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Motivation

Quantization has long been an area of study in electronic signal
processing (going back to Bennett in 1949 [Bennett 49])

Digital signal processing made possible the storage/transmission of
audio and video signaling [Daubechies et al. 03].

On the mathematical side, much work has been done by the likes of
Daubechies and others on understanding analog audio signals
[Daubechies et al. 03].

More recently, much work has been done in the more general setting
of all digital signals, where the structure of audio signals is absent
[Bodmann et al. 07], [Benedetto et al. 06].
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The goal of such work is to find a good representation of the signal
for storage, transmission, and recovery

A common starting point for finding such a representation is to
expand the signal x over a countable dictionary {en} so that
x =

∑
cnen

What’s the best way to expand?
How to we deal with the coefficients, cn?

To deal with the first question, we will introduce frames. The theory of
frames was first introduced by Duffin and Schaeffer in 1952, and first
applied to signal processing by Daubechies, Grossman, and Meyer in 1986.
Frames are a specific example of a dictionary which have many benefits:

in some settings, they are robust under additive noise
[Benedetto et al. (3) 01].

in the setting of finite frames, representations have been shown to be
robust under partial data loss [Goyal et al. (2) 01]
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Background

A collection F = {en}n∈Λ in a Hilbert space H is said to be a frame for H
if there exists 0 < A ≤ B <∞ so that for each x ∈ H we have:

A||x ||2 ≤
∑
n∈Λ

|〈x , en〉|2 ≤ B||x ||2

Example

Roots of unity frame for R2: It is not hard to show that the Nth roots of
unity defined by en = [cos(2πn/N), sin(2πn/N)]T form a normalized tight
frame.

F is called tight if A = B, and normalized (or uniform) if ||en|| = 1 ∀n.
From now on, we’ll assume a finite frame (Λ is a finite collection).
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Given a frame, we can define the frame operator, S : H → H is defined as
S(x) =

∑N
n=1〈x , en〉en.

One can show S is invertible, {S−1en} is also a frame for H, and the
following decompositions hold:

∀x ∈ Rd , x =
∑
n

〈x , ẽn〉en =
∑
n

〈x , en〉ẽn

where ẽn = S−1en. In general (not always), there are other frames that
one can use to reconstruct. Any frame {fn}Nn=1 for Rd which satisfies:

x =
N∑

n=1

〈x , en〉fn

is called a dual frame to {en}. In the case of a normalized, tight frame for
Rd , the canonical dual frame {S−1en} will just be { dN en}.
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PCM Quantization

Perhaps the most natural quantization scheme is called PCM (Pulse Code
Modulation). Let {en} be a normalized tight frame for Rd . We then get
that for each x ∈ Rd

x =
d

N

N∑
n=1

xnen

where xn = 〈x , en〉. The 2K , δ PCM quantization scheme takes an
alphabet:

AδK = {(−K +
1

2
)δ, (−K +

3

2
)δ, . . . ,−1

2
δ,

1

2
δ, . . . , (K − 3

2
)δ, (K − 1

2
)δ}

and a quantization function Q(u) = argminq∈Aδ
K
|u − q| to construct an

approximation

x̃ =
d

N

N∑
n=1

Q(xn)en
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PCM/Bennett’s white noise assumption

Question: What error estimates can we make about PCM?

One way we can utilize the redundancy of our frame is to make Bennett’s
white noise assumption:

Bennett’s white noise assumption

The error sequence {xn − qn} is well approximated by a sequence of
independent, identically distributed (uniform on [−δ2 ,

δ
2 ]) random variables.

If we make this assumption, for a normalized, tight frame, we attain the
following MSE estimate for reconstruction with the canonical dual:

MSEPCM ≤ E
(
||x − x̃ ||2

)
=

d2δ2

12N
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Bennett’s white noise assumption

While Bennett’s white noise assumption is sometimes justified, there are
some shortcomings.

The assumption only gives us an estimate on the average quantizer
performance.

There are cases where the assumptions are not rigorous.

Example Consider the normalized tight frame for R2 given by:

{en}Nn=1, en = (cos(2πn/N), sin(2πn/N))

In addition to the shortcomings listed above, it is also known that PCM
has poor robustness properties in other settings [Daubechies et al. 03].
This motivates an alternative quantization scheme which utilizes frame
redundancy better.
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Σ∆ quantization

Σ∆ (SD) quantization has its roots in electrical engineering.

SD quantization was first introduced by Yasuda in the 1960s
[Yasuda et al. 62] as a way of improving classical ∆-modulation, a
technique for AD conversion.

The added Σ reflects the sum tracking feature of the algorithm. The
basic idea is to include tracking of current, and past quantization
differences.

Some of the earliest work mathematically on SD quantization was
done by Daubechies analyzing bandlimited functions.
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Now, for the algorithm’s construction: As before, take the same alphabet
AδK and Q(u). The first order SD quantization scheme is defined by the
iteration:

un = un−1 + xp(n) − qn

qn = Q(un−1 + xp(n))

where u0 is some constant (usually 0) and p ∈ SN .

Proposition

Let K be a positive integer, δ > 0 and consider the SD scheme defined
above. If u0 ≤ δ

2 and ∀n we have |xn| ≤ (K − 1
2 )δ, then ∀n, |un| ≤ δ

2
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An aspect of the algorithm of note is the inclusion of the permutation.
Because of the inclusion of the internal state variable, ordering does affect
the algorithm’s performance.

Example: Let F be the 7th roots of unity in R2, and consider A
1
4
4 . The

approximation errors for 10, 000 randomly selected points is shown below
[Benedetto et al. 06]:
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SD error estimates

Mathematical error estimates [Benedetto et al. 06]:

Theorem

Let F = {en} be a finite normalized frame for Rd , and p ∈ SN . Take
|u0| < δ/2 and let x ∈ Rd satisfy ||x || ≤ (K − 1/2)δ. The approximation
error of the SD scheme ||x − x̃ || satisfies

||x − x̃ || ≤ ||S−1||op
(
σ(F , p)

δ

2
+ |uN |+ |u0|

)
where the frame variation, σ(F , p) is defined as
σ(F , p) =

∑N−1
n=1 ||ep(n) − ep(n+1)||

In the case of tight frames, this estimate becomes:

||x − x̃ || ≤ d

N

(
σ(F , p)

δ

2
+ |uN |+ |u0|

)
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Families of frames

From the previous error estimate, there are a few ways we can lower the
approximation error:

Increase the resolution of quantization

Utilize redundant frames

The first option can become costly, but to adopt the second approach, it is
important to find families of frames with uniformly bounded frame
variation.

Example: (Roots of unity). For R2, take RN to be the frame consisting of
Nth roots of unity. Then {RN} is a family of normalized tight frames with
uniform bound

σ(RN , id) ≤ 2π
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Comparison with PCM

We recall that even under Bennett’s white noise assumption,
MSEPCM = d2δ2

12N . We have as a direct consequence of our previous error
estimates that:

MSESD ≤
δ2d2

4N2
(σ(F , p) + 2)2
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PCM vs. SD quantization MSE of 100 randomly selected points with
2K -level quantization. The Nth roots of unity frame was chosen
[Benedetto et al. 06].
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Higher order SD quantization

For first order SD quantization, the auxilary sequence {un} was
introduced. A natural question arises: can we improve performance by
adding more internal state variables to better track differences?

r th order SD quantization

qn = Q(F (u1
n−1, u

2
n−1, . . . , u

r
n−1, xn))

u1
n = u1

n−1 + xn − qn,

u2
n = u2

n−1 + u1
n,

...

urn = urn−1 + ur−1
n

Where u1
0 = u2

0 = . . . = ur0 = 0, n = 1, . . . ,N, and F : Rr+1 → R is a
fixed function.
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As before, a natural first question is: what about stability?

Definition

We will say that the r th order scheme as defined before is stable if there

are constants C1,C2 > 0 so that for any N > 0 and any x =
[
xn
]N
n=1
⊂ Rn

we have that if ∀n, |xn| < C1, then ∀n, ∀j |ujn| < C2

As a basic example, it has been shown that the following 1-bit second
order SD scheme is stable [Benedetto et al. (2) 06]:

qn = sign(u1
n−1 +

1

2
u2
n−1),

u1
n = u1

n−1 + xn − qn,

u2
n = u2

n−1 + u1
n
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What about higher order multibit schemes?

Example

The general r th order SD scheme with

qn = Q
(
urn−1 + ur−1

n−1 + . . .+ u1
n−1 + xn

)
is stable in the sense that |ujn−1| ≤ 2r−jδ ⇒ |ujn| ≤ 2r−jδ provided that
|xn| < 1− (2r − 1)δ

Note that we need δ to be fairly small in this formulation as r increases.
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Now what about error estimation? The following lemma
[Lammers et al.10] will be helpful for further error bounds.

Lemma

Consider a stable r th order SD scheme with stability constants C1,C2.
Suppose ||x || < C1 has frame expansion x =

∑N
1 〈x , en〉fn. The linear

reconstruction
(
x̃ =

∑N
n=1 qnfn

)
the SD scheme satisfies:

x − x̃ =
N−r∑
n=1

urn∆r fn +
r∑

j=1

uN−j+1∆j−1fN−j+1

Where ∆ is the forward difference operator defined as:
∆0en = en, ∆en = en − en+1, ∆jen = ∆ ·∆j−1en.

The first term in this sum will be referred to as the main error term, and
the second term as the boundary error term.
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Alternative dual frames

In the previous lemma, we kept arbitrary the choice of dual frame {fn}.
Later, we will see alternative dual frames are useful for reconstruction

In the first order case, we reconstructed with the canonical dual frame
and achieved reasonable results.

Can we expect the same for the higher order scheme?
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When reconstructing with the canonical dual frame, the higher order SD
algorithm does not achieve ideal results. The following lemma
[Lammers et al.10] illustrates this.

Lemma

Given a stable rth order SD scheme with r ≥ 3, and {en}Nn=1 a unit norm

tight frame for Rd that satisfies the zero sum condition:
∑N

n=1 en = 0,
and also satisfies: A/N j ≤ ||∆jen|| ≤ B/N j , then given ||x || ≤ C1 in Rd ,
reconstruction using the canonical dual yields lower bounds:

N odd ⇒ dδ

2N
− 3dC2B

N2
≤ ||x − x̃ ||

N even⇒
dA|u2

N−1|
N2

− 2dC2B

N3
≤ ||x − x̃ ||

It is also shown in [Lammers et al.10] that similar lower bounds exist for
stable 1 bit quantization schemes using canonical reconstruction.
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The previous lemma illustrates a fundamental problem with canonical
reconstruction.

The boundary error term seems to be too large

If we were to use alternative dual frames for reconstruction, how can
we minimize the boundary error term?

What asymptotic behavior can we expect?
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Motivation for the construction below [Lammers et al.10] can be found in
[Bodmann et al. 07]. We will look at dual frames that come from
sampling a frame path.

Definition

(Frame path property) [Lammers et al.10] Fix r > 0 and let E = {EN}∞N=d

be a collection of unit norm frames of order N for Rd . Suppose there is a
family of dual frames F = {FN}∞N=d for E so that

f Nn =
1

N
[ψ1(n/N), . . . , ψd(n/N)]T

For some real valued functions ψi ∈ C r [0, 1]. Also suppose there is some
Cψ(r) independent of N so that such derivatives of ψi satisfy:

∀i = 1, . . . , d ∀j = 1, . . . , r − 1, ||ψ(j)
i ||L∞[(N−j)/N,1] ≤

Cψ(r)

N r−j−1

We’ll also enforce the condition that ψi (1) = 0 ∀i
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With this property we can prove the following estimation:

Theorem

Take a stable r th order SD scheme and frames EN ,FN satisfying the frame
path property. Fix x ∈ Rd with ||x || < C1, then if x̃ =

∑N−1
n=0 qn(x)fn, then

||x − x̃ || ≤ CΣ∆(r)

N r

Where CΣ∆(r) = C2[CF (r) + r(r + 1)dCψ(r)/2] and

CF (r) =
∑d

i=1 ||ψ
(r)
i ||L1[0,1]
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The asymptotic behavior is ∼ 1
Nr which is much better than

reconstruction with the canonical dual

Specifically, the boundary error term in the estimation lemma is
minimized better.

Difficulties in higher order SD quantization arise in the reconstruction
phase, not the encoding phase [Lammers et al.10].

Some work has been done by Bodmann and Paulsen
[Bodmann et al. 07] on reconstructing and encoding with the same
frame, however this has limited applicability [Lammers et al.10].
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Application of this theorem to the roots of unity frames for R2

It was shown in a previous lemma that for the roots of unity frame,
reconstructing with the canonical dual frame performs poorly.

For example, how do we construct dual frames for the roots of unity
family so that the dual frames satisfy the frame path property?

Example

Let EN = {en}N1 be the Nth roots of unity frame as defined before. Define

gN
n =

[
a0 +

k∑
l=1

al cos(2π(l + 1)n/N),
k∑

l=1

bl sin(2π(l + 1)n/N)
]T

where k = k(r), {al}, {bl} are constants that will be further explained
later. Then setting f Nn = 1

N (2eNn + gN
n ), discrete orthogonality relations

get us that
∑

n〈x , en〉gn = 0, and so FN defined by this will form a dual
frame to EN [Lammers et al.10].
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It is still left to show that the alternative dual frame defined before has the
frame path property. We have that

ψ1(t) = 2 cos(2πt) + a0 +
k∑

l=1

al cos((l + 1)2πt)

and

ψ2(t) = 2 sin(2πt) +
k∑

l=1

bl sin((l + 1)2πt)

so that f Nn = 1
N [ψ1(n/N), ψ2(n/N)].

We now need to select the {al}, {bl} cleverly to bound the derivatives.
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We’ll start by looking at the power series expansions of ψ1, ψ2 around 0.
These are given by:

ψ1(t) =
∞∑
n=0

β2nt
2n, ψ2(t) =

∞∑
n=0

β2n+1t
2n+1

Where β0 = 2 +
∑k

l=0 al , and

β2n =
(−1)n(2π)2n

(2n)!

(
2 +

k∑
l=1

al(l + 1)2n
)

β2n+1 =
(−1)n(2π)2n+1

(2n + 1)!

(
2 +

k∑
l=1

bl(l + 1)2n+1
)

The goal now is to eliminate the first 2k terms.
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To do this, take the Vandermonde matrix

Vk =


1 1 · · · 1
22 32 · · · (k + 1)2

...
...

...
...

22k−2 32k−2 · · · (k + 1)2k−2


and the diagonal matrix Mk with {2, 3, 4, . . . , (k + 1)} along the diagonal.
Then by setting ~a = [a1, . . . , ak ] to be the solution to

VkM
2
k~a = [−2, . . . ,−2]T

and ~b = [b1, . . . , bk ] to be the solution to

VkMk
~b = [−2, . . . ,−2]T

Then by construction, we have βn = 0 ∀0 ≤ n ≤ 2k .
(Note a0 = −2− (a1 + . . .+ ak)).
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Now, all we have to do is take k = dr/2e − 1, and we’ve constructed a
dual frame with the frame path property. The following figure illustrates
the new dual frame geometrically [Lammers et al.10].
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Below, the boundary error terms are plotted [Lammers et al.10]:
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And finally, the total error on some test point [Lammers et al.10]:
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Future Work

On the SD quantization side:

Are there other dual frame conditions that guarantee 1
Nr behavior?

What about other SD algorithms? Would adding nonlinearity change
error estimations?

Can there be better bounds on the error? Gunturk [Gunturk 03] has
shown in the bandlimited case that error can be bounded above by
2−.07λ for a certain SD construction. Can this somehow be translated
to the more general side?
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On the machine learning side:

Training quantized neural networks is an area of interest in machine
learning [Goldstein et al. 17].

Current algorithms achieve convergence (over training iterations) of
log(N)/N.

The real issue for training and deployment is backpropogation and
floating point calculations [Goldstein et al. 17].

It is reasonable to think that 1-bit SD quantization schemes could
improve the deployment, and maybe the training of quantized nets.
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