

Theorem, Candès and Fernandez-Granda [5]

Given S = {sj}J
j=1 ⊆ Td and µ ∈ M(Td ) for which supp (µ) ⊆ S. Let

ΛM = {−M,−M + 1, . . . ,M}d , let F be spectral data on ΛM , and let
µ̂ = F on ΛM . There exist Cd , Md > 0 such that if M ≥ Md and

inf
1≤j<k≤J

‖sj − sk‖`∞(Td ) ≥
Cd

M
,

then µ is the unique solution to Problem (SR).
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Non-discrete measures?

Motivated by applications, we develop a super-resolution theory for
non-discrete measures. This is carried out by connecting the Candès
and Fernandez-Granda theory of super-resolution [5] with Beurling’s
theory of minimal extrapolation [2], [3]. To this end –

Let ε be the minimum value attained by Problem (SR), i.e.,

ε = ε(Λ,F ) = inf{‖ν‖ : ν̂ = F on Λ}.

Let E be the set of all solutions to Problem (SR), i.e.,

E = E(Λ,F ) = {ν ∈ M(Td ) : ‖ν‖ = ε and ν̂ = F on Λ}.

If ν ∈ E , then we say ν is a minimal extrapolation from Λ.
Our theory depends essentially on the set,

Γ = Γ(Λ,F ) = {m ∈ Λ: |F (m)| = ε}.
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Theorem

Theorem [1]

Let Λ ⊆ Zd be a finite set and let F be spectral data defined on Λ.
(a) Suppose Γ = ∅. Then, there exists a closed set S of

d-dimensional Lebesgue measure zero such that each minimal
extrapolation is a singular measure supported in S.

(b) Suppose #Γ ≥ 2. For each distinct pair m,n ∈ Γ, define
αm,n ∈ R/Z by e2πiαm,n = F (m)/F (n). Define the closed set,

S =
⋂

m,n∈Γ
m 6=n

{x ∈ Td : x · (m − n) + αm,n ∈ Z},

which is an intersection of
(

#Γ
2

)
periodic hyperplanes. Then, each

minimal extrapolation is a singular measure supported in S.
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Illustration of the theorem

p
q

Figure: An illustration of the second case of the theorem. The hyperplanes in
the theorem are represented by the dashed lines. The vectors p = (1/4, 3/8)
and q = (−1/4, 1/8) are normal to the hyperplanes and their lengths
determine the separation of the hyperplanes.
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The role of uniqueness

Why uniqueness is important:
If µ ∈ E(Λ,F ) is unique, then any numerical solution to Problem
(SR) approximates µ.
Without uniqueness, even if µ ∈ E(Λ,F ), it is possible that a
numerical solution to Problem (SR) does not approximate µ.
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Uniqueness and super-resolution reconstruction

Let Λ = {−1,0,1}. Define F in the following ways.
F (0) = 0, F (±1) = 2. Define µ = δ0 − δ1/2 ∈ M(T). Γ = {−1,1}.
F (0) = 0,F (±1) = 1± i . Define µ = δ0 − δ1/4 ∈ M(T).
Γ = {−1,1}.
F (−1) = 0, F (0) = 1 + eπi/3, F (1) = 1 + e−πi/3. Define
µ = δ0 + eπi/3δ1/3 ∈ M(T). Γ = {0,1}.

In each case µ can be proved to be the unique minimal extrapolation,
and so super-resolution reconstruction of µ from the values of F on Λ
is possible.
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Cantor measures and #Γ = 1

Cq =
⋂∞

k=0 Cq,k , integer q ≥ 3, is the middle 1/q-Cantor set, where

Cq,0 = [0,1] and Cq,k+1 =
Cq,k

q
∪ (1− q) +

Cq,k

q
,

and let σq be the continuous singular Cantor-Lebesgue measure with

σ̂q(m) = (−1)m
∞∏

k=1

cos(πmq−k (1− q)),

∀n ∈ Z \ {0}, σ̂q(qn) 6= 0 takes the same constant value.

Let Λ ⊆ Z be finite, assume 0 ∈ Λ, and suppose F defined on Λ
satisfies F (0) = 1, noting σ̂q(0) = ‖σq‖ = 1. If σq ∈ E(Λ,F ), then
#Γ = 1, and our present theory does not determine if σq is the unique
minimal extrapolation.
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Non-uniqueness: µ = δ0 + δ1/2 ∈ M(T) and #Γ = 1

Given Λ = {−1,0,1} and F (0) = 2, F (±1) = 0. If
µ = δ0 + δ1/2 ∈ M(T), then µ̂ = F on Λ.
µ is a minimal extrapolation, ε = 2, and Γ = {0}.
There are uncountably many discrete minimal extrapolations. In
fact, x ∈ T and any integer N ≥ 2 define the discrete measure

νN,x =
2
N

N−1∑
n=0

δx+ n
N
,

and each νN,x is a minimal extrapolation.
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µ = δ0 + δ1/2 ∈ M(T) and #Γ = 1, continued

There are also uncountably many positive absolutely continuous
minimal extrapolations. In fact, for any integer N ≥ 2 and
constant 0 < c ≤ (2N + 2)/(3N + 1), extend F on Λ to the
sequence {(aN,c)n}n∈Z, where

(aN,c)n =


2 if n = 0,

c
(

1− |n|
N+1

)
if 2 ≤ |n| ≤ N,

0 otherwise.

The non-negative real-valued function

fN,c(x) = 2 +
−2∑

n=−N

(aN,c)n e2πinx +
N∑

n=2

(aN,c)n e2πinx

is a positive absolutely continuous minimal extrapolation.
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Optimality in higher dimensions

In higher dimensions, geometry plays an important role.

Let Λ = {−1,0,1}2 \ {(1,−1), (−1,1)} and let
µ = δ(0,0) + δ(1/2,1/2) ∈ M(T2).
Then, µ is a minimal extrapolation, ε = 2, and
Γ = {(0,0), (1,1), (−1,−1)}.
We can construct other discrete minimal extrapolations. For any
x ∈ R and any integer N ≥ 2, define the measure

νN,x =
2
N

N−1∑
n=0

δ(
x+ n

N ,1−x− n
N

).
Then, each νN,x is a minimal extrapolation.
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Optimality in higher dimensions, continued

We can also construct a continuous singular minimal
extrapolation. According to the theorem, each minimal
extrapolation is supported in the set,

S = {x ∈ T2 : x1 + x2 = 1}.

Let σ =
√

2σS, where σS is the surface measure of the Borel set
S. We readily verify that σ is indeed a minimal extrapolation.

This example shows that the second statement of our theorem is
optimal.
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Final remarks

Our theory shows that Γ provides significant information about
the minimal extrapolations. In particular, when #Γ 6= 1, they are
always singular measures, but when #Γ = 1, they could be
absolutely continuous.
We have not discussed how to solve Problem (SR)
computationally. Candès and Fernandez-Granda provided an
algorithm that potentially fails, but this occurs only if Γ 6= ∅.
Hence, our theorem is capable of computing analytical solutions
even when it is impossible to compute a numerical
approximation.
The theorem opens up the possibility of the super-resolution of
continuous singular measures. Since we are concerned with
Fourier samples, medical imaging is a natural application of this
theory.
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Final remarks, continued

Our theorem does not require additional assumptions on
µ ∈ M(Td ) or on the finite subset Λ ⊆ Zd . Since the theorem also
describes the support set of the minimal extrapolations of µ from
Λ, it is useful for determining whether a given µ can be recovered
by solving the super-resolution problem.
The second statement of the theorem provides sufficient
conditions for when the minimal extrapolations are supported in a
lattice. As we have seen, such measures correspond to vectors
solving the discrete compressed sensing problem. Thus, our
theorem is a continuous-discrete correspondence result.
Our results are closely related to Beurling’s work on minimal
extrapolation. He dealt with R1 instead of Td , so our theorem is
an adaptation to the torus and a generalization to higher
dimensions. There are non-trivial technical differences between
working with R1 and Td .
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Pre-dual of the super-resolution problem

The strategy is to analyze an appropriate dual formulation. As such,
we define the pre-dual problem:

max
∣∣∣∑

m∈Λ

amF (m)
∣∣∣ subject to ∀x ∈ Td ,

∣∣∣∑
m∈Λ

ame2πim·x
∣∣∣ ≤ 1.

(SR′)
If {am}m∈Λ solves Problem (SR′), then for all ν ∈ E(Λ,F ),

supp(ν) ⊆
{

x ∈ Td :
∣∣∣∑

m∈Λ

ame2πim·x
∣∣∣ = 1

}
.

Remark Problem (SR′) can be recast as a semi-definite program. It is
unknown whether Problem (SR) can be.
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Admissibility range

A numerical approximation of ε can be obtained by solving Problem
(SR′), but its exact value is typically unknown. On the other hand, if
we are given finite Λ ⊆ Zd , spectral data F on Λ, and µ ∈ Td , then

sup
m∈Λ
|F (m)| ≤ ε(Λ,F ) ≤ ‖µ‖.

If the lower bound is attained, then Γ 6= ∅. Our theory is
particularly strong for large #Γ.
The upper bound ε = ‖µ‖ is a necessary condition for
uniqueness of the super-resolution of µ from F .
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On minimum separation
In view of the CFG theorem, it natural to ask whether separation is
necessary in order to recover a discrete measure. We show that if
two Dirac masses are too close, super-resolution is impossible.

Let Λ ⊆ Zd be a finite set and let µy = δ0 − δy for some non-zero
y ∈ Td .
Let νy be the absolutely continuous measure,

νy (x) =
∑
m∈Λ

µ̂y (m)e2πim·x .

By construction, ν̂y = µ̂y on Λ. As y → 0,

‖νy‖ =

∫
Td

∣∣∣∑
m∈Λ

µ̂y (m)e2πim·x
∣∣∣ dx → 0.

For |y | sufficiently small, we see that µy 6∈ E .
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