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Overview

My dissertation consists of the following topics:

Approximation Properties of Neural Networks

Maximal Function Pooling in Convolutional Sparse Coding

Quantum Energy Regression Using Gabor Transform

Detection of Epithelial versus Mesenchymal Regions in 2D Images of
Tumor Biopsies Using Shearlets

Due to the time constraint, I will discuss the topics in bold in this presentation.
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Approximation Properties of Neural Networks

Deep Neural Networks (DNNs) and deep learning algorithms have achieved
successful results in many areas of machine learning, and there has been
growing interest in the theoretical study of DNNs.
Some important topics in the theoretical analysis of neural networks include:

1 Specification of the network topology to obtain certain approximation
properties of functions;

2 The stability analysis of the network;

3 Study of the training algorithms to obtain desired convergence rate.
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Universal Approximation Theorem

The most well-known early result is by Cybenko in 1989 states that:

Any continuous function can be uniformly approximated by a
continuous neural network having only one internal hidden layer and
with arbitrary continuous sigmoidal nonlinearity.

Theorem (Cybenko, 1989)

Let σ be any continuous discriminatory sigmoidal function. Then the finite
sums

G(x) =
n∑

k=1

ckσ(wk · x + bk ), (1)

are dense in C(Id ), where Id is the unit cube in Rd .

Here σ is the sigmoidal activation function, defined as σ(u) with
limu→−∞ σ(u) = 0 and limu→∞ σ(u) = 1.
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Fourier Approximation

The number of neurons and number of layers required to yield an
approximation rate of a given quantity is not addressed.
The first work to address this problem is by Barron in 1991:

Theorem (Fourier Approximation, Barron, 1991)

Given a function f : Rm → R with

Cf =

∫
Rm
|ω||̂f (ω)|dω <∞, (2)

there exsists a single layer artificial neural network (ANN) of N sigmoid units,
s.t. the output of the network fN satisfies

‖f − fN‖2≤
cf√
N
, (3)

with cf proportional to Cf .
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Approximation Properties with Wavelets

Smooth functions defined on low-dimensional subspace can be high
dimensional in ambient space. The goal is to find approximation rate related
to the dimension of the manifold, not the ambient space.

Theorem (Cloninger, Coifman, Shaham, 2015)

Let Γ ⊂ Rm be a smooth d-dimensional manifold, f ∈ L2(Γ) and let ε > 0 be
an approximation level. Then if a network has at least 4 layers, there exists a
sparsely-connected neural network with N total units where
N = CΓm + C′ΓdNf ,ε, computing function fN such that

‖f − fN‖2
2< ε, (4)

where Nf ,ε depends on the complexity of f in terms of its local wavelet
representation, and CΓ on the curvature and dimension of the manifold Γ.

If f ∈ C2(Γ) and has bounded Hessian, then

‖f − fN‖∞= O(N−
2
d ). (5)
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Construction of Wavelet Frame

A wavelet like frame of Rd is constructed in which the frame elements
are built using rectified linear units. A rectified linear unit (ReLU) is
defined as

rect(x) = max{0, x}. (6)

Define a trapezoid-shaped function t : R→ R by

t(x) = rect(x + 3)− rect(x + 1)− rect(x − 1) + rect(x − 3). (7)

Define the scaling function φ : Rd → R by

φ(x) = rect

 d∑
j=1

t(xj )− 2(d − 1)

 , (8)

and normalize it so that the integral of φ is 1.

Let Sk (x , b) = 2kφ(2
k
d (x − b)). Define the mother wavelet as

Dk (x , b) = Sk (x , b)− Sk−1(x , b). The wavelets are defined as
ψk,b(x) = 2−

k
d Dk (x , b).
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Construction of Wavelet Frame

Figure: Wavelets constructed from ReLUs (Source: U. Shaham, A. Cloninger, R. R.
Coifman, 2015.)
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Approximation of Functions on Manifold

Given a d-dimensional manifold Γ ⊂ Rm, cover Γ by set of pairs
{(Ui , φi )}CΓ

i=1. Here φi is the orthogonal projection from Ui onto Hi , where
Hi is the hyperplane tangent to Γ at xi .

Use the corresponding partition of unity {ηi} to define

fi (x) = f (x)ηi (x). (9)

Define f̂ ∈ Rd as

f̂i (x) =

{
fi (φ−1

i (x)), x ∈ φi (Ui ),
0, otherwise.

(10)

For all x ∈ Γ, we have ∑
i:x∈Ui

f̂i (φi (x)) = f (x). (11)

Assuming f̂i ∈ L2(Rd ), it can be expanded using wavelet frame.
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Gabor System in Machine Learning

Current study of the approximation properties of neural networks is
mainly in terms of affine transformations (e.g., wavelet transform).

We extend the study of approximation properties of neural networks to
functions in the modulation space.

Gabor transform, or the short-time Fourier transform, arises naturally in
analysis of 1D data such as speech and music.

There have been algorithms developed for voiced-unvoiced speech
discrimination in noise, where short segments of speech are modeled as
a sum of basis functions from a Gabor dictionary.

Gabor filters and Gabor wavelets are widely used as convolutional
kernels for neural networks for 2D image processing.



15/42

Overview
Approximation Properties of Neural Networks

Gabor Invariant Representation in Quantum Energy Regression

Motivation for Gabor System in Neural Networks

There are cortical receptive fields that best respond to signals with
orientation. They also capture spatial frequency information.
Two-dimensional spatial linear filters are constrained by general
uncertainty relations. The theoretical lower limit for the uncertainty is
achieved by Gabor functions.
Gabor filters have been used as units of a neural network to model the
profile of cortical receptive fields (Daugman, 1988).

Figure: Illustration of experimentally measured 2D receptive-field profiles of three
simple cells in cat striate cortex (top row). Each plot shows the excitatory or inhibitory
effect of a small flashing light or dark spot on the firing rate of the cell, as a function of
the (x, y) location of the stimulus. Best fit using Gabor functions (second row).
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Approximation Properties of Neural Networks

We design a novel type of neural network and prove its theoretical
approximation rate to functions f based on the network topology. Informally,
we show that

Theorem (Informal)

Let f ∈ L2(R), and let δ > 0 be an approximation level. There exists a 4-layer
sparsely-connected neural network with N units where N = N(f , δ),
computing fN with

‖f − fN‖∞≤ δ.

We demonstrate a method to build a Gabor frame of L2(R) based on a
type of activation function in neural networks: rectified linear units.

We construct a 4-layer neural network based on the Gabor frame and
demonstrate its approximation properties.
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Gabor System

We first introduce the notion of Gabor system. Let the time shift T of a
function g ∈ L2(Rd ) by x ∈ Rd be defined by

Tx g(t) = g(t − x),

and let the modulation of g by ω ∈ Rd be defined by

Mωg(t) = e2πiω·tg(t).

Definition

A Gabor system G(g, α, β) is the set of time-frequency shifts of a non-zero
window function g ∈ L2(Rd ) with lattice parameters α, β > 0:

{Tαk Mβng : k , n ∈ Zd}.
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Frame

We introduce the notion of a frame. A frame can be thought of as a
generalization of a basis that may be linearly dependent.

Definition

A sequence {ej , j ∈ J} in a separable Hilbert space H is called a frame if
there exist positive constants A,B > 0 such that for all f ∈ H

A‖f‖2≤
∑
j∈J

|〈f , ej〉|2≤ B‖f‖2.

Any two constants A,B where 0 < A ≤ B <∞ satisfying the above statement
are called frame bounds. If A = B, then {ej : j ∈ J} is called a tight frame.

A frame provides a redundant way of representing a signal.
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Construction of a Gabor Frame Using ReLUs

We build the window function g using rectified linear units.
Rectified linear unit, or ReLU, is commonly used as activation function of the
neuron of deep neural networks. A rectified linear unit is defined as:

rect(x) = max{0, x}.

We define the window function g as a triangular-shaped window function:

g(x) = rect(
1
2

x + 1)− rect(x) + rect(
1
2

x − 1). (12)

We take g as the window function of a Gabor system G(g, α, β).
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-1

-0.5
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2
window function g(x)

Figure: Window function g definied in (12).
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Construction of a Gabor Frame Using ReLUs

It can be shown that G(g, α, β) is a Gabor frame with specific choices of α
and β.

Lemma

Given window function g(x) = rect( 1
2 x + 1)− rect(x) + rect( 1

2 x − 1), the
Gabor system G(g, α, β) is a Gabor frame for L2(R) with values of α, β
satisfying α = 1 and β ≤ 1

6 .



21/42

Overview
Approximation Properties of Neural Networks

Gabor Invariant Representation in Quantum Energy Regression

Correlation Functions and Wiener Space

We introduce the following definitions for the proof.

Definition

Given g, γ ∈ L2(Rd ) and α, β > 0, the correlation functions of the pair (g, γ)
are defined to be

Gn(x) = G(α,β)
n (x) =

∑
k∈Zd

g(x − n
β
− αk)γ(x − αk) (13)

for n ∈ Zd .

Denote the cube [0, α]d by Qα and write Q = Q1 = [0, 1]d for the unit cube.

Definition

A function g ∈ L∞(Rd ) belongs to the Wiener space W = W (Rd ) if

‖g‖W =
∑
n∈Zd

ess sup
x∈Q

|g(x + n)|<∞. (14)
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Existence of Gabor Frames

We introduce the following Theorem on conditions of existence of Gabor
frame.

Theorem (Walnut, 1992)

Suppose that g ∈ W (Rd ) and that α > 0 is chosen such that for constants
a, b > 0

a ≤
∑
k∈Zd

|g(x − αk)|2≤ b <∞ x − a.e. (15)

Then there exists value β0 = β0(α) > 0, such that G(g, α, β) is a Gabor
frame for all β ≤ β0. Specifically, if β0 > 0 is chosen such that∑

n∈Zd ,n 6=0

‖G(α,β0)
n ‖∞< ess inf

x∈Rd
|G0(x)|, (16)

then G(g, α, β) is a frame for all β ≤ β0.
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Proof of Lemma

By Theorem (Walnut, 1992), we need to show that g ∈ W (R) and that g
satisfies

a ≤
∑
k∈Zd

|g(x − αk)|2≤ b <∞ x − a.e. (17)

for some a, b > 0.
We know that supp g = [−2, 2], and that sup|g|= 1 by construction of g.
Since x ∈ Q1 = [0, 1], and n ∈ Z, we have

‖g‖W =
∑
n∈R

ess sup
x∈Q
|g(x + n)|≤ 4 sup|g|= 4 <∞. (18)

We can choose α = 1 so that the infinite sum in (18) has only four non-zero
terms for all x ∈ R. Given any x ∈ R, we have∑

k∈Z

|g(x − k)|2≤ 4 sup|g|2= 4.

Thus the upper bound b is b = 4.
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Proof of Lemma

Note that the window function g can be expressed as a piecewise linear
function:

g(x) =

{
1
2 x + 1, −2 ≤ x ≤ 0;

− 1
2 + 1, 0 < x ≤ 2.

(19)

Hence in order to find the lower bound a, we simplify the sum in (17) for some
x ∈ [−2,−1], and rewrite the equation as∑

k∈Z

|g(x − k)|2=|g(x)|2+|g(x + 1)|2+|g(x + 2)|2+|g(x + 3)|2

=(x + 1)2 +
5
2
.

(20)

Therefore, the minimum is reached when x = −1 and a = 5
2 .

Given α = 1, we can choose β ≤ β0 = 1
6 so that the the condition for β0 listed

in Theorem (Walnut, 1992) is satisfied.
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Approximation Property

Now that we have introduced the Gabor frame, we will build a 4-layer neural
network that can be used to approximate functions, and we show that

Lemma (Approximation Property, Czaja, Li, 2017)

Let f ∈ L2(R) be s times continuously differentiable, and let ‖f (s)‖1<∞. Then
for every x ∈ R, there exists a construction fN using Gabor coefficients of
modulations up to scale N such that:

|f − fN |= O(
1

Ns−1 ), (21)

where |·| denotes the point-wise absolute value.
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Construction of the Neural Network

We construct the neural network with specified number of nodes and layers
as the following.

The input layer: x ∈ R.

The first layer: all the shifts {x − αk} of x for k ∈ [−K ,K ].

The second layer: shifted x ′s are activated by modulated ReLUs of three
types: rect( 1

2 x + 1), −rect(x), rect( 1
2 x − 1), with each of them

modulated by Mβn for n ∈ [−N,N].

The third layer: outputs from different ReLUs of the same modulation
term are added together to obtain Tαk Mβng for all k ∈ [−K ,K ] and
n ∈ [−N,N].

The output layer: outputs from the third layer are added to produce the
final output function:

fK ,N =
∑
|k|≤K

∑
|n|≤N

wk,nTαk Mβng. (22)
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Construction of the Neural Network

Figure: Illustration of the neural network
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Approximation Rate of Neural Networks

Theorem (Czaja, Li, 2017)

Let f ∈ L2(R). If f is at s times continuously differentiable for s ≥ 2, then f
can be approximated on the order of O( 1

Ns−1 ) using a 4-layer network with
(2K + 1)(4(2N + 1) + 1) units. There are 2K + 1 linear units in the first layer;
(2K + 1)× 3× (2N + 1) units in the second layer; (2K + 1)(2N + 1) linear
units in the third layer and a single linear unit in the fourth layer.
Here K is the number of translations and N is the number of modulations in
the Gabor system used to construct the neural network.
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Proof of Theorem

The output of the neural network can be written as

fK ,N =
∑
|k|≤K

∑
|n|≤N

wk,nTαk Mβng (23)

with weights wk,n. It remains to prove the Lemma (approximation property).
We have shown that G(g, α, β) is a Gabor frame for L2(R) with α = 1 and
β ≤ 1

6 .

Proposition (Grochenig)

If G(g, α, β) is a frame for L2(Rd ), then there exists a dual window
γ ∈ L2(Rd ), such that the dual frame of G(g, α, β) is G(γ, α, β).
Consequently, every f ∈ L2(Rd ) possesses the expansions

f =
∑

k,n∈Zd

∑
〈f ,Tαk Mβng〉Tαk Mβnγ

=
∑

k,n∈Zd

∑
〈f ,Tαk Mβnγ〉Tαk Mβng

(24)

with unconditional convergence in L2(Rd ).
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Proof of Theorem

Let fK ,N be the approximation obtained by the first (2K + 1)(2N + 1) terms in
the expansion:

fK ,N =
∑
|k|≤K

∑
|n|≤N

〈f ,Tαk Mβnγ〉Tαk Mβng. (25)

Then for any x ∈ R,

|f (x)− fK ,N(x)|=

∣∣∣∣∣∣
∑
|k|>K

∑
|n|>N

〈f ,Tαk Mβnγ〉Tαk Mβng(x)

∣∣∣∣∣∣
≤
∑
|k|>K

∑
|n|>N

|〈f ,Tαk Mβnγ〉|·|e2πiβn·(x−αk)|·|g(x − αk)|.

≤
∑
|k|>K

∑
|n|>N

|〈f ,Tαk Mβnγ〉||g(x − αk)|.

(26)



31/42

Overview
Approximation Properties of Neural Networks

Gabor Invariant Representation in Quantum Energy Regression

Proof of Theorem

Note that we can consider the Gabor coefficients as

〈f ,Tαk Mβnγ〉 = Ĥα,β,k (n), where Hα,β,k (t0) = f (
1
β

t0 + αk)γ(
1
β

t0), (27)

for t0 ∈ R. We need to discuss the properties of the dual window function γ.

In fact, from the work by Christensen, Kim, Kim on regularity of dual Gabor
windows, we obtain the following Lemma:

Lemma (Construction of Smooth Dual Window)

Given window function g = rect( 1
2 x + 1)− rect(x) + rect( 1

2 x − 1), there
exists dual window function γ such that γ is smooth with finite support.
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Proof of Theorem

Since f ∈ Cs(R), γ ∈ C∞(R) and γ has finite support, we have

|Ĥα,β,k (n)|< Cs

ns , (28)

and ∑
|n|>N

|Ĥα,β,k (n)|<
∑
|n|>N

Cs

ns < s
∫ ∞

N

2Cs

ns dn =
2sCs

Ns−1 , (29)

where Cs is a constant proportional to the L1 norm of the sth derivative of
Hα,β,k . we plug in the bound in (29) back into (26) and obtain

|f − fK ,N |<
∑
|k|>K

2sCs

Ns−1 |g(x − αk)|. (30)

Note that g is compactly supported on [−2, 2]. Then, for any x , there are only
finitely many k ’s (d 4

α
e) with |k |> K such that g(x − αk) 6= 0. Therefore,

|f − fK ,N |<
∑
|k|>K

2sCs

Ns−1 |g(x − αk)|<
d 4
α
e2sCs

Ns−1 . (31)
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Representation of Network Dictionary

We illustrate with figures the neurons of our neural network in the third layer
and the output of our neural network with random weights.
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Figure: Translated and modulated ReLUs (left); Output of the neural network with
random weights when K = 8, and N = 8 (right).
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Background on Quantum Energy Regression

Computation of energy of a single chemical molecule has become an
essential topic in computational chemistry.
A chemical molecule is represented by its state x = {rk , zk}k , where
rk ∈ R3 is the position of the k th nuclei and zk > 0 is the charge of k th
nuclei.
The molecular energy E can be written as a functional of the electron
density ρ(u) ≥ 0 at every position u ∈ R3.
The ground state energy f (x) which is unique for every molecule x , can
be obtained by minimizing energy E over a set of electronic densities ρ:

f (x) = E(ρx ) = inf
ρ

E(ρ).

atomic density valence density core density

Figure: Approximated Electron Density ρ̃x
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Invariant Properties of Chemical Molecules

The quantum energy f (x) of molecule x must satisfy the following invariant
properties:

Permutation invariance The energy functional f (x) is invariant under
permutation of indices {k = 1, ...,K} in x = {rk , zk}k .

Isometric invariance The energy functional f (x) is invariant under
global translations, rotations, and symmetries of atomic positions rk .

In machine learning, one way to avoid direct computation of f (x) is to build
set of dictionaries of functions Φ(x) = {φi (x)}i such that the energy f (x) can
be approximated by f̃ (x), where

f̃ (x) = 〈w ,Φ(x)〉 =
∑

i

wiφi (x).

The weights {wi} are computed such that the error
∑n

j=1

∣∣∣f̃ (xj )− f (xj )
∣∣∣2 on

the training data set is minimized.
We intend to build a set of dictionaries from the electronic density of
molecules with desired invariant properties.
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Gabor Transform on Electronic Density of Molecules

We take the Gabor transform Gρ(t , γ) for the electronic density ρ by window
function g:

Gρ(t , γ) =

∫
ρ(x)g(x − t)e−2πixγdx ,

where t is the center location of the window.
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Figure: Gabor transform of electron density at different translation locations
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Translation Invariance

For translation invariance, we take the modulus of Gρ(t , γ) and integrate over
all t : Gρ(γ) =

∫
R3 |Gρ(t , γ)|dt .

Gabor coefficients integrated over translations

Figure: Gabor coefficients integrated over translations
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Rotation Invariance

In order to obtain rotation invariance in the representation, we take average
of the coefficients across locations of the same distance to the center.
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Figure: Rotation and translation invariant representation

To capture information of f of different widths at t , we adopt two different
Gaussian functions g1 and g2. The Gabor invariant dictionary is defined as:

Φρ = {‖ρ‖1, ‖G1
ρ,kε‖1, ‖G1

ρ,kε‖2
2, ‖G2

ρ,kε‖1, ‖G2
ρ,kε‖2

2}0≤k≤ε−2 . (32)
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Quantum Energy Regression

We use sparse orthogonal least squares regression in dictionaries
Φ(x) = {φk (x)}k . We compare our results with state-of-the-art methods:

M̄ RMSE MAE

Coulomb Matrix 6.7 ±2.8 14.8 ± 12.2

Fourier 73±27 6.7±0.7 8.5±0.9

Wavelet 38±13 6.9±0.6 9.1±0.8

Scattering 16 74 6.9 9.0

Gabor 71±31 5.3±0.3 7.0±0.6

Scattering 17 107±41 3.2±0.1 4.5±0.2

Table: Average Error ± Standard Deviation over the five folds in kcal/mol

The Gabor invariant representation is promising for its extend-ability to 3D.
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Thank You!
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