COMPUTATIONAL METHODS IN MACHINE LEARNING: TRANSPORT MODEL, HAAR WAVELET, DNA CLASSIFICATION, AND MRI

Franck Olivier Ndjakou Njeunje

Applied Mathematics, Statistics, and Scientific Computation Norbert Wiener Center Department of Mathematics University of Maryland, College Park

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

▲口▶▲圖▶▲臣▶▲臣▶ 三臣 のなの

Overview

Introduction Transport by advection Experiments and results

Outline

2 Introduction

3 Transport by advection

▲口▶▲圖▶▲臣▶▲臣▶ 三臣 のなの

Overview

My dissertation includes the following topics:

• Haar approximation from within for $L^{p}(\mathbb{R}^{d})$, 0

Theorem (J. Benedetto and F. Njeunje)

Let $f \in L^{p}(\mathbb{R})$, where 0 suppose <math>f is a continuous function on \mathbb{R} , with supp $f \subseteq [A, B]$. Then, for all $\epsilon > 0$, there is an $M = M(\epsilon)$, and there is a sequence of sums,

$$f_{M,k} = \sum_{(i,j)\in \mathcal{S}_{M,k}} \tilde{a}_{i,j} \widetilde{\psi}_{i,j}, \quad \tilde{a}_{i,j} \in \mathbb{C},$$

indexed by $k \ge 1$, where $S_{M,k} \subseteq \mathbb{Z} \times \mathbb{Z}$ and card $S_{M,k} < \infty$, with the following properties:

if
$$(i,j) \in S_{M,k}$$
 then $supp \widetilde{\psi}_{i,j} \subseteq supp f$,

and

$$\exists K = K(\epsilon) \text{ such that } \forall k > K, \ \|f - f_{M,k}\|_{\rho} < \epsilon.$$

Overview

My dissertation includes the following topics:

Classification of multiton enhancers

- In collaboration with Dr. Ivan Ovcharenko and his research group at the National Institutes of Health (NIH).
- Enhancers are particular deoxyribonucleic acid (DNA) segments that increase or enhance the likelihood of gene expression.
- Singletons vs. multitons.
- We constructed a classifier using support vector machine to identify multitons having similar characteristics to singletons with high probability.

• Analysis of *T*₂-store-*T*₂ magnetic resonance relaxometry with *N* exchanging sites

- In collaboration with Dr. Richard G. Spencer and his research group at NIH.
- Magnetic resonance imaging (MRI) is a tool used for diagnosing anatomy and pathology, including osteoarthritis.
- We successfully extended the analysis of the magnetization signal from 2 sites to *N* sites.

Transport operator on graph

- In collaboration with Prof. Wojciech Czaja and Prof. Pierre-Emmanuel Jabin.
- This presentation contains material from this topic.

Outline

Introduction

- The curse of dimensionality
 - This expression was coined by Richard Bellman and refers to the problem caused by the exponential increase in volume associated with adding extra dimensions to a mathematical space.
 - In data science this means that the number of observations needed to obtain favorable results grows exponentially with the number of dimensions.
- Dimension reduction (DR):
 - Principal component analysis (PCA), by Pearson¹.
 - Based on the covariance matrix.
 - Search of the orthogonal directions of greatest variance explaining as much of the data as possible.
 - Kernel PCA, by Schölkopf².
 - Non-linear adaptation of PCA.
 - A great number of non-linear DR algorithms are special cases of kernel PCA.

²B. Schölkopf, A. Smola, and K-R. Müller, Kernel principal component analysis, International Conference on Artificial Networks, Springer, 1997, pp. 583-588.

¹K. Pearson, On lines and planes of closest fit to systems of point in space, Philosophical Magazine 2 (1901), no. 11, 559-572.

Introduction

- Dimension reduction (DR):
 - Diffusion maps (DIF), by Coifman and Lafon³.
 - Diffusion maps are constructed using eigenfunctions of Markov matrices.
 - They generate efficient representations of complex geometric structures.
 - Isomap (ISO), by Tenenbaum⁴.
 - Based on the geodesic distance between points measured along the manifold.
 - Laplacian eigenmaps (LE), by Belkin and Niyogi⁵.
 - Preserves local information embedded in low dimensional manifold.
 - Schroedinger eigenmaps (SE), by Czaja and Ehler⁶.
 - Semi-supervised generalization of LE.
 - Uses barrier potential to stir the diffusion process.

³R. R. Coifman and S. Lafon, Diffusion maps, Applied and Computational Harmonic Analysis 21 (2006), no. 1, 5-30.

⁴ J. B. Tenenbaum, V. De Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science 290 (2000), no. 5500, 2319-2323.

⁵M. Belkin and P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, Advances in Neural Information Processing Systems, 2002, pp. 585-591.

⁶W. Czaja and M. Ehler, Schroedinger eigenmaps for the analysis of biomedical data, IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (2013), no. 5, 1274-1280.

Laplacian eigenmaps: optimization problem

Given a set of *n* points $X = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n}$ in \mathbb{R}^d , the goal is to find an optimal embedding for these points in a lower *m*-dimensional space where $m \ll d$, while preserving local information.

The embedding is given by the $n \times m$ matrix $\mathcal{Y} = [\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_m]$, where the *i*th row corresponds to the embedded coordinates of the *i*th points \mathbf{x}_i . The objective to the minimization problem⁷ is written as

$$\sum_{i,j} \|\mathbf{y}^{(i)} - \mathbf{y}^{(j)}\|^2 w_{ij} = \operatorname{tr} (\mathcal{Y}^T \mathcal{L} \mathcal{Y}),$$
(1)

where

- $\mathbf{y}^{(i)} = [\mathbf{y}_1(i), \dots, \mathbf{y}_m(i)]^T$ is the *m*-dimensional representation of the *i*th point \mathbf{x}_i .
- With the appropriate choice of weights *w*_{ij}, minimizing (1) ensures that adjacent points remain close together after the mapping.

⁷M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation 15 (2003), no. 6, 1373-1396.

Laplacian eigenmaps: algorithm

The LE algorithm we will be using in our work involves the following steps:

- Step 1: Construct the adjacency graph using the *k*-nearest neighbor (kNN) algorithm. This is done by putting an edge connecting nodes *i* and *j* given that **x**_i is among the *k* nearest neighbors of **x**_j.
- Step 2: Define a graph Laplacian, L, using the weight matrix, W. The weights in W are chosen using the heat kernel with parameter σ. If nodes i and j are connected,

$$w_{ij} = \exp\left(-rac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}
ight);$$

otherwise, $w_{ii} = 0$. The graph Laplacian is given by

$$L=D-W,$$

where *D* is a diagonal matrix with entries $d_{ii} = \sum_{i} w_{ij}$.

Laplacian eigenmaps: algorithm (continues)

• **Step 3:** Find the *m*-dimensional mapping by solving the generalized eigenvector problem,

$$L\mathbf{f} = \lambda D\mathbf{f},$$
 (2)

where **f** is a vector in \mathbb{R}^n and λ is a real number. Let {**f**₀, **f**₁, ..., **f**_{*n*-1}} be the solution set to (2) written in ascending order according to their eigenvalues { $\lambda_0, \lambda_1, \ldots, \lambda_{n-1}$ }. The *m*-dimensional Euclidean space mapping is given by

$$\mathbf{x}_i \rightarrow [\mathbf{f}_1(i), \mathbf{f}_2(i), \dots, \mathbf{f}_m(i)].$$

Example: LE vs PCA

- Laplacian eigenmaps is able to represent the data in a reasonable manner preserving local information.
- PCA fails to capture the true nature of the data and simply project it to a 2-dimensional space.

Figure 1: The leftmost plot represents a set of 2000 3-dimensional points sitting on a swiss roll; the middle plot represents the embedding in 2-dimension using principal component analysis (PCA); and the rightmost plot represents the same embedding using Laplacian eigenmaps (LE) with k = 12 (number of neighbors per node) and $\sigma = 1$.

Schroedinger eigenmaps: optimization problem

Czaja and Ehler proposed the Schroedinger eigenmaps (SE) algorithm:

- Semi-supervised generalization to the LE algorithm using partial knowledge about the ground truth of the data set.
- The minimization problem⁸

$$\min_{\mathcal{Y}^{T} \mathcal{D} \mathcal{Y} = \mathbf{I}} \frac{1}{2} \sum_{i,j} \|\mathbf{y}^{(i)} - \mathbf{y}^{(j)}\|^2 w_{ij} + \alpha \sum_{i} V(i) \|\mathbf{y}^{(i)}\|^2,$$
(3)

where V is the diagonal matrix with entries V(1) through V(n).

- The second component of the sum (3) add an extra level of clustering on the representation $\mathbf{y}^{(i)}$ which are associated with large value of V(i).
- Partial knowledge about the data is used to build barrier potential, encoded in the matrix *V*, to stir the diffusion process in order to obtain suitable results

⁸W. Czaja and M. Ehler, Schroedinger eigenmaps for the analysis of biomedical data, IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (2013), no. 5, 1274-1280.

Schroedinger eigenmaps: algorithm

Given a set of *n* points $X = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n}$ in \mathbb{R}^d and a function μ ,

 $\mu: X \to \mathbb{R},$

containing the extra information over the set of points X, the SE algorithm we will be using in our work involves the following steps:

- Step 1: Construct the adjacency graph.
- Step 2: Define a graph Laplacian, L, using the weight matrix, W.
- Step 3: Define the Schrodinger matrix, S, using the extra information, μ .

$$S = L + \alpha V$$
,

where α is a real number, and V is the diagonal potential matrix given by

$$V = \begin{bmatrix} \mu_1 & & & \\ & \mu_2 & & \\ & & \ddots & \\ & & & & \mu_n \end{bmatrix},$$
(4)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

where $\mu_i = \mu(\mathbf{x}_i)$ for all $i = 1, \ldots, n$.

Schroedinger eigenmaps: algorithm (continues)

• Step 4: Find the *m*-dimensional mapping by solving the generalized eigenvector problem,

$$Sf = \lambda Df,$$
 (5)

where **f** is a vector in \mathbb{R}^n and λ is a real number. Let {**f**₀, **f**₁, ..., **f**_{*n*-1}} be the solution set to (5) written in ascending order according to their eigenvalues { $\lambda_0, \lambda_1, \ldots, \lambda_{n-1}$ }. The *m*-dimensional Euclidean space mapping is given by

$$\mathbf{x}_i \rightarrow [\mathbf{f}_1(i), \mathbf{f}_2(i), \dots, \mathbf{f}_m(i)].$$

Outline

▲口▶▲圖▶▲≣▶▲≣▶ ▲国▶ ④ 20

Continuous model: notations

We consider a graph as a set of points $X = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n}$ in \mathbb{R}^d , or equivalently as a set of indices *i* in $I = {1, 2, ..., n}$.

- We denote A_i as the set of adjacent indices to i
- We denote $A = \{(i, j) : j \in A_i\}$ as the set of edges of the graph
- We denote $\mathcal P$ as the set of probability distributions μ from / to $\mathbb R^+,\,\mu$ is such that

$$\mu \in \mathcal{P} \Rightarrow \sum_{i} \mu_{i} = \mathbf{1}.$$

- We denote \mathcal{E} as the set of functions from A to \mathbb{R} , and
- We denote \mathcal{E}_a as the set of functions v in \mathcal{E} that are antisymmetric, that is

$$v_{ij} = -v_{ji}$$

◆ロト★@ト★ヨト★ヨト ヨーのへの

Continuous model: definition

Let $\mu \in \mathcal{P}$, and $v \in \mathcal{E}_a$ a velocity field that is itself a function of μ . The transport model we consider is also known as the transport by advection; it refers to the active transportation of a distribution, μ , by a flow field, v.

We define the transport operator, T, acting on μ as follows:

$$T\mu = \triangle \mu - \operatorname{div}(\mathbf{v}\mu). \tag{6}$$

- \triangle denotes the Laplacian defined as the divergence of the gradient acting on a distribution μ .
- div denotes the divergence, a vector operator that produces a scalar field quantifying a vector field's source at each point.
- We denote ∇ as the gradient acting on a scalar field.
- A comprehensive study of the operator in (6) is found in related materials by Benamou et al.⁹ and Hundsdorfer et al.¹⁰.
- Given an appropriately chosen flow field, v, we are able to direct the diffusion process in order to form desirable clusters.

⁹ J-D. Benamou, B. D. Froese, and A. M. Oberman, Numerical solution of the optimal transportation problem using the Monge-Ampèere equation, Journal of Computational Physics 260 (2014), 107-126.

¹⁰W. Hundsdorfer and J. G. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations, vol. 33, Springer Science & Business Media, 2013.

Discrete model: discretization

We propose the following discretization as well as matrix formulation:

• Given a function μ on *I*, we define the gradient of μ as $\nabla \mu$ by

$$(\nabla \mu)_{ij} = \mathbf{W}_{ij}(\mu_j - \mu_i).$$

• We also define the Laplacian of μ as $riangle \mu = \textit{div}(
abla \mu)$ by

$$(riangle \mu)_i = \sum_{j \in A_i} w_{ij}(\mu_j - \mu_i).$$

• The centered discretization of *v*µ is given by:

$$(\mathbf{v}\mu)_{ij}^{\mathbf{c}} = \mathbf{v}_{ij}rac{\mu_i + \mu_j}{2}.$$

Our choice of discretization schemes is motivated by its well-defined analytic properties.

Discrete model and derivative

We consider a purely local type of flow by taking $v = \beta \nabla \mu$, where β is a real number. Using the central discretization, we obtain the following equation:

$$(T\mu)_i = \sum_{j \in A_i} w_{ij}(\mu_j - \mu_i) - \beta \sum_{j \in A_i} w_{ij}(\mu_j^2 - \mu_i^2), \quad \text{for each} \quad i \in I$$

$$= (F_i(\mu))_i - \beta (F_d(\mu))_i, \quad \text{for each} \quad i \in I.$$

The derivatives of F_l and F_d with respect to μ are:

$$F'_l(\mu) = L$$
 and $F'_d(\mu) = 2C_\mu \circ L$,

where the operation \circ is the element-wise multiplication, and the matrix \textit{C}_{μ} is given by

$$C_{\mu} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \mu_1 & \mu_2 & \dots & \mu_n \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}.$$

Linearization

We finally write the linearization, $\tilde{\mathcal{T}},$ of the transport operator around any given distribution μ as

$$\tilde{T}(u) = [L - 2\beta C_{\mu} \circ L](u) \quad \forall u \in \mathcal{P}.$$
(7)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Transport eigenmaps algorithm

Given a set of *n* points $X = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n}$ in \mathbb{R}^d and a function μ

 $\mu: \pmb{X} \to \mathbb{R}$

over the set of points X. The transport eigenmaps algorithm involves the following steps:

- Step 1: Construct the adjacency graph.
- Step 2: Define a graph Laplacian, *L*, using the weight matrix, *W*.
- Step 3: Define the linearized transport matrix, *T̃*, using the extra information, μ.

$$\tilde{T} = L - 2\beta C_{\mu} \circ L,$$

where β is a real number, the operation \circ is the element-wise multiplication and

$$C_{\mu} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \mu_{1} & \mu_{2} & \dots & \mu_{n} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix},$$
 (8)

where $\mu_i = \mu(\mathbf{x}_i)$ for all $i = 1, \ldots, n$.

▲□▶▲圖▶▲≣▶▲≣▶ = 臣 - のQ@

Transport eigenmaps algorithm (continues)

• **Step 4:** Find the *m*-dimensional mapping by solving the generalized eigenvector problem,

$$\tilde{T}\mathbf{f} = \lambda D\mathbf{f},$$
 (9)

where **f** is a vector in \mathbb{R}^n and λ is a real number. Let $\{\mathbf{f}_0, \mathbf{f}_1, \dots, \mathbf{f}_{n-1}\}$ be the solution set to (9) written in ascending order according to their eigenvalues $\{\lambda_0, \lambda_1, \dots, \lambda_{n-1}\}$. The *m*-dimensional Euclidean space mapping is given by

$$\mathbf{x}_i \rightarrow [\mathbf{f}_1(i), \mathbf{f}_2(i), \dots, \mathbf{f}_m(i)].$$

Outline

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のへの

Example: Laplacian, transport, and Schroedinger mapping

Figure 2: The first plot represents a set of points, 300 points grouped in 3 clusters of 100 points each, in the order blue, green, then yellow. The rest represents various mapping using the first and second eigenvectors with corresponding non-zero eigenvalue.

The adjusted Rand index (ARI)

Given a set *X* of *n* points and two partitions, e.g., clusterings, of these points, viz., $P = \{P_1, P_2, \ldots, P_r\}$ and $Q = \{Q_1, Q_2, \ldots, Q_s\}$, the adjusted Rand index¹¹¹² is defined as

$$ARI = \frac{\sum_{ij} \binom{n_{ij}}{2} - \left[\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}\right] - \left[\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}\right] / \binom{n}{2}},$$
(10)

where $n_{ij} = |P_i \cap Q_j|$, $a_i = |P_i|$, and $b_j = |Q_j|$, for i = 1, ..., r and j = 1, ..., s.

The adjusted Rand index:

- Quantifies the similarities between two clusterings from 0 to 1.
- A 0 indicates that the clusterings do not agree on any pair of points and a 1 indicates that the clusterings are exactly the same.
- ARI is robust against random chance assignments.

¹¹ W. M. Rand, Objective criteria for the evaluation of clustering methods, Journal of the American Statistical Association, 66.336, 1971, pp. 846-850.

¹²J. M. Santos and M. Embrechts, On the use of the adjusted Rand index as a metric for evaluating supervised classification, International Conference on Artificial Neural Networks, Springer, 2009, pp. 175-184.

Representation experiment: setup

We demonstrate the strength of our algorithm in its ability to faithfully represent the data using a large number of experiments.

- Clusters are arranged in 2 or 3 dimensions increasing in difficulty.
- We increase the difficulty by changing the parameters used to generate the data set: position, spread or standard deviation, added Gaussian noise, and number of clusters.
- Example: changing the position

• We use the adjusted Rand index (ARI) to quantify the representation of the data set.

Representation experiment: procedure

For each individual run, the following operations are performed:

- Step 1: Generate the data set, *X*, and corresponding labels.
- Step 2: We cluster the data set before and after dimension reduction using the k-means algorithm.
- Step 3: We compute the adjusted Rand index before and after dimension reduction and store the difference.

The following dimension reduction algorithms are used in the experiment:

- Principal components analysis (PCA),
- Laplacian eigenmaps (LE),
- Diffusion maps (DIF),
- Isomap (ISO),
- Schroedinger eigenmaps (SE),
- Transport eigenmaps (TE).

Representation experiment: result - overall

A positive change in ARI implies a better representation of the data after dimension reduction:

 The rightmost position of the box plot corresponding to TE in relation to the other DR algorithms implies that in general, TE produces the best representation of the data.

Figure 3: Box plot for the change of ARI, all $162 \times 20 = 3240$ cases.

Representation experiment: result - complex and simple

The dominant performance of TE is more apparent on difficult cases, see Figure 4, than it is on simple cases, see Figure 5.

Figure 4: Box plot for the change of adjusted Rand index, $126 \times 20 = 2520$ difficult cases.

Figure 5: Box plot for the change of adjusted Rand index, $36 \times 20 = 720$ simple cases.

200

Hyperspectral dataset: Indian Pines

In this section, we work with the Indian Pines¹³¹⁴ data set:

- Gathered by AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor.
- Over the Indian Pines test site in North-western Indiana: 145 \times 145 \times 200.
- Hyperspectral bands covering the region of water absorption have been removed.

Figure 6: Ground truth (left) and sample band: 170 (right.)

¹³M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe, 220 band AVIRIS hyperspectral image data set: June 12, 1992 Indian Pines test site 3, September 2015.

¹⁴ Hyperspectral remote sensing scenes, http://www.ehu.eus/ccwintco/index.php/Hyperspectral.Remote.Sensing.Scenes, Accessed: 2018-04-04.

Indian Pines: ground truth

#	Class	Sample	
0	Empty-space	10776	
1	Alfalfa	46	
2	Corn-notill	1428	
3	Corn-mintill	830	
4	Corn	237	
5	Grass-pasture	483	
6	Grass-trees	730	
7	Grass-pasture-mowed	28	
8	Hay-windrowed	478	
9	Oats	20	
10	Soybean-notill	972	
11	Soybean-mintill	2455	
12	Soybean-clean	593	
13	Wheat	205	
14	Woods	1265	
15	Buildings-Grass-Trees-Drives	386	
16	Stone-Steel-Towers	93	

Table 1: Indian Pines classes.

Indian Pines grouped: ground truth

#	Class	Sample	
0	Empty-space	10776	
1	Alfalfa	46	
2	Corn	2495	
5	Grass	1241	
8	Hay-windrowed	478	
9	Oats	20	
10	Soybean	4020	
13	Wheat	205	
14	Woods	1265	
15	Buildings-Grass-Trees-Drives	386	
16	Stone-Steel-Towers	93	

Table 2: Indian Pines-G classes, ground truth with corresponding grouped labels.

Extra information and parameters

 Given prior knowledge about class 11–soybean-mintill in the Indian Pines data set, we would place a potential for SE or an advection for TE on class 11–soybean-mintill using the function μ defined as follows:

$$\mu(\mathbf{x}) = egin{cases} 1, & ext{if } \mathbf{x} \in ext{Class 11-soybean-mintill}, \ 0, & ext{elsewhere.} \end{cases}$$

- We ran a set of experiments to obtain the following parameters:
 - We set m = 50 (Indian Pines), k = 12, and $\sigma = 1$.
 - We set $\beta = 10$ and $\hat{\alpha} = 10^4$, where the parameter $\hat{\alpha}$ such that $\alpha = \hat{\alpha} \cdot \text{tr}(L)/\text{tr}(V)$.

Classification and validation metric

After the embedding:

- We use the 1-nearest neighbor algorithm to classify the data sets.
- We use 10% of the data from each class to train the classifier and the rest, N_{ν} , as the validation set.
- We took an average of ten runs to produce the confusion matrices, C.

We following validation metrics are reported:

- The adjusted Rand index (ARI) between the predicted labels and the ground truth.
- The overall accuracy (OA).
- The Cohen's kappa coefficient¹⁵¹⁶ (κ) is defined by

$$\kappa = rac{N_v \sum_i (C_{i,i})^2 - \omega}{N_v^2 - \omega},$$

where $\omega = \sum_{i} C_{i,i}$. Similar to ARI, κ measures the agreement between clusterings, a 0 indicates no agreement while a 1 indicates complete agreement.

¹⁶Galton, F, Finger Prints Macmillan, 1892.

¹⁵Smeeton, N. C., Early history of the kappa statistic, 1985, pp. 795-795.

Results: Indian Pines

The best representation and accuracy come from TE, with SE as a close second, see Table 3.

IP	PCA	LE	DIF	ISO	SE-2	SE-11	TE-2	TE-11
ARI	0.4426	0.3694	0.4210	0.3929	0.5520	0.6955	0.5735	0.7085
OA	0.6761	0.6081	0.6556	0.6308	0.7138	0.7353	0.7281	0.7418
κ	0.6301	0.5532	0.6065	0.5785	0.6732	0.6981	0.6900	0.7055

Table 3: Classification results for Indian Pines (IP).

Figure 7: Classification map.

イロト イヨト イヨト イヨト

Results: TE vs SE vs % of information

- With lesser information provided from a particular class, SE is slightly ahead of TE.
- As a more complete information is provided, TE outperforms SE.

Figure 8: Classification performance measures for TE (red diamonds) and SE (blue squares) as a function of the amount of information provided. The Indian Pines-G data set is used with the advection and potential is placed on class 10–soybean.

Results: robustness against noise

- The added Gaussian noise has a mean of 0, we selected 20 logarithmically spaced values for the standard deviation from 10⁰ to 10⁵.
- In general, TE is the most robust algorithm against noise.

Figure 9: TE (red diamonds), SE (blue boxes), PCA (green x's), and LE (black circles). The Indian Pines-G data set is used with the advection and potential is placed on class 10–soybean.

Conclusion

- We constructed a novel semi-supervised non-linear dimension reduction algorithm based on a transport model by advection.
- We used advection, the active transportation of a distribution by a flow field, to stir the diffusion process in order to get better or more desirable results.
- We provided a set of experiments based on artificially generated data sets and on publicly available hyperspectral data set to show that our algorithm exhibits superior/competitive performance.
- We believe that the performance of our algorithm can be improved by choosing alternative flow fields and/or using different linearization techniques.

Thank You!

イロト イ団ト イヨト イヨト

크